On Hasse-Weil zeta functions of Kottwitz simple Shimura varieties

Thomas J. Haines

Mathematics Department University of Maryland

Langlands program: Number Theory and Representation Theory BIRS – Oaxaca November 29, 2022

Joint with Jingren Chi

I will report on joint work in progress with Jingren Chi.

Outline

- 2 The Test Function Conjecture
- The Scholze Test functions
- 4 The new local ingredients

Shimura data

- (G, X): G connected reductive Q-group, $X = G(\mathbb{R})/K_{\infty}$ Hermitian symmetric space; these are required to satisfy the axioms of Deligne.
- In particular, X ∋ h : Res_{C/R}G_{m,C} → G_R gives rise to a G(C)-conjugacy class {µ} of *minuscule* cocharacters G_{m,C} → G_C (the Shimura cocharacters).
- Example: $\mathbf{G} = \operatorname{GL}_2$, $X = \mathbb{C} \setminus \mathbb{R}$, $\mu(z) = \operatorname{diag}(z, 1)$, i.e., $\mu = (1, 0)$.
- Let $\mathbf{E} \subset \mathbb{C}$ be the field of definition of $\{\mu\}$. Then for $K \subset \mathbf{G}(\mathbb{A}_f)$ ranging over compact open subgroups,

$$\operatorname{Sh}(\mathbf{G}, X)(\mathbb{C}) := \varprojlim_{K} \operatorname{Sh}_{K}(\mathbf{G}, X)(\mathbb{C}) := \varprojlim_{K} \mathbf{G}(\mathbb{Q}) \setminus [X \times \mathbf{G}(\mathbb{A}_{f})/K],$$

is the $\mathbb C\text{-points}$ of inverse limit of quasi-projective varieties over $\mathbf E.$

• Abbreviate $\operatorname{Sh}_K := \operatorname{Sh}_K(\mathbf{G}, X).$

Hecke correspondences and Galois actions

- Fix rational prime ℓ . Set $H^i = \varinjlim_K H^i_{et}(\operatorname{Sh}_K \otimes_{\mathbf{E}} \overline{\mathbb{Q}}, \overline{\mathbb{Q}}_\ell).$
- This is naturally a representation of $\mathbf{G}(\mathbb{A}_f) \times \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbf{E})$.
- $\bullet\,$ Decompose the alternating sum H^* in the Grothendieck group

$$H^* = \sum_{\pi_f} \pi_f \otimes \sigma(\pi_f).$$

where $\pi_f \in \operatorname{Irrep}(\mathbf{G}(\mathbb{A}_f))$ and $\sigma(\pi_f)$ is the associated (virtual) representation of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbf{E})$.

- The map $\pi_f \mapsto \sigma(\pi_f)$ is supposed to reflect aspects of the **global** Langlands correspondence for the group G.
- Expect local-global compatibility: roughly, if $\pi_f = \pi^p \otimes \pi_p$ for $p \neq \ell$, then $\pi_p \in \operatorname{Irrep}(\mathbf{G}(\mathbb{Q}_p))$ should belong to the local *L*-packet given by $\pm \sigma(\pi_f)|_{W_{\mathbf{E}_p}}$ where $\mathfrak{p} \in \operatorname{Spec}(\mathcal{O}_{\mathbf{E}})$ has $\mathfrak{p}|p$.
- First step: understand H^* as virtual $\mathbf{G}(\mathbb{A}_f) \times W_{\mathbf{E}_p}$ -module, for the local Weil group $W_{\mathbf{E}_p} \subset \operatorname{Gal}(\bar{\mathbb{Q}}_p/\mathbf{E}_p)$.

Statement of the problem

• Write
$$G = \mathbf{G}_{\mathbb{Q}_p}$$
, $E = \mathbf{E}_p$, ${}^L G = \widehat{G}(\overline{\mathbb{Q}}_\ell) \rtimes W_{\mathbb{Q}_p}$, and ${}^L G_E = \widehat{G}(\overline{\mathbb{Q}}_\ell) \rtimes W_E$.

• The Shimura cocharacter $\mu : \mathbb{G}_{m,\bar{\mathbb{Q}}_p} \to G_{\bar{\mathbb{Q}}_p}$ gives rise to an algebraic representation $r_{-\mu} : {}^L G \to \operatorname{Aut}(V_{-\mu})$ on the highest weight \widehat{G} -rep. $V_{-\mu}$.

