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1 Overview

tasks considered:

• speech recognition

• translation of text and speech

• image recognition: handwriting

natural language processing: NLP
human language technology: HLT = NLP + speech

more tasks in HLT:

• (spoken/written) language understanding

• dialog systems

• speech synthesis

• text summarization

• ...
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Projects: TC-Star and GALE

TC-Star (2004-2007): integrated research project funded by EU:

• primary domain: Spanish/English speeches of EU parliament
(TV station: Europe by satellite, 11 languages before EU extension)

• tasks: speech recognition, translation, synthesis

• partners:
IBM, IRST Trento, LIMSI Paris, UKA Karlsruhe, UPC Barcelona, Siemens, ...

• first time: speech translation for real-life data

GALE (2005-2010?): funded by DARPA:

• primary domain:
Arabic and Chinese, texts and TV shows

• three (huge) teams
headed by BBN, IBM, SRI

• tasks: speech recognition, translation, information extraction
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Joint Project QUAERO

QUAERO (2008-2013):
funded by OSEO/French Government

• French partners and 2 German partners:
industry: Thomson, France Telecom, Jouve, LTU/Exalead, ...
academia: CNRS, INRIA, INRA, U of Karlsruhe, RWTH Aachen, ...

• primary goal: processing of
multimedia and multilingual documents (web, archives, ...)

• many languages:
French, German, Chinese, Arabic,...

• tasks:
speech recognition, translation of text and speech,
handwriting recogition, image recognition, information extraction/retrieval, ...
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four key ingredients:

Error Measure and
Decision Rule

Probability Models

parameter
estimates

Output

Training Criterion
(+ eff. algorithm)

Decision Rule
(+ eff. algorithm)

Data

Training

Testing
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2 Speech Recognition

• What are the main achievements over the last 30 years?

• What are the successful approaches?

• What are the lessons learned?

lessons:
– contribution from phonetics or linguistics: small
– data-driven methods
– avoid local decisions
– consistent models and training criteria
– comparative evaluations

public software for ASR: RWTH i6 web site
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2.1 Problem of Speech Recognition

characteristic properties:

• high variability: – from utterance to utterance
– dependence on the phonetic context
– from speaker to speaker

• speaking rate: – can vary drastically
– no anchor points

• word and phoneme (sound) boundaries: do not exist in acoustic signal

• context or prior information:
syntactic-semantic structures of the spoken language

compare:

• human-human communication:
– proper names via telephone→ spelling
– native language→ foreign language:
→ understanding much harder

• character recognition:
character error rate: 20–30% [sub.+del.+ins.]
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State of the Art

heavy dependence on:
– vocabulary size
– perplexity of LM
– speaking style
– acoustic quality

standard data bases
with following conditions:
– American English
– continuous speech
– speaker independent
– 100 hours of speech and more

performance of best research systems:

Task Speaking Vocabulary Perplexity Word Error
Style Size Rate [%]

Digit Strings read 11 11 0.3
Voice Commands read 1000 60 6.0
Text dictation read 64 000 150 10.0
Broadcast News natural 64 000 200 15.0
Telephone Conversations colloquial 64 000 120 30.0
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2.2 Bayes Decision Rule

goal:
minimize the decision errors
→ Bayes decision rule:

x→ k(x) := argmax
k
{p(k|x)}

= argmax
k
{p(k) · p(x|k)}

holistic approach
to speech recognition:

– class k:
word sequence wN

1 = w1...wN
– observation x:

vector sequence xT1 = x1...xT

signal

s

x  feature vector

result

p(x|k)   references

p(k)      references
max {p(k) p(x|k)}

preprocessing

feature analysis

k
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Speech Recognition:
Bayes Decision Rule

Speech Input

Acoustic
Analysis

Phoneme Inventory

Pronunciation Lexicon

Language Model

Global Search:

maximize

  x1 ... 
xT

Pr(w1 ... wN)  Pr(x1 ... xT  |  w1...wN)

  w1 ... wN

Recognized
Word Sequence

 

over

  Pr(x1 ... xT  |  w1...wN)

Pr(w1 ... wN)
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2.3 Acoustic Modelling

Problem:
prob.distributions over sequences wN

1 and xT1
→ factorization of probability distributions

Hidden Markov Model (HMM):

Pr(xT1 |wN
1 ) =

∑

sT1

Pr(xT1 , s
T
1 |wN

1 ) =
∑

sT1

T∏

t=1

p(xt, st|st−1, w
N
1 )

=
∑

sT1

T∏

t=1

[
p(st|st−1, w

N
1 ) · p(xt|st, wN

1 )
]

HMM at several levels:
– phoneme
– word: concatenation of phonemes
– sentence: concatenation of words
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Hidden Markov Model (HMM)

HMM = statistical finite-state automaton (phoneme, word, sentence)
with first-order dependencies

• observations: continuous-valued vectors xt

• two distributions:
p(xt, s|s′, w) = p(s|s′, w) · p(xt|s, w):

– transition prob. p(s|s′, w):
prior model structure

– emission prob. p(xt|s, w):
link to observations

note:

• efficient probability model
p(x1...xT |w) for string x1...xT

• handling of
time alignment problem

ST
A

T
E

  I
N

D
E

X

TIME  INDEX

2 31 5 64
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Refinements

• augmented vector: window around t:

p(xt|s, w) with xt = [zt−δ, ..., zt, ..., zt+δ]

with original acoustic vectors xt over time t

• LDA: linear discriminant analysis for
reducting the dimension of the augmented feature space

