Restricted Stirling numbers

John Engbers ${ }^{(a)}$, David Galvin ${ }^{(b)}$ \& Cliff Smyth ${ }^{(c)}$

(a) Marquette University
(b): University of Notre Dame
(c): University of North Carolina - Greensboro

October 27, 2016

An unmotivated question

Compositional inverse of $e^{x}-1$ is

$$
\log (1+x)
$$

which has alternating power series.

An unmotivated question

Compositional inverse of $e^{x}-1$ is

$$
\log (1+x)
$$

which has alternating power series.
Compositional inverse of r th truncate of $e^{x}-1$,

$$
x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots+\frac{x^{r}}{r!}
$$

has power series which is

An unmotivated question

Compositional inverse of $e^{x}-1$ is

$$
\log (1+x)
$$

which has alternating power series.
Compositional inverse of r th truncate of $e^{x}-1$,

$$
x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots+\frac{x^{r}}{r!}
$$

has power series which is

$$
\text { alternating if } r \text { is even }
$$

An unmotivated question

Compositional inverse of $e^{x}-1$ is

$$
\log (1+x)
$$

which has alternating power series.
Compositional inverse of r th truncate of $e^{x}-1$,

$$
x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots+\frac{x^{r}}{r!}
$$

has power series which is

alternating if r is even
not alternating if r is odd

An unmotivated question

Compositional inverse of $e^{x}-1$ is

$$
\log (1+x)
$$

which has alternating power series.
Compositional inverse of r th truncate of $e^{x}-1$,

$$
x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots+\frac{x^{r}}{r!}
$$

has power series which is

alternating	if r is even
not alternating	if r is odd

Question: Is there a simple reason for this?

Matryoshka doll numbers

$\left\{\begin{array}{l}n \\ k\end{array}\right\}=\#$ (partitions of $[n]$ into k non-empty blocks)

$$
\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right]_{n, k \geq 1}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & \cdots \\
1 & 3 & 1 & 0 & 0 & \cdots \\
1 & 7 & 6 & 1 & 0 & \cdots \\
1 & 15 & 25 & 10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Stirling numbers of the second (and first) kinds $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\#$ (partitions of [n] into k non-empty blocks)

$$
\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right]_{n, k \geq 1}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & \cdots \\
1 & 3 & 1 & 0 & 0 & \cdots \\
1 & 7 & 6 & 1 & 0 & \cdots \\
1 & 15 & 25 & 10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Stirling numbers of the second (and first) kinds $\left\{\begin{array}{l}n \\ k\end{array}\right\}=\#$ (partitions of $[n]$ into k non-empty blocks)

$$
\begin{aligned}
& {\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right]_{n, k \geq 1}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & \cdots \\
1 & 3 & 1 & 0 & 0 & \cdots \\
1 & 7 & 6 & 1 & 0 & \cdots \\
1 & 15 & 25 & 10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]} \\
& {\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right]_{n, k \geq 1}^{-1}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & \cdots \\
-1 & 1 & 0 & 0 & 0 & \cdots \\
2 & -3 & 1 & 0 & 0 & \cdots \\
-6 & 11 & -6 & 1 & 0 & \cdots \\
24 & -50 & 35 & -10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]}
\end{aligned}
$$

Stirling numbers of the second (and first) kinds
$\left\{\begin{array}{l}n \\ k\end{array}\right\}=\#$ (partitions of $[n]$ into k non-empty blocks)

$$
\begin{aligned}
& {\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right]_{n, k \geq 1}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & \cdots \\
1 & 3 & 1 & 0 & 0 & \cdots \\
1 & 7 & 6 & 1 & 0 & \cdots \\
1 & 15 & 25 & 10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]} \\
& {\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}\right]_{n, k \geq 1}^{-1}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & \cdots \\
-1 & 1 & 0 & 0 & 0 & \cdots \\
2 & -3 & 1 & 0 & 0 & \cdots \\
-6 & 11 & -6 & 1 & 0 & \cdots \\
24 & -50 & 35 & -10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]=\left[(-1)^{n-k}\left[\begin{array}{l}
n \\
k
\end{array}\right]\right]_{n, k \geq 1}}
\end{aligned}
$$