Theorem (Target Theorem)

For "nice" unitary Shimura varieties (e.g., simple Kottwitz type, i.e.,compact, no global endoscopy), we have an isomorphism of virtual $\mathbf{G}(\mathbb{A}_{f}^{p}) \times K_{p}^{0} \times W_{E}$ -modules

$$H^* \cong \sum_{\pi_f = \pi^p \otimes \pi_p} a(\pi_f) \, \pi_f \otimes (r_{-\mu} \circ \varphi_{\pi_p}|_{W_E}) |\cdot|^{-\dim \operatorname{Sh}/2}$$

for certain "virtual multiplicities" $a(\pi_f) \in \mathbb{Z}$ defined by Kottwitz.

• Here $K_p^0 \subset G(\mathbb{Q}_p)$ is a compact open subgroup (for us, a parahoric), and $\varphi_{\pi_p}: W_{\mathbb{Q}_p} \to {}^L G$ is the semisimple local Langlands parameter attached to π_p .

Consequence for local Hasse-Weil zeta functions

Corollary

In the above situation, let $K \subset \mathbb{G}(\mathbb{A}_f)$ be any sufficiently small compact open subgroup. Then the semisimple local Hasse-Weil factor of Sh_K at the place \mathfrak{p} of \mathbf{E} is given by

$$\zeta_{\mathfrak{p}}^{\mathrm{ss}}(\mathrm{Sh}_K, s) = \prod_{\pi_f} L^{\mathrm{ss}}(s - \frac{\dim \mathrm{Sh}_K}{2}, \pi_p, r_{-\mu})^{a(\pi_f)\dim \pi_f^K}$$

- The Kottwitz simple Shimura varieties: let F ⊃ F⁺ ⊃ Q be a CM field, let (D, *) be a central division algebra over F of rank n², with involution * of 2nd type, let G = GU(D, *).
- We get a "fake" unitary group Shimura variety, which is projective, and has no global endoscopy.
- It is PEL type: for K_p parahoric Sh_{K^pK_p} has integral O_E-model the moduli space of abelian schemes with additional structure (A_●, λ, ι, η^p).
- The endomorphism structure $\iota : \mathcal{O}_{\mathbf{D}} \otimes \mathbb{Z}_{(p)} \to \operatorname{End}(A) \otimes \mathbb{Z}_{(p)}$ must satisfy Kottwitz' determinant condition, and η^p is a K^p -level structure on A.

Some History: Target Theorem proved by

- Kottwitz: in good reduction situation, where G/\mathbb{Q}_p is unramified, $K_p^0 = \mathcal{G}(\mathbb{Z}_p)$ for a hyperspecial maximal parahoric group scheme \mathcal{G} . All π_p appearing are unramified.
- Harris-Taylor: in the Harris-Taylor cases. Among other things, essentially $\mathbf{G}_{\mathbb{R}} = \mathrm{GU}(1, n-1) \times \mathrm{GU}(0, n)^{[F^+:\mathbb{Q}]-1}$. That is, essentially $\mu = (1, n-1)$. And $G = \prod_i \mathrm{GL}_{n_i} \times \prod_i D_i^{\times}$.
- Scholze-Shin: like Kottwitz (any signature at ∞ , any μ), but require $G = \mathbf{G}_{\mathbb{Q}_p}$ a product of Weil-restrictions of GL_n 's.
- Xu Shen: like Harris-Taylor, essentially $\mu = (1, n 1)$, but G required to be a certain product of units of division algebras with invariants $\pm 1/n_i$ (p-adic uniformization situation).

Theorem (Chi-H.)

The Target theorem holds in the Scholze-Shin situation, except we may allow G to be any inner form of a product of Weil-restrictions of GL_n 's.

• We thus generalize both Scholze-Shin and Shen, but our proof is different from either.

Counting Points

- We fix a parahoric G(Z_p) = K⁰_p, and integral model S_{K⁰_p} = Sh_{K^pK⁰_p} over O_E. For K_p ⊂ K⁰_p, we have finite étale π_{K_pK⁰_p} : Sh_{K^pK_p} → Sh_{K^pK⁰_p}.
- From now on, fix sufficiently small $K = K^p K_p$ with $K_p \subset K_p^0$ arbitrarily deep.
- Let $f^p \in C_c^{\infty}(\mathbf{G}(\mathbb{A}_f^p)//K^p)$, $h \in C_c^{\infty}(K_p^0//K_p)$, $\tau \in \operatorname{Frob}^j I_E$, $r = j[\kappa_E : \mathbb{F}_p]$ (sufficiently large).
- Then Grothendieck-Lefschetz trace formula applied to Frobenius-Hecke correspondence **should** give a formula (for *some* function $\phi_{\tau,h} \in C_c^{\infty}(G(\mathbb{Q}_{p^r}))$)

$$\operatorname{Tr}(\tau \times hf^p \,|\, H^*) = \sum_{(\gamma_0, \gamma, \delta)} c(\gamma_0, \gamma, \delta) \, O(f^p) \, TO_{\delta\sigma}(\phi_{\tau, h}).$$