• Gaussian mixture (multimodal distribution):

p(x|s, w) =
∑

i

p(x, i|s, w) =
∑

i

p(i|s, w) p(x|s, i, w)

• phoneme models in triphone context:
decision trees (CART) for finding equivalence classes
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2.4 Baseline Training

• key quantity: class posterior probability

pθ(c|x) =
pθ(c) pθ(x|c)∑
c′ pθ(c

′) pθ(x|c′)

with parameter set θ to be trained

• natural criterion with labeled training data (xr, cr), r = 1, ..., R:

arg max
θ

{∑

r

log pθ(cr|xr)
}

• approximation: numerator only = joint likelihood
’maximum-likelihood’ (in engineering, pattern recognition, ...)

arg max
θ

{∑

r

log pθ(cr, xr)
}

=

= arg max
θ

{∑

r

log pθ(cr) +
∑

r

log pθ(xr|cr)
}

• additional complication:
– HMM with hidden variables
– EM algorithm and its variants
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2.5 Training using the EM Algorithm

define model distribution pϑ(y|x)

for random variables x and y and parameters ϑ
and hidden variableA:

pϑ(y|x) =
∑

A

pϑ(y,A|x)

=
∑

A

pϑ(A|x) · pϑ(y|A,x)

examples of hidden variables:
– mixture index in Gaussian mixtures
– linear interpolation for language models
– time alignment in HMM for ASR
– word alignment in HMM and IBM-2 for SMT
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training data:
(xn, yn), n = 1, ...,N

training criterion: consider the likelihood function (or its logarithm)
and maximize it over the unknown parameters ϑ:

ϑ → F (ϑ) := log
∏

n

∑

A

pϑ(yn, A|xn)

=
∑

n

log
∑

A

pϑ(yn, A|xn)

typical situation:
– no closed-form solution
– iterative procedures using the EM algorithm
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Derivation of EM Algorithm

For the difference of log-likelihoods with two parameter estimates ϑ and ϑ̂,
we have the following inequality:

F (ϑ̂)− F (ϑ) ≥ Q(ϑ; ϑ̂)−Q(ϑ;ϑ)

with the definition of the Q(·; ·) function:

Q(ϑ; ϑ̂) :=
∑

n

∑

A

γn(A|ϑ) log pϑ̂(yn, A|xn)

and the (sort of) posterior probabilities γn(A|ϑ):

γn(A|ϑ) := pϑ(A|xn, yn)

=
pϑ(yn, A|xn)∑

A′
pϑ(yn, A′|xn)

proof of inequality: based on divergence inequality (see literature)
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EM Algorithm

operations of EM algorithm:

ϑ̂ := argmax
ϑ

{∑

n

∑

A

γn(A|ϑ) log pϑ̂(yn, A|xn)
}

• E = expectation of log pϑ̂(yn, A|xn)

• M = maximization of Q(ϑ; ϑ̂) over ϑ̂
(most attractive if there is a closed-form solution!)

EM algorithm = iterative procedure:

• previous estimate: ϑ

• new estimate: ϑ̂
(local convergence is guaranteed)

EM algorithm: interpretation:

• weighted likelihood function for the model p(y,A|x)

• weights = posterior probabilities γn(A|ϑ)
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Maximum Approximation

exact criterion:

ϑ̂ = arg max
ϑ

{∑

n

log
∑

A

pϑ(yn, A|xn)
}

maximum approximation (Viterbi training): replace sum by maximum:

ϑ̂ ∼= arg max
ϑ

{∑

n

log max
A

pϑ(yn, A|xn)
}

iterative procedure with the alternating steps:

ϑ̂ := ...

Ân := arg max
A
{pϑ̂(yn, A|xn)} n = 1, ...,N

ϑ̂ := arg max
ϑ

{∑

n

log pϑ̂(yn, Ân|xn)
}

Ân := ...
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2.6 Language Model

Trigram Model (for sentence prior):

Pr(wN
1 ) =

N∏

n=1

p(wn|wn−1
1 ) =

N∏

n=1

p(wn|wn−2, wn−1)

Disambiguation of Homophones:

• Homophones: two, to, too

Twenty-two people are too many to be put in this room.

• Homophones: right, write, Wright

Please write to Mrs. Wright right away.
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• problem: unseen events:
64 000 words: 64 0003 = 218 · 109 trigrams

consequence: virtuall all word trigrams
have relative frequeny = 0

• remedy: smoothing

• leave-one-out (or cross-validation)
– empirical Bayes estimate
– Turing-Good estimate
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2.7 Search

Search or Decoding:

arg max
wN1 ,s

T
1

{∏

n

p
(
wn|wn−2, wn−1

) ·
∏

t

p(st|st−1, w
N
1 ) · p(xt|st, wN

1 )
}

• consequence: holistic approach
– no segmentation
– no local decisions
– time alignment is part of decision process

• search strategy: dynamic programming with refinements
– beam search and pruning
– look-ahead estimates
– word lattice rather than single best sentence
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2.8 Adaptation

adaptive recognition:

• recognition problem may depend on varying conditions:
room acoustics, speaker, microphone, ...