$\left[\begin{array}{l}n \\ k\end{array}\right]=\#$ (partitions of $[n]$ into k non-empty cycles)

r-restricted Stirling numbers of the second kind

$\left\{\begin{array}{l}n \\ k\end{array}\right\}_{[r]}=\#($ partitions of $[n]$ into k blocks, size $\leq r)($ Choi, Smith 2005)

r-restricted Stirling numbers of the second kind

$\left\{\begin{array}{l}n \\ k\end{array}\right\}_{[r]}=\#($ partitions of $[n]$ into k blocks, size $\leq r)($ Choi, Smith 2005)

$$
\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[2]}\right]_{n, k \geq 1}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & \cdots \\
0 & 3 & 1 & 0 & 0 & \cdots \\
0 & 3 & 6 & 1 & 0 & \cdots \\
0 & 0 & 15 & 10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

r-restricted Stirling numbers of the second kind

$\left\{\begin{array}{l}n \\ k\end{array}\right\}_{[r]}=\#($ partitions of $[n]$ into k blocks, size $\leq r)($ Choi, Smith 2005)

$$
\begin{aligned}
& {\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[2]}\right]_{n, k \geq 1}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & \cdots \\
0 & 3 & 1 & 0 & 0 & \cdots \\
0 & 3 & 6 & 1 & 0 & \cdots \\
0 & 0 & 15 & 10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]} \\
& \left.\left[\begin{array}{l}
n \\
k
\end{array}\right\}_{[2]}\right]_{n, k \geq 1}^{-1}=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & \cdots \\
-1 & 1 & 0 & 0 & 0 & \cdots \\
3 & -3 & 1 & 0 & 0 & \cdots \\
-15 & 15 & -6 & 1 & 0 & \cdots \\
105 & -105 & 45 & -10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
\end{aligned}
$$

r-restricted Stirling numbers of the second kind

$\left\{\begin{array}{l}n \\ k\end{array}\right\}_{[r]}=\#($ partitions of $[n]$ into k blocks, size $\leq r)($ Choi, Smith 2005)

$$
\begin{aligned}
& \left.\left[\begin{array}{l}
\left.\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[2]}\right]_{n, k \geq 1}
\end{array}\right]_{\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & \cdots \\
0 & 3 & 1 & 0 & 0 & \cdots \\
0 & 3 & 6 & 1 & 0 & \cdots \\
0 & 0 & 15 & 10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]}^{\left[\begin{array}{l}
1 \\
\{ \\
k
\end{array}\right\}} \begin{array}{l}
{[2]}
\end{array}\right]_{n, k \geq 1}^{-1}=\left[\begin{array}{rrrrrl}
-1 & 1 & 0 & 0 & 0 & \cdots \\
3 & -3 & 1 & 0 & 0 & \cdots \\
-15 & 15 & -6 & 1 & 0 & \cdots \\
105 & -105 & 45 & -10 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
\end{aligned}
$$

Inverse entries (times $(-1)^{n-k}$) are Bessel numbers

The $r=3$ snafu

$$
\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[3]}\right]_{n, k \geq 1}=\left[\begin{array}{rrrrrrl}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 3 & 1 & 0 & 0 & 0 & \cdots \\
0 & 7 & 6 & 1 & 0 & 0 & \cdots \\
0 & 10 & 25 & 10 & 1 & 0 & \cdots \\
0 & 10 & 75 & 65 & 15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

The $r=3$ snafu

$$
\begin{aligned}
& {\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[3]}\right]_{n, k \geq 1}=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
1 & 3 & 1 & 0 & 0 & 0 & \cdots \\
0 & 7 & 6 & 1 & 0 & 0 & \cdots \\
0 & 10 & 25 & 10 & 1 & 0 & \cdots \\
0 & 10 & 75 & 65 & 15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]} \\
& {\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[3]}\right]_{n, k \geq 1}^{-1}=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
-1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & -3 & 1 & 0 & 0 & 0 & \cdots \\
-5 & 11 & -6 & 1 & 0 & 0 & \cdots \\
10 & -45 & 35 & -10 & 1 & 0 & \cdots \\
35 & 175 & -210 & 85 & -15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]}
\end{aligned}
$$