• Point: RHS resembles the geometric side of the Arthur-Selberg trace formula for G. So after (pseudo)stabilization, this would connect H^* with automorphic representations.

- Much work has shown: if K_p parahoric (and $h = e_{K_p}$), ϕ_{τ} is determined by $\operatorname{Tr}(\tau | R \Psi^{\mathcal{M}_{K_p}^{\operatorname{loc}}}(\bar{\mathbb{Q}}_{\ell}))$ (in center of a parahoric Hecke algebra).
- For deep K_p there is no integral model \mathcal{S}_{K_p} and no local model $\mathcal{M}_{K_p}^{\mathrm{loc}}$, but nevertheless we still expect to be able to take a function in the stable Bernstein center.

Conjecture (The Test Function Conjecture, H.-Kottwitz)

For any Shimura variety, a formula like the above holds with $\phi_{\tau,h} = Z_{\tau,-\mu,r} \star \tilde{h}$. Here $\tilde{h} \in C_c^{\infty}(G(\mathbb{Q}_{p^r}))$ is any function with base-change transfer $h \in C_c^{\infty}(G(\mathbb{Q}_p))$.

• Here $Z_{\tau,-\mu,r}$ is an element in the usual Bernstein center $\mathfrak{Z}(G/\mathbb{Q}_{p^r})$ which is the image of an element $Z_{\tau,V_{-\mu,r}}$ in the stable Bernstein center $\mathfrak{Z}^{\mathrm{st}}(G/\mathbb{Q}_{p^r})$.

(Stable) Bernstein center

- Change notation: F non-arch. local, G connected reductive over F. Choose isom $\mathbb{C} \cong \overline{\mathbb{Q}}_{\ell}$.
- The Bernstein variety: a variety structure on the set of supercuspidal supports $(M(F), \sigma)_G$. (Act by twisting σ by elements of the torus $X^{\mathrm{un}}(M) = \mathrm{Hom}(M(F)/M(F)^1, \mathbb{C}^{\times})$.)
- The Bernstein center is the ring of regular functions $\mathfrak{Z}(G/F)$.
- The stable Bernstein variety: a variety structure on \hat{G} -conjugacy classes of semisimple Langlands parameters $\varphi: W_F \to {}^LG$.
- If $\varphi: W_F \to {}^LG$ factors minimally through ${}^LM \subset {}^LG$, we can twist it by any 1-cocycle in the torus $H^1(\operatorname{Frob}_F, Z(\widehat{M})^{I_F})^{\circ} \cong X^{\operatorname{un}}(M).$
- Stabilizers are finite, so get infinite union of tori mod finite groups. The **stable Bernstein center** is the ring of regular functions $\mathfrak{Z}^{\mathrm{st}}(G/F)$.

Theorem (Fargues-Scholze)

For every G/F, there is a semisimple local Langlands correspondence $\pi \mapsto \varphi_{\pi}$, which is compatible with unramified twists, with normalized parabolic induction, and which is suitably functorial. Consequently, there is a natural homomorphism of commutative rings $\mathfrak{Z}^{st}(G/F) \to \mathfrak{Z}(G/F)$.

- In particular, given $Z \in \mathfrak{Z}^{st}(G/F)$, we can take its image Z in $\mathfrak{Z}(G/F)$ (thus view Z as a distribution on G(F)).
- Given any $(V,r) \in \operatorname{Rep}({}^LG)$, we get $Z_{\tau,V} \in \mathfrak{Z}^{\mathrm{st}}(G/F)$ by

$$Z_{\tau,V}(\varphi) := \operatorname{tr}(\tau \,|\, r \circ \varphi).$$

• **Upshot:** The Test Function Conjecture is now unconditional, thanks to Fargues-Scholze. They provided exactly what was needed.