• Bayesian spirit:
assume adaptation parameter set α and integrate out α (with X = xT1 ,W = wN

1 ):

p(X|W,θ) =

∫
dα p(X,α|W ; θ)

=

∫
dα p(α|W, θ) · p(X|W ; θ, α)

∼= max
α

{
p(α|W,θ) · p(X|W ; θ, α)

}

• Bayes decision rule:

arg max
W

{
p(W ) ·max

α
p(X,α|W ; θ)

}
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Adaptation: Impact on Architecture

• recognition:

arg max
W

{
p(W ) ·max

α
p(X,α|W ; θ)

}

implementation: estimate α in
a) two recognition passes
b) text-independent mode

• training
with training data (Xr,Wr) for each speaker r = 1, ..., R:

arg max
θ

R∏

r=1

max
α

{
p(Xr, α|Wr; θ)

}

result: more complex optimization problem
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Adaptation: VTN (= Vocal Tract Normalization)

• vocal tract length:
– depends on speaker
– irrelevant for recognition

• approach:
– ’linear’ scaling (warping) of frequency axis
– reference model: normalized frequency axis

Remarks:

• VTN: frequency axis normalization

• Wakita 1975-77
f

f
norm

ori

α>1

α<1

other types of adaptation:
linear transformation: matrix
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2.9 Discriminative Training

notation:
r: sentence index
Xr: sequence of feature vectors of sentence r
Wr: spoken word sequence of sentence r,
W : any word sequence

• class posterior probability:

F (θ) =
∑

r

log pθ(Wr|Xr) pθ(Wr|Xr) :=
p(Wr)pθ(Xr|W )∑
W p(W )pθ(Xr|W )

• MCE: minimum classification error rate
(’old’ concept in pattern recognition):

F (θ) =
∑

r

1

1 +
( p(Wr)pθ(Xr|Wr)

max
W 6=Wr

p(W )pθ(Xr|W )

)2β

(β: smoothing constant)
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discriminative training: practical aspects

• initialization:
acoustic models trained by Max.Lik.

• implementation details:
– word lattice (for sum in denominator)
– unigram LM in training
– scaling of acoustic and language models

• experimental results:
– MCE: typically better
– discriminative training more efficient after adaptation (SAT)
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2.10 Results

effects of specific methods in RWTH system (WER [%]):

English Spanish
dev06 eval06 dev06 eval06

baseline 15.7 13.1 9.9 13.8
+ adaptation (SAT) 14.0 11.5 7.9 -
+ unsupervised data 12.9 - - -
+ discrim. training 12.5 - 7.3 9.6
+ adaptation (MLLR) 11.8 9.8 7.1 9.3
+ improved lexicon 11.6 9.6 7.1 9.3
+ larger LM 11.0 8.5 - -
+ system combination 10.6 8.4 - -

rule of thumb: reduction of WER
by one third over baseline system
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TC-Star Evaluation 2007: Spanish

word error rates [%]:

System open public restricted
RWTH 8.9
LIMSI 9.2
IBM 9.2 9.4
IRST 9.6 9.5
LIUM 19.8
UPC 27.5
DAEDALUS 46.6
SysComb 7.4
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TC-Star Evaluation 2007: English

word error rates [%]:

open public restricted
RWTH 9.0 9.7
LIMSI 9.1
IBM 7.1 9.2 9.8
UKA 9.2
IRST 10.2 11.3
LIUM 22.1 22.4
SysComb 6.9
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2.11 The Statistical Approach Revisited

two attractive properties:

• holistic decision criterion:
– exploits all (available) dependencies (= knowledge sources)
– is able to combine thousands/millions of weak dependencies
– handles interdependences, ambiguities and conflicts

• powerful training methods:
– training criterion is (ideally!) linked to PERFORMANCE
– fully AUTOMATIC procedures (no human involved !)
– HUGE amounts of data can be exploited
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four key ingredients:

Error Measure and
Decision Rule

Probability Models

parameter
estimates

Output

Training Criterion
(+ eff. algorithm)

Decision Rule
(+ eff. algorithm)

Data

Training

Testing
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Four Key Components

• error measure ( = loss function) and decision rule:

R(c|x) :=
∑

c̃

pr(c̃|x)L[c, c̃]

x→ ĉ(x) = arg min
c

{
R(c|x)

}

with a suitable definition of L[c, c̃]

• probability model pθ(c|x) or pθ(c) · pθ(x|c)
is used to replace pr(c|x) or pr(c) · pr(x|c)
• training criterion (+ eff. algorithm)

to learn the unknown parameters θ from training data

• decision rule (+ eff. algorithm) :
search or decoding: requires optimization (sometimes hard!)
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Error Measures and Decision Rules: Exmples

inconsistencies:

• POS tagging:
– in practice: symbol error rate
– in Bayes rule: 0/1 loss ( = SER, sentence error)

• speech recognition:
– in practice: edit distance ( = WER, word error rate)
– in Bayes rule: 0/1 loss ( = SER, sentence error)

• machine translation:
– in practice: BLEU or TER (= translation error rate)
– in Bayes rule: 0/1 loss ( = SER, sentence error)

attempts to go beyond 0/1 loss function:
only small or negligible improvements
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Probability Models: Exmples

• discriminant functions (linear and nonlinear)

• neural networks: (virtually) any structure

• Gaussian classifier

• Gaussian mixtures

• models with hidden variables (path, alignment):
– Hidden Markov models (HMM) in speech recognition
– alignment models in machine translation

• maximum entropy models (log-linear, exponential, multiplicative)

• decision trees (CART)

• ...
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Training Criteria (+ Eff. Algorithms): Examples

labelled training data: (xr, cr), r = 1, ..., R

• maximum likelihood:

arg max
θ

{
R∑

r=1

log pθ(cr)