Inverse restricted Stirling numbers

Question: For $r \geq 3$ is there an interpretation (up to sign) of (n, k) entry of

$$
\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[r]}\right]_{n, k \geq 1}^{-1} ?
$$

Inverse restricted Stirling numbers

Question: For $r \geq 3$ is there an interpretation (up to sign) of (n, k) entry of

$$
\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[r]}\right]_{n, k \geq 1}^{-1} ?
$$

For $R \subseteq \mathbb{N},\left\{\begin{array}{l}n \\ k\end{array}\right\}_{R}=\#($ partitions of $[n]$ into k blocks, all sizes in $R)$

Inverse restricted Stirling numbers

Question: For $r \geq 3$ is there an interpretation (up to sign) of (n, k) entry of

$$
\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[r]}\right]_{n, k \geq 1}^{-1} ?
$$

For $R \subseteq \mathbb{N},\left\{\begin{array}{l}n \\ k\end{array}\right\}_{R}=\#($ partitions of $[n]$ into k blocks, all sizes in $R)$

- $R=\mathbb{N}$: ordinary Matryoshka doll/Stirling numbers of second kind
- $R=\{1, \ldots, r\}$: Choi, Smith 2005; Choi, Long, Ng, Smith 2006
- $R=\{r, r+1, r+2, \ldots\}$: Comtet 1974

Inverse restricted Stirling numbers

Question: For $r \geq 3$ is there an interpretation (up to sign) of (n, k) entry of

$$
\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[r]}\right]_{n, k \geq 1}^{-1} ?
$$

For $R \subseteq \mathbb{N},\left\{\begin{array}{l}n \\ k\end{array}\right\}_{R}=\#($ partitions of $[n]$ into k blocks, all sizes in $R)$

- $R=\mathbb{N}$: ordinary Matryoshka doll/Stirling numbers of second kind
- $R=\{1, \ldots, r\}$: Choi, Smith 2005; Choi, Long, Ng, Smith 2006
- $R=\{r, r+1, r+2, \ldots\}$: Comtet 1974

Question: For R with $1 \in R$ is there an interpretation (up to sign) of (n, k) entry of

$$
\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{R}\right]_{n, k \geq 1}^{-1} ?
$$

A general setting

$$
\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

$$
a_{n, k}=\sum\left\{a_{\left|P_{1}\right|} \cdots a_{\left|P_{k}\right|}: \text { partitions }\left(P_{1}, \ldots, P_{k}\right) \text { of }[n]\right\}
$$

A general setting

$$
\mathbf{a}=\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

$$
a_{n, k}=\sum\left\{a_{\left|P_{1}\right|} \cdots a_{\left|P_{k}\right|}: \text { partitions }\left(P_{1}, \ldots, P_{k}\right) \text { of }[n]\right\}
$$

- All $a_{i}=1$: Stirling numbers of second kind
- $a_{i}=(i-1)$!: Stirling numbers of first kind
- $a_{i}=i$!: Lah numbers
- $a_{i}=i^{i-2}$: Count of labelled forests on n vertices with k components
- $\mathbf{a}=(1,1,1,1,0,0,0, \ldots)$:
- $a_{5,1}=\left\{\begin{array}{l}5 \\ 1\end{array}\right\}_{[4]}=0 \neq\left\{\begin{array}{l}5 \\ 1\end{array}\right\}(=1)$
- $a_{5,2}=\left\{\begin{array}{l}5 \\ 2\end{array}\right\}_{[4]}=15=\left\{\begin{array}{l}5 \\ 2\end{array}\right\}$

The exponential formula

a determines $\left[a_{n, k}\right]_{n, k \geq 1}$ very cleanly:
if $f(x)$ is egf of a then $\frac{f^{k}(x)}{k!}$ is egf of $\left(a_{n, k}\right)_{n \geq 1}$

The exponential formula

a determines $\left[a_{n, k}\right]_{n, k \geq 1}$ very cleanly:
if $f(x)$ is egf of a then $\frac{f^{k}(x)}{k!}$ is egf of $\left(a_{n, k}\right)_{n \geq 1}$

$$
\left[a_{n, k}\right]_{n, k \geq 1}=\left[\begin{array}{c|c|c|c}
\vdots & \vdots & \vdots & \\
f(x) & \frac{f^{2}(x)}{2!} & \frac{f^{3}(x)}{3!} & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right]
$$

