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Line Solitons and Transverse Stability
Lattice NLS equation

◮ In many Hamiltonian PDEs, one-dimensional solitons are
unstable with respect to transverse perturbations:

◮ Two-dimensional nonlinear Schrödinger equation

iut + uxx ± uyy + |u|2u = 0.

◮ Dark solitons and KP-I equation

(ut + uux + uxxx)x = uyy
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◮ In many Hamiltonian PDEs, one-dimensional solitons are
unstable with respect to transverse perturbations:

◮ Two-dimensional nonlinear Schrödinger equation

iut + uxx ± uyy + |u|2u = 0.

◮ Dark solitons and KP-I equation

(ut + uux + uxxx)x = uyy

◮ Old works: Kadomtsev–Petviashvili (1970),
Zakharov–Rubenchik (1971), Zakharov (1975),
Pelinovsky–Stepanyants (1993), Bridges (2000).

◮ Recent works: Rousset–Tzvetkov (2008), Johnson–Zumbrun
(2010), Stefanov–Stanislavova (2011), Haragus (2012), ...
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Mathematical techniques

◮ Direct perturbation theory for eigenvalues

◮ Multi-symplectic geometric perturbation theory

◮ Evans function and algebraic perturbation theory

◮ Functional analysis framework and negative index theory (*)
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Lattice NLS equation

The discrete NLS (dNLS) equation

i u̇m,n+ǫ(um+1,n+um−1,n+um,n+1+um,n−1−4um,n)+|um,n|2um,n = 0,

where (m, n) ∈ Z
2, um,n ∈ C, and ǫ ∈ R.

The Gross–Pitaevskii equation with a periodic potential:

iut + uxx + uyy − V0 sin
2(x) sin2(y)u + |u|2u = 0,

where (x , y) ∈ R
2, u ∈ C, and V0 ∈ R.

Yang [PRA 84, 033840 (2011)] found that line solitons can
become stable with respect to transverse perturbations.
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One-dimensional (stripe) dNLS lattice

i
∂um
∂t

+ ǫ(um+1 + um−1 − 2um) + κ
∂2um
∂y2

+ |um|2um = 0,

where m ∈ Z, y ∈ R, um ∈ C, and ǫ, κ ∈ R.

Yang et al. [Opt. Lett. 37, 1571 (2012)] found again numerically
that line solitons can become transversely stable.

Our objective is to study this phenomenon analytically by using
the negative index theory .
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Stability of nonlinear waves in Hamiltonian systems

Consider an abstract Hamiltonian dynamical system

du

dt
= J∇H(u), u(t) ∈ X

where X ⊂ L2 is a phase space, J+ = −J is the symplectic
operator, and H : X → R is the Hamiltonian function.

◮ Assume existence of the stationary state (nonlinear wave)
u0 ∈ X such that ∇H(u0) = 0.

◮ Perform linearization at the stationary solution

u(t) = u0 + veλt ,

where (λ, v) ∈ C× X satisfies the spectral problem

JD2H(u0)v = λv .
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Main Questions

Consider the spectral stability problem:

JD2H(u0)v = λv , v ∈ X .

◮ Let stationary solutions u0 decay exponentially as |x | → ∞
(solitary waves, vortices, etc).

◮ Let the skew-symmetric operator J be invertible

◮ Let the self-adjoint operator D2H(u0) have a positive essential
spectrum and finitely many negative eigenvalues.

Question: Is there a relation between unstable eigenvalues of
JD2H(u0) and negative eigenvalues of D2H(u0)?
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State of the art

Consider the spectral stability problem:

JD2H(u0)v = λv , v ∈ X .

For simplicity, assume a zero-dimensional kernel of D2H(u0).
If λ is an eigenvalue, so is −λ, λ̄, and −λ̄.

◮ Grillakis, Shatah, Strauss, 1990 Orbital Stability Theory:

◮ If D2H(u0) has no negative eigenvalue, then JD2H(u0) has no
unstable eigenvalues.

◮ If D2H(u0) has an odd number of negative eigenvalues, then
JD2H(u0) has at least one real unstable eigenvalue.
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Negative Index Theory

◮ Kapitula, Kevrekidis, Sandstede, 2004:

Nre(JD
2H(u0))+2Nc(JD

2H(u0))+2N−
im(JD

2H(u0)) = Nneg(D
2H),

where Nre is the number of positive real eigenvalues, Nc is the
number of complex eigenvalues in the first quadrant, and N−

im

is the number of positive imaginary eigenvalues of negative
Krein signature.

◮ Suppose that λ ∈ iR is a simple isolated eigenvalue of
JD2H(u0) with the eigenvector v . Then, the sign of

E ′′
ω(v) = 〈D2H(u0)v , v〉L2

is called the Krein signature of the eigenvalue λ.
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Sharp Negative Index Theory

Consider the spectral stability problem:

L+u = −λw , L−w = λu, u,w ∈ X ,

and assume again zero-dimensional kernels of L+ and L−.