- Scholze constructed functions φ_{τ,h} which satisfy the point counting formula, using deformations of *p*-divisible groups.
- This applies to PEL Shimura varieties (Alex Youcis made progress extending this to abelian type Shimura varieties).
- Recall we don't have an integral model at level K_p. Scholze suggested pushing down to the integral model S_{K⁰_p} and studying the nearby cycles of the sheaf π<sub>K⁰_pK_p,*(Q

 ^ℓ) on the generic fiber Sh_{K⁰_p}.
 </sub>
- But he still needed a purely local construction of the test function $\phi_{\tau,h}$, which he defined as follows.
- Setting: κ ⊃ κ_E perfect field of characteristic p, endowed with O_E → κ. Let H_• chain of p-divisible groups over κ. (Really, consider those with (P)EL structure: action of O_B, Kottwitz determinant condition, etc.).

Definition

The deformation space $\mathcal{X}_{H_{\bullet}}$ of H_{\bullet} is the functor that associates to any Artin local \mathcal{O}_E -algebra R with residue field κ the set of isomorphism classes of p-divisible groups (with (P)EL)-structure) \tilde{H}_{\bullet} over $\operatorname{Spec}(R)$, together with an isomorphism $\tilde{H}_{\bullet} \otimes_R \kappa \xrightarrow{\sim} H_{\bullet}$, i.e. an isomorphism of p-divisible \mathcal{O}_B -modules $\tilde{H}_{\bullet} \otimes_R \kappa \xrightarrow{\sim} H_{\bullet}$.

Scholze test function, cont'd

- Scholze proved: The functor $\mathcal{X}_{H_{\bullet}}$ is represented by a complete Noetherian local \mathcal{O}_E -algebra $R_{H_{\bullet}}$ with residue field κ .
- Let $X_{H_{\bullet}}$ denote the Raynaud generic fiber of the formal scheme $\operatorname{Spf}(R_{H_{\bullet}})$. This is a rigid analytic space over $k := W_{\mathcal{O}_E}(\kappa)[\frac{1}{n}]$.
- If chain H_• corresponds to parahoric G(Z_p), any K ⊂ G(Z_p) gives étale cover π_K : X_{H_•,K} → X_{H_•} (parametrize level-K structures on universal p-adic Tate module).
- Rational covariant Dieudonné module $M_{\bullet} \otimes \mathbb{Q}$ with σ -linear Frobenius F can be rigidified:

$$(M_{\bullet} \otimes \mathbb{Q}, F) \cong (\Lambda_{\bullet} \otimes_{\mathbb{Z}_p} \mathbb{Q}_p, p\delta\sigma),$$

for $\delta \in G(W_{\mathcal{O}_E}(\kappa)[\frac{1}{p}])$, well-defined up to $G(W_{\mathcal{O}_E}(\kappa))$ - σ -conjugacy.

The association H_• → δ ∈ G(W_{O_E}(κ)[¹/_p])/ ~ is an injection.

End of Scholze construction

Definition

Let $\delta \in G(\mathbb{Q}_{p^r})$. If δ comes from an H_{\bullet} over $\kappa = \mathbb{F}_{p^r}$ with controlled cohomology, then set

$$\phi_{\tau,h}(\delta) = \operatorname{tr}(\tau \times h \,|\, H^*(X_{H_{\bullet},K} \otimes_k \hat{\overline{k}}, \mathbb{Q}_{\ell})),$$

where K is any normal pro-p open compact subgroup such that h is K-biinvariant. If δ does not arise this way, set $\phi_{\tau,h}(\delta) = 0$.

- Scholze: the function $\phi_{\tau,h}$ is locally constant \mathbb{Q} -valued, compactly supported function on $G(\mathbb{Q}_{p^r})$. It is $\mathcal{G}(\mathbb{Z}_{p^r})$ - σ -conjugacy invariant. It is independent of $\ell \neq p$.
- His main result: This function $\phi_{\tau,h}$ satisfies the point counting formula (PEL type cases):

$$\operatorname{Tr}(\tau \times hf^p \mid H^*) = \sum_{(\gamma_0, \gamma, \delta)} c(\gamma_0, \gamma, \delta) O(f^p) TO_{\delta\sigma}(\phi_{\tau, h}).$$

Wrinkle

$$\operatorname{Tr}(\tau \times hf^p \mid H^*) = \sum_{(\gamma_0, \gamma, \delta)} c(\gamma_0, \gamma, \delta) O(f^p) TO_{\delta\sigma}(\phi_{\tau, h}).$$