The exponential formula

a determines $\left[a_{n, k}\right]_{n, k \geq 1}$ very cleanly:

$$
\text { if } f(x) \text { is egf of a then } \frac{f^{k}(x)}{k!} \text { is egf of }\left(a_{n, k}\right)_{n \geq 1}
$$

$$
\left[a_{n, k}\right]_{n, k \geq 1}=\left[\begin{array}{c|c|c|c}
\vdots & \vdots & \vdots & \\
f(x) & \frac{f^{2}(x)}{2!} & \frac{f^{3}(x)}{3!} & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right]
$$

Example: $\mathbf{a}=(1,1,1, \ldots)$

- $f(x)=e^{x}-1$
- $\frac{f^{2}(x)}{2!}=\frac{e^{2 x}-2 e^{x}+1}{2}=\sum_{n \geq 1} \frac{2^{n-1}-1}{n!} x^{n}$
- $\left\{\begin{array}{l}n \\ 2\end{array}\right\}=2^{n-1}-1$

The inverse matrix

$$
A=\left[a_{n, k}\right]_{n, k \geq 1}, \quad B=A^{-1}
$$

The inverse matrix

$A=\left[a_{n, k}\right]_{n, k \geq 1}, \quad B=A^{-1}$
a determines B very cleanly:

- B is generated from B 's first column exactly as A is generated from a
- if $g(x)$ is the egf of first column of B, then $g(x)$ is the compositional inverse (reversion) of $f(x)$

The inverse matrix

$A=\left[a_{n, k}\right]_{n, k \geq 1}, \quad B=A^{-1}$
a determines B very cleanly:

- B is generated from B 's first column exactly as A is generated from a
- if $g(x)$ is the egf of first column of B, then $g(x)$ is the compositional inverse (reversion) of $f(x)$
Example: $a=(1,1,1, \ldots)$
- $f(x)=e^{x}-1$
- $g(x)=\ln (1+x)$
- $g(x)$ is egf of $(1,-1,2,-6,24, \ldots)$
- first column of B is $(1,-1,2,-6,24, \ldots)$
- (signed) Stirling numbers of first kind generated by $(1,-1,2,-6,24, \ldots)$ exactly as Stirling numbers of second kind generated by $(1,1,1, \ldots)$

Schröder trees (phylogenetic trees)

Rooted, n labelled leaves, all non-leaves have at least two children

Figure: A Schroder tree

Schröder trees (phylogenetic trees)

Rooted, n labelled leaves, all non-leaves have at least two children

Figure: A Schroder tree with weight $(-1)^{4} a_{2}^{2} a_{3}^{2}$

Given $\mathbf{a}=\left(1, a_{2}, a_{3}, \ldots\right)$, weight $w(T)$ of Schröder tree T is

$$
w(T)=(-1)^{\#(\text { non-leaves })} \prod_{\text {non-leaves } v} a_{\#(\text { children of } v)}
$$

Schröder trees (phylogenetic trees)

Rooted, n labelled leaves, all non-leaves have at least two children

Figure: A Schroder tree with weight $(-1)^{4} a_{2}^{2} a_{3}^{2}$

Given $\mathbf{a}=\left(1, a_{2}, a_{3}, \ldots\right)$, weight $w(T)$ of Schröder tree T is

$$
w(T)=(-1)^{\#(\text { non-leaves })} \prod_{\text {non-leaves } v} a_{\#(\text { children of } v)}
$$

If \mathbf{a} is $0-1$, supported on R, then $|w(T)|=\mathbf{1}_{\{\text {all down-degrees of } T \text { in } R\}}$

Schröder trees and the reversion

- $\mathbf{a}=\left(1, a_{2}, a_{3}, \ldots\right), f(x)$ is egf of \mathbf{a}
- $g(x)$ the reversion of $f(x)$, egf of $\mathbf{b}=\left(1, b_{2}, b_{3}, \ldots\right)$