}
and arg max

θ

{
R∑

r=1

log pθ(xr|cr)
}

• posterior probability (or MMI):

arg max
θ

{
R∑

r=1

log pθ(cr|xr)
}

• squared error criterion:

arg min
θ

{
R∑

r=1

∑

c

[
pθ(c|xr)− δ(c, cr)

]2
}

• minimum classification error (MCE, smoothed error count)

• ...
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Training Procedures and Algorithms for Specific Models

• EM (expectation/maximization) algorithm:
maximum likelihood for hidden-variable models
(maximum approximation: Viterbi training)

• error back propagation:
squared error criterion for neural networks

• GIS (general iterative scaling):
posterior probability for maximum entropy (log-linear) models

• ...
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Decision Rule (+ Eff. Algorithms): Examples

specific algorithms depends on probability models:

• forward algorithm:
for HMM in speech recognition (for a single hypothesized word sequence)

• dynamic programming
– for POS tagging and other tagging tasks:
– for small vocabulary-speech recognition,
– for translation using finite-state transducers

• time-synchronous beam search and A∗ search:
for large-vocabulary speech recognition

• position-synchronous beam search and A∗ search:
for large-vocabulary language translation

• ...
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Bayes Decision Rule: Sources of Errors

Why does a statistical decision system make errors?

To be more exact:
Why errors IN ADDITION to the minimum Bayes errors?

Reasons from the viewpoint of Bayes’ decision rule:

• incorrect input (or observation):
only an incomplete part or a poor transformation of the true observations is used.

• incorrect modelling:
– incorrect probability distribution
– not enough training data
– poor training criterion
– convergence problems: slow or several optima

• incorrect search or generation:
– suboptimal decision rule
– suboptimal search procedure
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open issues:

• symbol vs. string error rate: inconsistencies in Bayes decision rule:
theoretical justification for negative experimental results?

• need for better features and dependencies in acoustic models:
→ improved robustness of ASR systems

• various aspects in discriminative training:
– various criteria: MMI vs. sentence, word, phone error rate
– problems with local optima
– efficient optimization strategies

• within discriminative training:
signal analysis and feature extraction
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3 Discriminative Models, Log-linear Models and CRFs

3.1 Motivtion

• log-linear models: well known in statistics
advantage: convex optimization problem in training

• recent results by Heigold et al. (RWTH Aachen)
(Eurospeech’07, ICASSP’08, ICML’08, Interspeech’08):
class posterior of many generative models = log-linear model or CRF

• experimental results:
ongoing work
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HMM in ASR:

• observations:
– sequence of acoustic vectors xT1
– sequence of words wN

1

• hidden variables: state sequence (= alignment path) sT1

p(wN
1 , x

T
1 ) = p(wN

1 ) p(wN
1 |xT1 )

= p(wN
1 )

∑

sT1

p(sT1 |wN
1 ) p(xT1 |wN

1 , s
T
1 )

(assumption: first-order dependencies)

= p(wN
1 )

∑

sT1

∏

t

p(st|st−1, w
N
1 ) p(xt|st, wN

1 )

H. Ney: Statistical Methods: Speech, Text, Image c©RWTH Aachen 44 07-July-2009



discriminative training: posterior probability of word sequence:

p(wN
1 |xT1 ) =

∑

sT1

p(wN
1 , s

T
1 |xT1 )

=
1

p(xT1 )
· p(wN

1 )
∑

sT1

∏

t

p(st|st−1, w
N
1 ) p(xt|st, wN

1 )

=
1

p(xT1 )
· p(wN

1 )
∑

sT1

exp
(∑

t

[log p(st|st−1, w
N
1 ) + log p(xt|st, wN

1 )]
)

relation to log-linear model/CRF will be studied in 3 steps:

• frame level: Gaussian model

• sequence level:
- without alignments
- with alignments: maximum approximation
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3.2 Frame Level

frame level: Gaussian model for x ∈ IRD and class c:

pθ(c|x) =
1

p(x)
· p(c)N (x|µc,Σc)

=
1

p(x)
· p(c)√

det(2πΣc)
exp

(
− 1

2
(x− µc)tΣ−1

c (x− µc)
)

=
1

p(x)
· exp

(
log p(c)− 1

2
log det(2πΣc)−

1

2
µtcΣ

−1
c µc + µtcΣ

−1
c x−

1

2
xtΣ−1

c x
)

=
1

p(x)
· exp

(
αc + λTc x+ xTΛcx

)

with the (constrained) parameters:

θ := {αc ∈ IR, λc ∈ IRD, Λc ∈ IRD·D}

important result: log-linear model:
– (log) linear in parameters αc ∈ IR, λc ∈ IRD,Λc ∈ IRDxD

– (log) quadratic in observations x
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Invariances

posterior form of Gaussian model:

• log-linear model is invariant under additive transformations:

αc → αc + α0 ∈ IR

λc → λc + λ0 ∈ IRD

Λc → Λc + Λ0 ∈ IRDxD

• for conversion back to Gaussian model:
exploit these invariances to satisfy the constraints of Gaussian model:
– normalization of p(c)

– positive definite property of Σc

– invertibility of Σc

• note when going generative Gaussian model to its posterior form:
parameters of Gaussian model are not unique anymore!
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Equivalence

result: EXACT equivalence between

• posterior form of Gaussian model

• log-linear model with quadratic observations (features)

consequence:
discriminative training criterion for Gaussian models defines a convex optimization problem:

arg max
θ

{∑

r

log pθ(cr|xr)
}

with labelled training data (xr, cr), r = 1, ..., R
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High-Order Features

generalization: define high-order features y ∈ IRDy for x ∈ IRD:

y := [1, x1, ..., xd, ..., xD, x
2
1, ..., xd1xd2, ..., x

2
D, x

3
1, ..., xd1xd2xd3, ..., x

3
D, ...]

Dy := D0 +D1 +D(D + 1)/2! +D(D + 1)(D + 2)/3! + ...

or more general feature function:

x = xD1 → y = y(x) ∈ IRDy

log-linear model for class posterior probability:

p(c|x) = p(c|y)

=
exp

[
λtcy

]
∑
c′

exp
[
λtc′y

]
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properties of training criterion:

• convex problem
(proof: compute and consider second derivative)

• no closed form solution

• strategy: solve the optimization problem directly
(not the equaton using the derivatives)

• convergence might be very slow

• parameters may not be unique,
but the posterior model is!

