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An unmotivated question

Compositional inverse of ex − 1 is

log(1 + x),

which has alternating power series.

Compositional inverse of rth truncate of ex − 1,

x +
x2

2
+

x3

6
+ . . . +

x r

r !
,

has power series which is

alternating if r is even

not alternating if r is odd

Question: Is there a simple reason for this?
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Matryoshka doll numbers{n
k

}
= #(partitions of [n] into k non-empty blocks)

[{
n

k

}]
n,k≥1

=



1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
1 3 1 0 0 · · ·
1 7 6 1 0 · · ·
1 15 25 10 1 · · ·
...

...
...

...
...

. . .



[{
n

k

}]−1
n,k≥1

=



1 0 0 0 0 · · ·
−1 1 0 0 0 · · ·

2 −3 1 0 0 · · ·
−6 11 −6 1 0 · · ·
24 −50 35 −10 1 · · ·

...
...

...
...

...
. . .


=

[
(−1)n−k

[
n

k

]]
n,k≥1

[n
k

]
= #(partitions of [n] into k non-empty cycles)
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r -restricted Stirling numbers of the second kind{n
k

}
[r ]

= #(partitions of [n] into k blocks, size ≤ r) (Choi, Smith 2005)

[{
n

k

}
[2]

]
n,k≥1

=



1 0 0 0 0 · · ·
1 1 0 0 0 · · ·
0 3 1 0 0 · · ·
0 3 6 1 0 · · ·
0 0 15 10 1 · · ·
...

...
...

...
...

. . .



[{
n

k

}
[2]

]−1
n,k≥1

=



1 0 0 0 0 · · ·
−1 1 0 0 0 · · ·

3 −3 1 0 0 · · ·
−15 15 −6 1 0 · · ·
105 −105 45 −10 1 · · ·

...
...

...
...

...
. . .


Inverse entries (times (−1)n−k) are Bessel numbers
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The r = 3 snafu

[{
n

k

}
[3]

]
n,k≥1

=



1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 3 1 0 0 0 · · ·
0 7 6 1 0 0 · · ·
0 10 25 10 1 0 · · ·
0 10 75 65 15 1 · · ·
...

...
...

...
...

...
. . .



[{
n

k

}
[3]

]−1
n,k≥1

=



1 0 0 0 0 0 · · ·
−1 1 0 0 0 0 · · ·

2 −3 1 0 0 0 · · ·
−5 11 −6 1 0 0 · · ·
10 −45 35 −10 1 0 · · ·
35 175 −210 85 −15 1 · · ·

...
...

...
...

...
...

. . .


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Inverse restricted Stirling numbers

Question: For r ≥ 3 is there an interpretation (up to sign) of (n, k) entry
of [{

n

k

}
[r ]

]−1
n,k≥1

?

For R ⊆ N,
{n
k

}
R

= #(partitions of [n] into k blocks, all sizes in R)

R = N: ordinary Matryoshka doll/Stirling numbers of second kind

R = {1, . . . , r}: Choi, Smith 2005; Choi, Long, Ng, Smith 2006

R = {r , r + 1, r + 2, . . .}: Comtet 1974

Question: For R with 1 ∈ R is there an interpretation (up to sign) of
(n, k) entry of [{

n

k

}
R

]−1
n,k≥1

?
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A general setting

a = (a1, a2, a3, . . .)

an,k =
∑{

a|P1| · · · a|Pk | : partitions (P1, . . . ,Pk) of [n]
}

All ai = 1: Stirling numbers of second kind

ai = (i − 1)!: Stirling numbers of first kind

ai = i !: Lah numbers

ai = i i−2: Count of labelled forests on n vertices with k components

a = (1, 1, 1, 1, 0, 0, 0, . . .):

I a5,1 =
{
5
1

}
[4]

= 0 6=
{
5
1

}
(= 1)

I a5,2 =
{
5
2

}
[4]

= 15 =
{
5
2

}
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The exponential formula

a determines [an,k ]n,k≥1 very cleanly:

if f (x) is egf of a then f k (x)
k! is egf of (an,k)n≥1

[an,k ]n,k≥1 =


...

...
...

f (x) f 2(x)
2!

f 3(x)
3! . . .

...
...

...


Example: a = (1, 1, 1, . . .)

f (x) = ex − 1
f 2(x)
2! = e2x−2ex+1

2 =
∑

n≥1
2n−1−1

n! xn{n
2

}
= 2n−1 − 1
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The inverse matrix

A = [an,k ]n,k≥1, B = A−1

a determines B very cleanly:

B is generated from B’s first column exactly as A is generated from a

if g(x) is the egf of first column of B, then g(x) is the compositional
inverse (reversion) of f (x)

Example: a = (1, 1, 1, . . .)

f (x) = ex − 1

g(x) = ln(1 + x)

g(x) is egf of (1,−1, 2,−6, 24, . . .)

first column of B is (1,−1, 2,−6, 24, . . .)

(signed) Stirling numbers of first kind generated by
(1,−1, 2,−6, 24, . . .) exactly as Stirling numbers of second kind
generated by (1, 1, 1, . . .)
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Schröder trees (phylogenetic trees)

Rooted, n labelled leaves, all non-leaves have at least two children

(root)

2

5 6 4

1 3 7

Figure: A Schroder tree

with weight (−1)4a22a
2
3

Given a = (1, a2, a3, . . .), weight w(T ) of Schröder tree T is

w(T ) = (−1)#(non-leaves)
∏

non-leaves v

a#(children of v )

If a is 0-1, supported on R, then |w(T )| = 1{all down-degrees of T in R}
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w(T ) = (−1)#(non-leaves)
∏

non-leaves v

a#(children of v )

If a is 0-1, supported on R, then |w(T )| = 1{all down-degrees of T in R}
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Schröder trees and the reversion

a = (1, a2, a3, . . .), f (x) is egf of a

g(x) the reversion of f (x), egf of b = (1, b2, b3, . . .)