Schröder trees and the reversion

- $\mathbf{a}=\left(1, a_{2}, a_{3}, \ldots\right), f(x)$ is egf of \mathbf{a}
- $g(x)$ the reversion of $f(x)$, egf of $\mathbf{b}=\left(1, b_{2}, b_{3}, \ldots\right)$

Theorem: $b_{n}=\sum w(T)$, sum over Schröder trees T on $[n]$

Schröder trees and the reversion

- $\mathbf{a}=\left(1, a_{2}, a_{3}, \ldots\right), f(x)$ is egf of \mathbf{a}
- $g(x)$ the reversion of $f(x)$, egf of $\mathbf{b}=\left(1, b_{2}, b_{3}, \ldots\right)$

Theorem: $b_{n}=\sum w(T)$, sum over Schröder trees T on $[n]$

Proof sketch:

- Delete root to get collection of smaller Schröder trees, all down-degrees unchanged

Schröder trees and the reversion

- $\mathbf{a}=\left(1, a_{2}, a_{3}, \ldots\right), f(x)$ is egf of \mathbf{a}
- $g(x)$ the reversion of $f(x)$, egf of $\mathbf{b}=\left(1, b_{2}, b_{3}, \ldots\right)$

Theorem: $b_{n}=\sum w(T)$, sum over Schröder trees T on $[n]$

Proof sketch:

- Delete root to get collection of smaller Schröder trees, all down-degrees unchanged

- Implies recurrence for $\sum\{w(T)$: Schröder trees T on [n]\} that coincides with recurrence for b_{n}

Combinatorially interpreting inverses

Corollary: If a is $0-1$ with support $R, 1 \in R$, number of even T [\#(non-leaves) even], all down-degrees in R
$b_{n}=$ number of odd T [\#(non-leaves) odd], all down-degrees in R

Combinatorially interpreting inverses

Corollary: If a is $0-1$ with support $R, 1 \in R$,
number of even T [\#(non-leaves) even], all down-degrees in R
$b_{n}=$
number of odd T [\#(non-leaves) odd], all down-degrees in R
\#(k-comp R-Schröder forests on [n], \#(odd components) even)
$b_{n, k}=$
\#(k-comp R-Schröder forests on [n], \#(odd components) odd)

Combinatorially interpreting inverses

Corollary: If a is $0-1$ with support $R, 1 \in R$,
number of even T [\#(non-leaves) even], all down-degrees in R
$b_{n}=$
number of odd T [\#(non-leaves) odd], all down-degrees in R
\#(k-comp R-Schröder forests on [n], \#(odd components) even)
$b_{n, k}=$
\#(k-comp R-Schröder forests on [n], \#(odd components) odd)
Gives combinatorial interpretation of $\left[\left\{\begin{array}{l}n \\ k\end{array}\right\}_{R}\right]^{-1}$ for every R with $1 \in R$

Back to r-restricted Stirling numbers

$$
\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[3]}\right]_{n, k \geq 1}^{-1}=\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
-1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & -3 & 1 & 0 & 0 & 0 & \cdots \\
-5 & 11 & -6 & 1 & 0 & 0 & \cdots \\
10 & -45 & 35 & -10 & 1 & 0 & \cdots \\
35 & 175 & -210 & 85 & -15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

Back to r-restricted Stirling numbers

$$
\begin{aligned}
{\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[3]}\right]_{n, k \geq 1}^{-1} } & =\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
-1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & -3 & 1 & 0 & 0 & 0 & \cdots \\
-5 & 11 & -6 & 1 & 0 & 0 & \cdots \\
10 & -45 & 35 & -10 & 1 & 0 & \cdots \\
35 & 175 & -210 & 85 & -15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] \\
{\left[\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{[4]}\right]_{n, k \geq 1} } & =\left[\begin{array}{rrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & \cdots \\
-1 & 1 & 0 & 0 & 0 & 0 & \cdots \\
2 & -3 & 1 & 0 & 0 & 0 & \cdots \\
-6 & 11 & -6 & 1 & 0 & 0 & \cdots \\
25 & -50 & 35 & -10 & 1 & 0 & \cdots \\
-140 & 280 & -225 & 85 & -15 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
\end{aligned}
$$