• overfitting: (some) parameters might tend to ±∞
→ remedy: regularization
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3.3 String Level without Alignments

example of string handling: POS tagging problem

• observations:
sequence of (written) words: xN1 = x1, ..., xn, ...., xN

• goal: for each word position n,
find the associated POS label cn to form the tag sequence cN1 = c1, ..., cn, ..., cN

compare with notation in speech HMM:
word sequence: xT1 := sequence of acoustic observations
label sequence: sT1 := sequence of states

generative model: POS bigram model (’HMM approach’):

• generative model with the joint probability:

p(cN1 , x
N
1 ) =

∏

n

[
p(cn|cn−1) p(xn|cn)

]

with membership probability p(x|c) = p(xn|cn) and bigram model p(c|c′) = p(cn|cn−1)

• free parameters of model:
entries of tables p(x|c) and p(c|c′)
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consider the posterior form of this model:

p(cN1 |xN1 ) =
p(cN1 , x

N
1 )∑

c̃N1
p(c̃N1 , x

N
1 )

=
1

p(xN1 )
· p(cN1 , x

N
1 )

=
1

p(xN1 )
·
∏

n

p(cn|cn−1) p(xn|cn)

convert to log-linear form:

p(cN1 |xN1 ) =
1

p(xN1 )
· exp

(∑

n

[
log p(cn|cn−1) + log p(xn|cn)

])

=
1

p(xN1 )
· exp

(∑

n

[
λ(cn; cn−1) + λ(xn; cn)

])

which is the form of a CRF (conditional random field)

constraints: normalization requirements
– experiments: do they matter?
– theory: do they cancel?

H. Ney: Statistical Methods: Speech, Text, Image c©RWTH Aachen 52 07-July-2009



Mathematical Equivalence

consider modified model:

• add string end symbol $ to tag set Σ

• normalization constraint:
∑

c∈Σ∪{$}
p(c|c′) = 1 ∀c′ ∈ Σ ∪ {$}

• experimental check:
no degradation in performance due to modification

mathematical analysis using matrix algebra (Heigold Interspeech’08):

posterior form of POS bigram tagging model
is a log-linear model (or CRF)

more precise terminology for CRF in speech and language processing:
one-dimensioal CRF with log-linear first-order dependencies
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3.4 HMM: State Level with Alignments

posterior probability of word sequence:

p(wN
1 |xT1 ) =

1

p(xT1 )
·
∑

sT1

exp
(

log p(wN
1 ) +

∑

t

[log p(st|st−1, w
N
1 ) + log p(xt|st, wN

1 )]
)

assumption: estimate state sequence by maximum approximation

joint posterior probability of word and state sequence:

p(wN
1 , s

T
1 |xT1 ) =

1

p(xT1 )
· exp

(
log p(wN

1 ) +
∑

t

[log p(st|st−1, w
N
1 ) + log p(xt|st, wN

1 )]
)

which, for Gaussian emission models, will be an exact log-linear model!
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summary: discriminative training of HMMs:

• conventional training criterion (’MMI’)

• with known state sequence: convex problem

• maximum approximation:
– alternating optimization between alignment and parameter learning
– only LOCAL convergence

• attractive property:
ALL parameters of the model can be trained:
Gaussian parameter, transition probabilities, LM scale factor, ...

key problem: efficient calculation of the denominator
– even polynomial complexity might require numeric approximations
– approximations to sum: word lattice or beam search
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3.5 C4: Correctness, Complexity, Convexity, Convergence

most important aspect: correctness of training criterion:
e.g. criterion: log p(c|x) vs. log p(x|c)

various level of training complexity:

• closed-form solutions:
typical example: max.lik. estimation
(for Gaussian, Poisson, multinomial models)

• convex, without closed-form solution:
– typical examples: SVM and log-linear models
– advantage: no problem with initialization

• local optimum, with guaranteed convergence:
– typical examples: EM for Gaussian mixtures and HMM, K-Means with splitting,

Hidden-GIS algorithm [Heigold ICASSP 08]
– advantage: no problems with step size

• local optimum with explicit gradient
– convergence must be controlled via step-size
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4 Statistical MT

4.1 History

use of statistics has been controversial in NLP
(NLP := natural language processing):

• Chomsky 1969:
... the notion ’probability of a sentence’ is an entirely useless one,
under any known interpretation of this term.