◮ Pelinovsky, 2005 Sharp Negative Index Theory:

{

N−
re(JD

2H(u0)) + Nc(JD
2H(u0)) + N−

im(JD
2H(u0)) = Nneg(L+),

N+
re(JD

2H(u0)) + Nc(JD
2H(u0)) + N−

im(JD
2H(u0)) = Nneg(L−),

where N+
re (N−

re) is the number of positive eigenvalues with
positive (negative) quadratic form 〈L+u, u〉L2 .
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Continuous reductions

Linearized dNLS equation:

i u̇m,n + ǫ(um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n) = 0.

Bifurcations of stationary solitons occur from critical points of the
dispersion surface, where ∇ω = 0.
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Linear waves e ikm+ipn−iωt with
(k , p) ∈ [−π, π] × [−π, π] satisfies
the dispersion relation

ω(k , p) = ǫ(4− 2 cos(k)− 2 cos(p))

Critical points at (0, 0), (π, 0),
(0, π), and (π, π).
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Minimum point Γ : k = p = 0, ω(0, 0) = 0

Line solitons um,n(t) = e iµ
2tψm satisfy the 1D dNLS equation

−µ2ψm + ǫ(ψm+1 + ψm−1 − 2ψm) + |ψm|2ψm = 0,

A fundamental soliton exists for any ǫ > 0 (Hermann, 2011)
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Continuous approximation ψm ∼
√
2µ sech

(

µm√
ǫ

)

as µ→ 0

(Bambusi and Penati, 2010).
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Saddle point X : k = 0, p = π, ω(0, π) = 4ǫ

Line solitons um,n(t) = (−1)ne i(µ
2−4ǫ)tψm satisfy the same 1D

dNLS equation

−µ2ψm + ǫ(ψm+1 + ψm−1 − 2ψm) + |ψm|2ψm = 0,

Another family of line solitons exist.
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Saddle point X ′ : k = π, p = 0, ω(π, 0) = 4ǫ

Line solitons um,n(t) = (−1)me i(−µ2−4ǫ)tψm satisfy the 1D dNLS
equation

µ2ψm − ǫ(ψm+1 + ψm−1 − 2ψm) + |ψm|2ψm = 0.

No line solitons exist because

µ2‖ψ‖2l2 + ǫ〈ψ, (−∆)ψ〉+ ‖ψ‖4l4 = 0

yields a contradiction.
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Linear Dispersion Surface
Critical points
Continuous reductions

Maximum point M : k = π, p = π, ω(π, π) = 8ǫ

Line solitons um,n(t) = (−1)m+ne i(−µ2−8ǫ)tψm satisfy the same 1D
dNLS equation

µ2ψm − ǫ(ψm+1 + ψm−1 − 2ψm) + |ψm|2ψm = 0.

No line solitons exist.
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Linear Dispersion Surface
Critical points
Continuous reductions

Minimum point Γ : k = p = 0, ω(0, 0) = 0

At the minimum point Γ, we can substitute

um,n(t) = U(X ,Y , t)e iµ
2t , X =

m√
ǫ
, Y =

n√
ǫ

and obtain an elliptic 2D NLS equation as ǫ→ ∞:

i
∂U

∂t
+
∂2U

∂X 2
+
∂2U

∂Y 2
+ (|U|2 − µ2)U = 0.

Line solitons are unstable as ǫ→ ∞.

Would the same be true for all ǫ > 0?
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Linear Dispersion Surface
Critical points
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Saddle point X : k = 0, p = π, ω(0, π) = 4ǫ

At the saddle point X , we can substitute

um,n(t) = (−1)nU(X ,Y ,T )e i(µ
2−4ǫ)t , X =

m√
ǫ
, Y =

n√
ǫ

and obtain a hyperbolic 2D NLS equation as ǫ→ ∞:

i
∂U

∂t
+
∂2U

∂X 2
− ∂2U

∂Y 2
+ (|U|2 − µ2)U = 0.

Line solitons are unstable as ǫ→ ∞.

Would the same be true for all ǫ > 0?
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Minimum point Γ
Saddle point X
1D Stripe dNLS lattice

Instability Theorem

Linearizing at the discrete line soliton,

um,n(t) = e iµ
2t [ψm + vm,n(t)] , vm,n(t) = eλt+ipn (Um + iWm) ,

we obtain the linear stability problem

L+(p)U = −λW , L−(p)W = λU,

where

(L+U)m = −ǫ [Um+1 + Um−1 + (2 cos(p)− 4)Um] + (µ2 − 3ψ2
m)Um,

(L−W )m = −ǫ [Wm+1 +Wm−1 + (2 cos(p)− 4)Wm] + (µ2 − ψ2
m)Wm.