Alternating first column

If $\mathbf{b}=\left(1, b_{1}, b_{2}, b_{3}, \ldots\right)$ is alternating,

$$
\begin{aligned}
b_{n, k} & :=\sum\left\{b_{\left|P_{1}\right|} \cdots b_{\left|P_{k}\right|}: \operatorname{partitions}\left(P_{1}, \ldots, P_{k}\right) \text { of }[n]\right\} \\
& =(-1)^{n-k} \sum\left\{\left|b_{\left|P_{1}\right|}\right| \cdots\left|b_{\left|P_{k}\right|}\right|: \text { partitions }\left(P_{1}, \ldots, P_{k}\right) \text { of }[n]\right\}
\end{aligned}
$$

so $(-1)^{n-k} b_{n, k}$ positive for all n, k

Alternating first column

If $\mathbf{b}=\left(1, b_{1}, b_{2}, b_{3}, \ldots\right)$ is alternating for 0-1 a with support $R, 1 \in R$, recalling
number of even T [\#(non-leaves) even], all down-degrees in R
$b_{n}=$ number of odd T [\#(non-leaves) odd], all down-degrees in R :

Alternating first column

If $\mathbf{b}=\left(1, b_{1}, b_{2}, b_{3}, \ldots\right)$ is alternating for 0-1 a with support $R, 1 \in R$, recalling
number of even T [\#(non-leaves) even], all down-degrees in R

$$
b_{n}=
$$

number of odd T [\#(non-leaves) odd], all down-degrees in R :
If there is injection from

$$
\{R \text {-Schröder trees on }[n], \#(\text { non-leaves }) \text { has parity } x\}
$$

to

$$
\{\text { same, \#(non-leaves) has parity } 1-x\}
$$

(x depending on parity of n), then

$$
(-1)^{n-1} b_{n}=\#(\text { trees not in range of injection })
$$

Alternating first column

If $\mathbf{b}=\left(1, b_{1}, b_{2}, b_{3}, \ldots\right)$ is alternating for 0-1 a with support $R, 1 \in R$, recalling
number of even T [\#(non-leaves) even], all down-degrees in R

$$
b_{n}=
$$

number of odd T [\#(non-leaves) odd], all down-degrees in R :
If there is injection from

$$
\{R \text {-Schröder trees on }[n], \#(\text { non-leaves }) \text { has parity } x\}
$$

to

$$
\{\text { same, } \#(\text { non-leaves }) \text { has parity } 1-x\}
$$

(x depending on parity of n), then

$$
\begin{aligned}
(-1)^{n-1} b_{n} & =\#(\text { trees not in range of injection }) \\
(-1)^{n-k} b_{n, k} & =\#(k \text {-component forests of these special trees })
\end{aligned}
$$

Main theorem (I)
If r even then

Main theorem (I)

If r even then

- compositional inverse of $\sum_{n=1}^{r} \frac{x^{n}}{n!}$ is alternating

Main theorem (I)

If r even then

- compositional inverse of $\sum_{n=1}^{r} \frac{x^{n}}{n!}$ is alternating because
- there is explicit injection from

$$
\{r \text {-Schröder trees on }[n], \# \text { (non-leaves) has parity } x\}
$$

to

$$
\{\text { same, } \#(\text { non-leaves }) \text { has parity } 1-x\}
$$

with explicit description of trees not in range of injection

Main theorem (I)

If r even then

- compositional inverse of $\sum_{n=1}^{r} \frac{x^{n}}{n!}$ is alternating because
- there is explicit injection from

$$
\{r \text {-Schröder trees on }[n], \# \text { (non-leaves) has parity } x\}
$$

to

$$
\{\text { same, } \#(\text { non-leaves }) \text { has parity } 1-x\}
$$

with explicit description of trees not in range of injection

- There's explicit combinatorial description of entries of $\left[\left\{\begin{array}{l}n \\ k\end{array}\right\}_{[r]}\right]_{n, k \geq 1}^{-1}$ as (signed) counts of forests

Main theorem (I)