• was considered to be true by most experts in NLP and AI

1988: IBM starts building a statistical system for MT (= machine translation)
(in opposition to linguistics and artificial intelligence)
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History: Statistical Translation

short (and simplified) history:

• 1949 Shannon/Weaver: statistical (=information theoretic) approach

• 1950–1970 empirical/statistical approaches to NLP (’empiricism’)

• 1969 Chomsky: ban on statistics in NLP

• 1970–? hype of AI and rule-based approaches;
BUT: statistical methods for speech recognition

• 1988–1995 statistical translation at IBM Research:

– corpus: Canadian Hansards: English/French parliamentary debates
– DARPA evaluation in 1994:

comparable to ’conventional’ approaches (Systran)

• 1992 workshop TMI: Empiricist vs. Rationalist Methods in MT
controversial panel discussion
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Beyond IBM: 1992 – 2008

limited domain (data collected in lab):

• speech translation:
travelling, appointment scheduling,...

• projects:
– C-Star consortium
– Verbmobil (German)
– EU projects: Eutrans, PF-Star

’unlimited’ domain (real-life data):

• US DARPA TIDES 2001-04: written text (newswire):
Arabic/Chinese to English

• EU TC-Star 2004-07: speech-to-speech translation

• US DARPA GALE 2005-2010:
– Arabic/Chinese to English
– speech and text
– ASR, MT and information extraction
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Lessons Learned from Pattern Recognition

automatic speech recognition (ASR): key ideas:

• Bayes decision rule:
– minimizes the decision errors
– defines the probabilistic framework

• probabilistic structures
– problem-specific models (in lieu of ’big tables’)
– strings: hidden variables (alignments) and HMM structures
– in addition: LDA (acoustic context), phonetic decison trees (CART),
speaker adaptation, ...
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Lessons Learned from Pattern Recognition

• learning from examples:
– statistical estimation and machine learning
– smoothing and unseen events (e.g. trigram language model)
– suitable training criteria (Max.Lik, MMI, MCE, ...)

• search ( = max operation in Bayes decision rule):
– advantage: consistent and holistic criterion
– avoid local decisions (interaction between 10-ms level and sentence level;

no distinction between statistical PR and syntactical/structural PR)
– cost: complexity of search
– experiments: dynamic programming beam search
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Analogy: ASR and Statistical MT

Klatt in 1980 about the principles of DRAGON and HARPY (1976);
p. 261/2 in ‘Lea, W. (1980): Trends in Speech Recognition’:

“...the application of simple structured models to speech recognition. It might seem to
someone versed in the intricacies of phonology and the acoustic-phonetic characteristics
of speech that a search of a graph of expected acoustic segments is a naive and foolish
technique to use to decode a sentence. In fact such a graph and search strategy (and
probably a number of other simple models) can be constructed and made to work very well
indeed if the proper acoustic-phonetic details are embodied in the structure”.

my adaption to statistical MT (Ney 2008):

“...the application of simple structured models to machine translation. It might seem to
someone versed in the intricacies of morphology and the syntactic-semantic characteristics
of language that a search of a graph of expected sentence fragments is a naive and foolish
technique to use to translate a sentence. In fact such a graph and search strategy (and
probably a number of other simple models) can be constructed and made to work very well
indeed if the proper syntactic-semantic details are embodied in the structure”.
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Today’s Statistical MT

four key components in building today’s MT systems:

• training:
word alignment and probabilistic lexicon of (source,target) word pairs

• phrase extraction:
find (source,target) fragments (=’phrases’) in bilingual training corpus

• log-linear model:
combine various types of dependencies between F and E

• generation (search, decoding):
generate most likely (=’plausible’) target sentence

ASR: some similar components (not all!)
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4.2 Training

starting point: probabilistic models in Bayes decision rule:

F → Ê(F ) = arg max
E

{
p(E|F )

}
= arg max

E

{
p(E) · p(F |E)

}

• distributions p(E) and p(F |E):
– are unknown and must be learned
– complex: distribution over strings of symbols
– using them directly is not possible (sparse data problem)!

• therefore: introduce (simple) structures by
decomposition into smaller ’units’
– that are easier to learn
– and hopefully capture some true dependencies in the data

• example: ALIGNMENTS of words and positions:
bilingual correspondences between words (rather than sentences)
(counteracts sparse data and supports generalization capabilities)
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Example of Alignment (Canadian Hansards)
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administering
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collecting

fees

under

the

new

proposal
?
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HMM: Recognition vs. Translation

speech recognition text translation

Pr(xT1 |T,w) = Pr(fJ1 |J, eI1) =
∑
sT1

∏
t

[p(st|st−1, Sw, w) p(xt|st, w)]
∑
aJ1

∏
j

[p(aj|aj−1, I) p(fj|eaj)]

time t = 1, ..., T source positions j = 1, ..., J

observations xT1 observations fJ1
with acoustic vectors xt with source words fj

states s = 1, ..., Sw target positions i = 1, ..., I

of word w with target words eI1
path: t→ s = st alignment: j → i = aj

always: monotonic partially monotonic

transition prob. p(st|st−1, Sw, w) alignment prob. p(aj|aj−1, I)

emission prob. p(xt|st, w) lexicon prob. p(fj|eaj)
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HMM: first-order dependence in alignments:

p(fJ1 , a
J
1 |J, eI1) =

∏

j

p(aj|aj−1, J, I)p(fj|eaj)

p(fJ1 |J, eI1) =
∑

aJ1

p(fJ1 , a
J
1 |J, eI1)

IBM models 1–5 introduced in 1993:

• IBM-1: = IBM-2 with uniform alignment probabilities

• IBM-2: zero-order dependence in alignments

p(fJ1 , a
J
1 |J, eI1) =

∏

j

p(aj|j, J, I)p(fj|eaj)

p(fJ1 |J, eI1) =
∑

aJ1

p(fJ1 , a
J
1 |J, eI1) = ... =

∏

j

∑

i

p(i|j, J, I)p(fj|ei)