Fix µ = 1 and consider a fundamental (positive, 1-humped) soliton:

ψm = δm,0 + ǫ(δm,1 + δm,0 + δm,−1) +O(ǫ2).

Dmitry Pelinovsky (McMaster University) On Transverse Stability of Discrete Line Solitons
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Theorem
Consider the fundamental soliton bifurcating from the Γ point. For

any ǫ > 0, there is p0(ǫ) ∈ (0, π] such that for any p with

0 < |p| < p0(ǫ) the linear-stability problem admits a pair of real

eigenvalues ±λ(ǫ, p) with λ(ǫ, p) > 0.

In addition, p0(ǫ) = π if 0 < ǫ < 1
2 . Furthermore, for any

p ∈ [−π, π], the eigenvalue λ(ǫ, p) has the following asymptotic

expansion in the anti-continuum limit,

λ2(ǫ, p) = 8ǫ sin2
(p

2

)

+O(ǫ2) as ǫ→ 0.
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◮ We have

L±(p) = L±(0) + 2ǫ [1− cos(p)] ≥ L±(0).

◮ L−(0)ψ = 0 with ψ > 0. Hence L−(0) ≥ 0 and 0 is at the
bottom of L−(0).

◮ By the perturbation theory, L−(p) > 0 for all p 6= 0.

◮ L+(0) has at least one negative eigenvalue

〈L+(0)ψ, ψ〉 = −2‖ψ‖4l4 < 0,

moreover, there is only one negative eigenvalue for any ǫ > 0.

◮ L+(p) has exactly one negative and no zero eigenvalues for
small p 6= 0.

Dmitry Pelinovsky (McMaster University) On Transverse Stability of Discrete Line Solitons
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Negative Index Theory:

N−
real + N−

imag + Ncomp = n(L+(p)) = 1,

N+
real + N−

imag + Ncomp = n(L−(p)) = 0,
p 6= 0,

where

◮ N+
real (N

−
real) are the numbers of real positive eigenvalues λ

with positive (negative) quadratic form 〈L+(p)U,U〉 at the
eigenvector (U,W ) of the linear stability problem;

◮ N−
imag is the number of purely imaginary eigenvalues λ with

Im(λ) > 0 and negative quadratic form 〈L+(p)U,U〉;
◮ Ncomp is the number of complex eigenvalues λ with

Re(λ) > 0 and Im(λ) > 0.

Hence
N−
real = 1, N+

real = N−
imag = Ncomp = 0.

Dmitry Pelinovsky (McMaster University) On Transverse Stability of Discrete Line Solitons
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Figure : Left: ǫ = 0.1; middle: ǫ = 1; right: ǫ = 4.
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Stability Theorem

Linearizing at the discrete line soliton,

um,n(t) = (−1)ne i(µ
2−4ǫ)t [ψm + vm,n(t)] , vm,n(t) = eλt+ipn (Um + iWm)

we obtain the linear stability problem

L+(p)U = −λW , L−(p)W = λU,

where

(L+U)m = −ǫ [Um+1 + Um−1 − 2 cos(p)Um] + (µ2 − 3ψ2
m)Um,

(L−W )m = −ǫ [Wm+1 +Wm−1 − 2 cos(p)Wm] + (µ2 − ψ2
m)Wm.
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Theorem
Consider the fundamental soliton bifurcating from the X point.

There exists ǫ0 > 0 such that for any ǫ ∈ (0, ǫ0) and p ∈ [π, π], the
linear-stability problem does not admit any unstable eigenvalues

but admits a pair of purely imaginary eigenvalues ±iω(ǫ, p) of
negative Krein signature.

For any p ∈ [−π, π] and small ǫ, this eigenvalue ω(ǫ, p) has the
following asymptotic expression,

ω2(ǫ, p) = 8ǫ sin2
(p

2

)

+O(ǫ2) as ǫ→ 0.
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◮ We have
L±(p) = L±(0)− 2ǫ [1− cos(p)] .

◮ L−(0)ψ = 0 with ψ > 0. Hence L−(0) ≥ 0 and 0 is at the
bottom of L−(0).

◮ By the perturbation theory, L−(p) has exactly one negative
eigenvalue for small ǫ > 0 and p 6= 0.

◮ L+(0) has exactly one negative eigenvalue and no zero
eigenvalue for any ǫ > 0.