- Small lie: Scholze requires G/\mathbb{Q}_p unramified, in particular, quasi-split.
- In general, there is an obstruction to constructing the triple $(\gamma_0, \gamma, \delta)$ from a Frobenius-Hecke fixed point: if G is **not quasi-split**, then there is no reason that $N_r(\delta) := \delta \sigma(\delta) \cdots \sigma^{r-1}(\delta)$ should be stably conjugate to an element in $G(\mathbb{Q}_p)$.
- This is the main source of difficulty we encounter for non-quasi-split groups.
- To make things work, we need to know the a priori vanishing statement: TO_{δσ}(φ_{τ,h}) = 0 if N_r(δ) is not stably conjuate to G(Q_p).
- Another question: How is Scholze's $\phi_{\tau,h}$ related to the conjectural test functions $Z_{\tau,-\mu,r}\star \tilde{h}$?

Relation between test functions

• How is Scholze's $\phi_{\tau,h}$ related to the conjectural test function $Z_{\tau,-\mu,r}\star \tilde{h}?$

Theorem (Chi-H.)

In the various situations of the Target Theorem, the two test functions essentially agree, in the sense that for any $\delta \in G(\mathbb{Q}_{p^r})$ with $N_r(\delta)$ semisimple, we have $TO_{\delta\sigma}(\phi_{\tau,h}) = TO_{\delta\sigma}(Z_{\tau,-\mu,r} \star \tilde{h})$.

• Thus, in light of Scholze point-counting formula, the Test Function Conjecture holds here.

• Our main local results are the following.

Theorem (Chi-H.)

In the situation of the Target Theorem,

(1) The Scholze function $\phi_{\tau,h}$ satisfies the a priori vanishing property. Thus it has a base-change to a function $b(\phi_{\tau,h}) \in C_c^{\infty}(G(\mathbb{Q}_p))$.

(2) We have
$$b(\phi_{\tau,h}) = Z_{\tau,-\mu,1} \star h$$
.

- The unusual notion of base-change in (1) appears because we need to use **pseudo-stabilization** to rewrite the point-counting formula in terms of automorphic representations for **G**.
- This is proved by a global method. (1) is proved first: by embedding the local situation into that attached to a certain global group \mathbb{G} , and using Harris-Taylor and Fargues methods, we can arrange

$$\operatorname{tr}(\tau \times hf^p | H^*_{\mathbb{G}}) = \sum_{\pi} m(\pi) \operatorname{Tr}(f_{\tau,h} f^p f^{\mathbb{G}}_{\infty} | \pi)$$

where $f_{\tau,h} := Z_{\tau,-\mu,1} \star h$ and the sum ranges over automorphic representations of \mathbb{G} , but with original objects at p.

- The stable Bernstein center at p does not change when G is replaced by a global inner form G' which is isomorphic to G outside p,∞, but which is quasi-split at p.
- For a well-chosen \mathbb{G}' , we can use global results for the simple Kottwitz Shimura variety attached to \mathbb{G}' . Recall $\mathbb{G}'_{\mathbb{Q}_p}$ is quasi-split by assumption. Namely we have

$$\operatorname{tr}(\tau \times hf^p \mid H^*_{\mathbb{G}'}) = \sum_{(\gamma'_0, \gamma, \delta)} c(\gamma'_0, \gamma \delta) O_{\gamma}(f^p) TO_{\delta\sigma}(\phi_{\tau, h}).$$

where $(\gamma'_0, \gamma, \delta)$ ranges over generalized Kottwitz triples such that $\gamma'_0 \in \mathbb{G}'(\mathbb{Q})$ is transfered from $\delta \in \mathbb{G}(\mathbb{Q}_{p^r}) = G(\mathbb{Q}_{p^r})$.

- The RHS is $\sum_{\pi'} m(\pi') \operatorname{tr} \pi'(f_{\tau,h}^* f^p f_{\infty}^{\mathbb{G}'})$, where the sum if over automorphic representations π' of \mathbb{G}' and $f_{\tau,h}^* \in \mathbb{G}'(\mathbb{Q}_p)$ is the twisted endoscopic transfer of $\phi_{\tau,h} \in \mathbb{G}(\mathbb{Q}_{p^r})$.
- Then a comparison of global trace formulas for \mathbb{G} and \mathbb{G}' allows us to deduce (1,2) for \mathbb{G} . The Target Theorem follows.