If r even then

- compositional inverse of $\sum_{n=1}^{r} \frac{x^{n}}{n!}$ is alternating because
- there is explicit injection from

$$
\{r \text {-Schröder trees on }[n], \# \text { (non-leaves) has parity } x\}
$$

to

$$
\{\text { same, } \#(\text { non-leaves }) \text { has parity } 1-x\}
$$

with explicit description of trees not in range of injection

- There's explicit combinatorial description of entries of $\left.\left[\begin{array}{l}n \\ k\end{array}\right\}_{[r]}\right]_{n, k \geq 1}^{-1}$ as (signed) counts of forests (as opposed to: counts of (signed) forests)

Main theorem (II)

If $R \subseteq \mathbb{N}$ with $1 \in R$ has no exposed odds:

$$
\text { odd } n \in R \text { implies }\{n+1, n-1\} \in R
$$

then

Main theorem (II)

If $R \subseteq \mathbb{N}$ with $1 \in R$ has no exposed odds:

$$
\text { odd } n \in R \text { implies }\{n+1, n-1\} \in R
$$

then

- compositional inverse of $\sum_{n \in R} \frac{x^{n}}{n!}$ is alternating

Main theorem (II)

If $R \subseteq \mathbb{N}$ with $1 \in R$ has no exposed odds:

$$
\text { odd } n \in R \text { implies }\{n+1, n-1\} \in R
$$

then

- compositional inverse of $\sum_{n \in R} \frac{x^{n}}{n!}$ is alternating
- there is explicit injection, with explicit description of trees not in range of injection

Main theorem (II)

If $R \subseteq \mathbb{N}$ with $1 \in R$ has no exposed odds:

$$
\text { odd } n \in R \text { implies }\{n+1, n-1\} \in R
$$

then

- compositional inverse of $\sum_{n \in R} \frac{x^{n}}{n!}$ is alternating
- there is explicit injection, with explicit description of trees not in range of injection
- There's explicit combinatorial description of entries of $\left[\left\{\begin{array}{l}n \\ k\end{array}\right\}_{R}\right]_{n, k \geq 1}^{-1}$ as (signed) counts of forests

Main idea for the injection

Contraction and uncontraction

- involution operations that flips parity of number of non-leaves, changes down-degrees predictably

Main idea for the injection

Contraction and uncontraction

- involution operations that flips parity of number of non-leaves, changes down-degrees predictably
- key is to find "first" non-leaf where operation is possible

Other results and questions

Results

- Can deal with homothetic copies of R with no exposed odds

$$
\text { e.g. }\{1,4,7,10\}, \quad\{1,7,9,11\}
$$

- Similar results for inverses of restricted Lah matrices and matrices of Stirling numbers of the first kind

Other results and questions

Results

- Can deal with homothetic copies of R with no exposed odds

$$
\text { e.g. }\{1,4,7,10\}, \quad\{1,7,9,11\}
$$

- Similar results for inverses of restricted Lah matrices and matrices of Stirling numbers of the first kind

Practical questions

- Is interpretation of reversion coefficients in terms of Schröder trees known?

Other results and questions

Results

- Can deal with homothetic copies of R with no exposed odds

$$
\text { e.g. }\{1,4,7,10\}, \quad\{1,7,9,11\}
$$

- Similar results for inverses of restricted Lah matrices and matrices of Stirling numbers of the first kind

Practical questions

- Is interpretation of reversion coefficients in terms of Schröder trees known?
- Is it obvious that (say) $x+x^{2} / 2+x^{3} / 6+x^{4} / 24$ has alternating reversion (but $x+x^{2} / 2+x^{3} / 6$ doesn't)?

Other results and questions

Results

- Can deal with homothetic copies of R with no exposed odds

$$
\text { e.g. }\{1,4,7,10\}, \quad\{1,7,9,11\}
$$

- Similar results for inverses of restricted Lah matrices and matrices of Stirling numbers of the first kind

Practical questions

- Is interpretation of reversion coefficients in terms of Schröder trees known?
- Is it obvious that (say) $x+x^{2} / 2+x^{3} / 6+x^{4} / 24$ has alternating reversion (but $x+x^{2} / 2+x^{3} / 6$ doesn't)?
Research question
Characterize those $R \subseteq \mathbb{N}$ with $1 \in R$ such that
series reversion of $\sum_{n \in R} \frac{x^{n}}{n!}$ is alternating