◮ L+(p) has exactly one negative and no zero eigenvalues for
small ǫ > 0 and p 6= 0.
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Negative Index Theory:

N−
real + N−

imag + Ncomp = n(L+(p)) = 1,

N+
real + N−

imag + Ncomp = n(L−(p)) = 1,
p 6= 0,

At p = 0, a double zero eigenvalue exists, which splits for p 6= 0
outside the continuous spectrum. Hence,

N−
imag = 1, N+

real = N−
real = Ncomp = 0,

Dmitry Pelinovsky (McMaster University) On Transverse Stability of Discrete Line Solitons



Background
Line solitons

Stability Analysis
Summary

Minimum point Γ
Saddle point X
1D Stripe dNLS lattice

Figure : Left: ǫ = 0.01; middle: ǫ = 0.2; right: ǫ = 4.
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Consider the 1D Stripe dNLS lattice:

i
∂um
∂t

+ ǫ(um+1 + um−1 − 2um) + κ
∂2um
∂y2

+ |um|2um = 0, m ∈ Z,

where ǫ > 0 is small and κ = ±1.

Dmitry Pelinovsky (McMaster University) On Transverse Stability of Discrete Line Solitons
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Consider the 1D Stripe dNLS lattice:

i
∂um
∂t

+ ǫ(um+1 + um−1 − 2um) + κ
∂2um
∂y2

+ |um|2um = 0, m ∈ Z,

where ǫ > 0 is small and κ = ±1.

Linearizing at the discrete line soliton,

um(y , t) = e iµ
2t [ψm + vm(y , t)] , vm(y , t) = eλt+ipy (Um + iWm) ,

we obtain the linear stability problem

L+(p)U = −λW , L−(p)W = λU,

where

(L+(p)U)m = −ǫ(Um+1 + Um−1 − 2Um) + (µ2 + κp2 − 3ψ2
m)Um,

(L−(p)W )m = −ǫ(Wm+1 +Wm−1 − 2Wm) + (µ2 + κp2 − ψ2
m)Wm.

Dmitry Pelinovsky (McMaster University) On Transverse Stability of Discrete Line Solitons
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◮ At ǫ = 0, the linear system has two semi-simple eigenvalue of
infinite multiplicity at λ = ±i(1 + κp2) and two simple
eigenvalues at λ = ±

√

κp2(2− κp2).

◮ We also have
L±(p) = L±(0) + κp2.
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◮ At ǫ = 0, the linear system has two semi-simple eigenvalue of
infinite multiplicity at λ = ±i(1 + κp2) and two simple
eigenvalues at λ = ±

√

κp2(2− κp2).

◮ We also have
L±(p) = L±(0) + κp2.

◮ For κ = 1 and ǫ = 0, simple eigenvalues λ = ±p
√

2− p2 are
real for p ∈ (0,

√
2) and purely imaginary eigenvalues for

p >
√
2 bounded away from the continuum spectrum.

◮ For small ǫ > 0, the negative index count gives

N−
real = 1, p ∈ (0, p0(ǫ))

and
n(L+(p)) = n(L−(p)) = 0, p > p0(ǫ),

where p0(ǫ) =
√
2 +O(ǫ).

Dmitry Pelinovsky (McMaster University) On Transverse Stability of Discrete Line Solitons



Background
Line solitons

Stability Analysis
Summary

Minimum point Γ
Saddle point X
1D Stripe dNLS lattice

Figure : Left: ǫ = 0.1; middle: ǫ = 2; right: ǫ = 4.
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◮ For κ = −1 and ǫ = 0, simple eigenvalues λ = ±ip
√

2 + p2

are in resonance with the essential spectrum λ = ±i(1− p2)
at p = pc = 1

2 .

◮ The simple eigenvalues have negative Krein signature and the
essential spectrum has positive Krein signature for
p ∈ (−1, 1). For small ǫ > 0, the resonance gives rise to
complex instabilities with Ncomp = 1 for p near pc .

◮ Asymptotic theory gives

λ(ǫ, p) =
3

4
i +

iǫ

15
(14 + 17δ) +

2ǫ

15

√

15− 4(1− 2δ)2 +O(ǫ2),

where δ = (p2 − p2c )/ǫ.
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Figure : Left: ǫ = 0.1; middle: ǫ = 2; right: ǫ = 4.
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Summary

◮ Transverse stability problems are much easier than regular
stability problems because symmetry-breaking perturbations
remove kernels of the linearized operators.

◮ Applications of the negative index theory are developed in
regular l2 spaces, there is no necessity of constrained spaces.

◮ Lattice problems have additional simplifications near the
anti-continuum limit, where asymptotic methods can be used
in conjugation with the negative stability theory.

◮ Discretization may induce transverse stability of continuously
unstable solitons. The role of discretization may be taken by
the periodic potentials in the continuous NLS equations.

Dmitry Pelinovsky (McMaster University) On Transverse Stability of Discrete Line Solitons


	Background
	Line Solitons and Transverse Stability
	Lattice NLS equation

	Line solitons
	Linear Dispersion Surface
	Critical points
	Continuous reductions

	Stability Analysis
	Minimum point 
	Saddle point X
	1D Stripe dNLS lattice

	Summary