• IBM-3: = IBM-2 using inverted alignments
i→ j = bi with fertility concept

• IBM-4: inverted alignment with first-order dependency
and dependence of relative distance j − j ′ and word classes

• IBM-5: = IBM-4 with proper normalization
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standard procedure:

• sequence of IBM-1,...,IBM-5 and HMM models:
(conferences before 2000; Comp.Ling.2003+2004)

• EM algorithm (and its approximations)

• implementation in public software (GIZA++)

remarks on training:

• based on single word lexica p(f |e) and p(e|f);
no context dependency

• simplifications:
only IBM-1 and HMM

alternative concept for alignment (and generation):
ITG approach [Wu ACL 1995/6]
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4.3 Phrase Extraction

segmentation into two-dim. ’blocks’

blocks have to be “consistent” with the
word alignment:

• words within the phrase cannot be
aligned to words outside the phrase

• unaligned words are attached
to adjacent phrases

source positions

ta
rg

et
 p

os
iti

on
s

purpose: decomposition of a sentence pair (F,E)

into phrase pairs (f̃k, ẽk), k = 1, ...,K:

p(E|F ) = p(ẽK1 |f̃K1 ) =
∏

k

p(ẽk|f̃k)

(after suitable re-ordering at phrase level)
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Phrase Extraction: Example

possible phrase pairs:

if

I

may

suggest

a

time

of

day

?

w
e
n
n

i
c
h

e
i
n
e

U
h
r
z
e
i
t

v
o
r
s
c
h
l
a
g
e
n

d
a
r
f ?

impossible phrase pairs:

if

I

may

suggest

a

time

of

day

?

w
e
n
n

i
c
h

e
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n
e

U
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t
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r
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h
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d
a
r
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Example: Alignments for Phrase Extraction

source sentence

gloss notation I VERY HAPPY WITH YOU AT TOGETHER .

target sentence I enjoyed my stay with you .

Viterbi alignment for F → E:

i

enjoyed

my

stay

with

you

.

I

V
E
R
Y

H
A
P
P
Y

W
I
T
H

Y
O
U

A
T

T
O
G
E
T
H
E
R .
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Example: Alignments for Phrase Extraction

Viterbi: F → E Viterbi: E → F

union intersection refined
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Alignments for Phrase Extraction

most alignment models are asymmetric:
F → E and E → F will give different results

in practice: combine both directions using heuristics

• intersection: only use alignments where both directions agree

• union: use all alignments from both directions

• refined: start from intersection and include adjacent alignments
from each direction

effect on number of extracted phrases and on translation quality
(IWSLT 2005)

heuristic # phrases BLEU[%] TER[%] WER[%] PER[%]
union 489 035 49.5 36.4 38.9 29.2
refined 1 055 455 54.1 34.9 36.8 28.9
intersection 3 582 891 56.0 34.3 35.7 29.2
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4.4 Phrase Models and Log-Linear Scoring

combination of various types of dependencies
using log-linear framework (maximum entropy):

p(E|F ) =
exp

[∑
m λmhm(E, F )

]
∑

Ẽ exp
[∑

m λmhm(Ẽ, F )
]

with ’models’ (feature functions) hm(E, F ),m = 1, ...,M

Bayes decision rule:

F → Ê(F ) = argmax
E

{
p(E|F )

}
= argmax

E

{
exp

[∑

m

λmhm(E, F )
]}

= argmax
E

{∑

m

λmhm(E, F )
}

consequence:
– do not worry about normalization
– include additional ’feature functions’ by checking BLEU (’trial and error’)
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Preprocessing

Global Search

F

Source Language Text

Postprocessing

Target Language Text

Ê

Ê = argmax
E

{p(E|F )}

= argmax
E

{
∑

m
λmhm(E, F )}

Word Models

Reordering Models

Language Models

Phrase Models

Models

. 
. 
.

. . .
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Phrase Model Scoring

most models hm(E, F ) are based on
segmentation into two-dim. ’blocks’ k := 1, ...,K

five baseline models:

• phrase lexicon in both directions:
– p(f̃k|ẽk) and p(ẽk|f̃k)
– estimation: relative frequencies

• single-word lexicon in both directions:
– p(fj|ẽk) and p(ei|f̃k)
– model: IBM-1 across phrase
– estimation: relative frequencies

• monolingual (fourgram) LM
source positions

ta
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7 free parameters: 5 exponents + phrase/word penalty
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history:

• Och et al.; EMNLP 1999:
– alignment templates (’with alignment information’)
– and comparison with single-word based approach

• Zens et al., 2002: German Conference on AI, Springer 2002;
phrase models used by many groups
(Och→ ISI, Google, ...)

later extensions,
mainly for rescoring N-best lists:

• phrase count model

• IBM-1 p(fj|eI1)
• deletion model

• word n-gram posteriors

• sentence length posterior
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Experimental Results: Chin-Engl. NIST

BLEU[%]
Search Model Dev Test

monotonic 4-gram LM + phrase model p(f̃ |ẽ) 31.9 29.5
+ word penalty 32.0 30.7
+ inverse phrase model p(ẽ|f̃) 33.4 31.4
+ phrase penalty 34.0 31.6
+ inverse word model p(e|f̃) (noisy-or) 35.4 33.8

non-monotonic + distance-based reordering 37.6 35.6
+ phrase orientation model 38.8 37.3
+ 6-gram LM (instead of 4-gram) 39.2 37.8

Dev: NIST’02 eval set; Test: combined NIST’03-NIST’05 eval sets
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Re-ordering Models

soft constraints (’scores’):

• distance-based reordering model

• phrase orientation model

hard constraints (to reduce search complexity):

• level of source words:
– local re-ordering
– IBM (forward) constraints
– IBM backward constraints

• level of source phrases:
– IBM constraints (e.g. #skip=2)
– side track: ITG constraints
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Re-ordering Constraints

dependence on specific language pairs:

• German - English

• Spanish - English

• French - English

• Japanese - English

• Chinese - English

• Arabic - English
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4.5 Generation

constraints:
no empty phrases, no gaps
and no overlaps

operations with interdependencies:
– find segment boundaries
– allow re-ordering in target language
– find most ’plausible’ sentence

similar to: memory-based and
example-based translation

source positions
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search strategies:
(Tillmann et al.: Coling 2000, Comp.Ling. 2003; Ueffing et al. EMNLP 2002)
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Travelling Salesman Problem: Redraw Network (J=6)
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Reordering: IBM Constraints

IBM constraints:
’#skip=3’

result: limited
reordering lattice

1 j J

uncovered position

covered position

uncovered position for extension
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DP-based Algorithm for Statistical MT

extensions:
– phrases rather than words
– rest cost estimate for uncovered positions

input: source language string f1...fj...fJ

for each cardinality c = 1, 2, ..., J do

for each set C ⊂ {1, ..., J} of covered positions with |C| = c do

for each target suffix string ẽ do

– evaluate score Q(C, ẽ) := ...

– apply beam pruning

traceback:

– recover optimal word sequence
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DP-based Algorithm for Statistical MT

dynamic programming beam search:

• build up hypotheses of increasing cardinality:
each hypothesis (C, ẽ) has two parts:
coverage hyp. (C) + lexical hyp. (ẽ)

• consider and prune competing hypotheses:
– with the same coverage vector
– with the same cardinality
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4.6 Summary

today’s statistical MT:

• word alignment (IBM,HMM): learning from bilingual data

• from words to phrases:
phrase extraction, scoring models and generation (search) algorithms

• experience with various tasks and ’distant’ language pairs:
better than rule-based approaches

• text + speech

room for improvements:

• training of phrase models:
right now: more extraction than training

• improved alignment and lexicon models:
more complex models in lieu of p(e|f)

• phrase and word re-ordering:
– long-distance dependencies
– hierarchical (’gappy’) phrases [Chiang 2005]
– syntax [Marcu et al. 2006]
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5 Image Recognition

interest: strictly appearance-based approach:

• appearance based concept,
i.e. no explicit extraction of features

• avoid segmentation:
interdependence between object recognition and boundary detection

• matching: each pixel of the test image must be matched
against a pixel in the reference image

• pixel representation: grey level + neigbourhood (’derivatives’)

contrast: more conventional approach:

• decomposition of image into patches and
extraction of features and descriptors (SIFT)

• classifier: Gaussian mixture

competitive results on CalTech database and in PASCAL evaluations;
papers by Deselaers et al.
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ingredients of appearance-based approach:

• observations: Gaussian distribution for pixel vectors

• matching: alignment model:
t = (i, j)→ st = (u, v)ij

position: vertical and horizontal coordinates

• problem: first-order dependencies require Markov random field (MRF)
→ exponential complexity for sum in denominator

possible approximations:

• convert the problem into a 1-D problem:
– approprate for continuous cursive handwriting
– similar to ASR approach in virtually all details
– competitive results on Arabic and English tasks [ICDAR 2009, Dreuw et al.]

• zero-order model for alignments: p(st|t, c) in lieu of p(st|st−1, c)

– appropriate for digits: USPS (162 pixels) and MNIST (262 pixels) database
– advantage: polynomial complexity for sum in denominator
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USPS: Examples
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method for handwritten digits (USPS and MNIST):

• appearance based concept,
i.e. no explicit extraction of features

• pixel: grey level, various derivatives

• zero-order alignment model (’IDM: image distortion model’)

• Gaussian model with discriminative training: log-linear model

extensions towards face recognition

experimental results:

• distortion model is important

• competitve results
with comparatively small models
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Experiments on MNIST and USPS

MNIST USPS

Model # param. ER # param. ER

NN 47,040,000 3.1% 1,866,496 5.6%
NN + IDM(1) 47,040,000 0.6% 1,866,496 2.4%

single Gaussians 7,840 18.0% 2,560 18.5%
single Gaussians + IDM(1) 7,840 5.8% 2,560 6.5%

SVM ? 1.5% 532,000 4.4%
SVM + IDM (1) - - 532,000 2.8%

log-linear model:
grey values (no IDM) 7,850 7.4% 2,570 8.5%
{derivatives} + IDM 227,370 1.3% 69,130 3.5%
{derivatives} + IDM + tying 31,390 1.3% 5,220 3.8%

deep belief network 1,665,010 1.3% 640,610 -
conv. network 2,406,325 0.4% - -

(1) additional features in distance computation
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open questions:

• MRF: suitable approximations (’belief propagation’)
(for either sum or maximum)

• feature extraction:
result of discriminative training

• more challenging tasks
and more powerful algorithms for matching
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6 Conclusion

four key ingredients for ASR, MT and image recognition:

Error Measure and
Decision Rule

Probability Models

parameter
estimates

Output

Training Criterion
(+ eff. algorithm)

Decision Rule
(+ eff. algorithm)

Data

Training

Testing
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THE END
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