Theorem: bn =
∑

w(T ), sum over Schröder trees T on [n]

Proof sketch:

Delete root to get collection of smaller Schröder trees, all
down-degrees unchanged

2

5 6 4

1 3 7

Implies recurrence for
∑
{w(T ) : Schröder trees T on [n]} that

coincides with recurrence for bn
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Schröder trees and the reversion

a = (1, a2, a3, . . .), f (x) is egf of a

g(x) the reversion of f (x), egf of b = (1, b2, b3, . . .)

Theorem: bn =
∑

w(T ), sum over Schröder trees T on [n]
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Combinatorially interpreting inverses

Corollary: If a is 0-1 with support R, 1 ∈ R,

bn =
number of even T [#(non-leaves) even], all down-degrees in R

−
number of odd T [#(non-leaves) odd], all down-degrees in R

bn,k =
#(k-comp R-Schröder forests on [n], #(odd components) even)

−
#(k-comp R-Schröder forests on [n], #(odd components) odd)

Gives combinatorial interpretation of
[{n

k

}
R

]−1
for every R with 1 ∈ R
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Back to r -restricted Stirling numbers

[{
n

k

}
[3]

]−1
n,k≥1

=



1 0 0 0 0 0 · · ·
−1 1 0 0 0 0 · · ·

2 −3 1 0 0 0 · · ·
−5 11 −6 1 0 0 · · ·
10 −45 35 −10 1 0 · · ·
35 175 −210 85 −15 1 · · ·

...
...

...
...

...
...

. . .



[{
n

k

}
[4]

]−1
n,k≥1

=



1 0 0 0 0 0 · · ·
−1 1 0 0 0 0 · · ·

2 −3 1 0 0 0 · · ·
−6 11 −6 1 0 0 · · ·
25 −50 35 −10 1 0 · · ·

−140 280 −225 85 −15 1 · · ·
...

...
...

...
...

...
. . .


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Alternating first column

If b = (1, b1, b2, b3, . . .) is alternating,

bn,k :=
∑{

b|P1| · · · b|Pk | : partitions (P1, . . . ,Pk) of [n]
}

= (−1)n−k
∑{∣∣b|P1|

∣∣ · · · ∣∣b|Pk |
∣∣ : partitions (P1, . . . ,Pk) of [n]

}
so (−1)n−kbn,k positive for all n, k

David Galvin (Notre Dame) Restricted Stirling numbers October 27, 2016 15 / 20



Alternating first column

If b = (1, b1, b2, b3, . . .) is alternating for 0-1 a with support R, 1 ∈ R,
recalling

bn =
number of even T [#(non-leaves) even], all down-degrees in R

−
number of odd T [#(non-leaves) odd], all down-degrees in R :

If there is injection from

{R-Schröder trees on [n], #(non-leaves) has parity x}

to
{same, #(non-leaves) has parity 1− x}

(x depending on parity of n), then

(−1)n−1bn = #(trees not in range of injection)

(−1)n−kbn,k = #(k-component forests of these special trees)
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Main theorem (I)

If r even then

compositional inverse of
∑r

n=1
xn

n! is alternating because

there is explicit injection from

{r -Schröder trees on [n], #(non-leaves) has parity x}

to
{same, #(non-leaves) has parity 1− x}

with explicit description of trees not in range of injection

There’s explicit combinatorial description of entries of
[{n

k

}
[r ]

]−1
n,k≥1

as

(signed) counts of forests (as opposed to: counts of (signed) forests)
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{r -Schröder trees on [n], #(non-leaves) has parity x}

to
{same, #(non-leaves) has parity 1− x}

with explicit description of trees not in range of injection

There’s explicit combinatorial description of entries of
[{n

k

}
[r ]

]−1
n,k≥1

as

(signed) counts of forests (as opposed to: counts of (signed) forests)

David Galvin (Notre Dame) Restricted Stirling numbers October 27, 2016 17 / 20



Main theorem (II)

If R ⊆ N with 1 ∈ R has no exposed odds:

odd n ∈ R implies {n + 1, n − 1} ∈ R

then

compositional inverse of
∑

n∈R
xn

n! is alternating

there is explicit injection, with explicit description of trees not in
range of injection

There’s explicit combinatorial description of entries of
[{n

k

}
R

]−1
n,k≥1 as

(signed) counts of forests
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Main idea for the injection

Contraction and uncontraction

vj

. . .

4

v ′j

31

vj

. . .

41 3

contraction

uncontraction

involution operations that flips parity of number of non-leaves,
changes down-degrees predictably

key is to find “first” non-leaf where operation is possible
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Other results and questions

Results

Can deal with homothetic copies of R with no exposed odds

e.g. {1, 4, 7, 10}, {1, 7, 9, 11}

Similar results for inverses of restricted Lah matrices and matrices of
Stirling numbers of the first kind

Practical questions

Is interpretation of reversion coefficients in terms of Schröder trees
known?

Is it obvious that (say) x + x2/2 + x3/6 + x4/24 has alternating
reversion (but x + x2/2 + x3/6 doesn’t)?

Research question
Characterize those R ⊆ N with 1 ∈ R such that

series reversion of
∑

n∈R
xn

n! is alternating
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known?

Is it obvious that (say) x + x2/2 + x3/6 + x4/24 has alternating
reversion (but x + x2/2 + x3/6 doesn’t)?

Research question
Characterize those R ⊆ N with 1 ∈ R such that

series reversion of
∑

n∈R
xn

n! is alternating

David Galvin (Notre Dame) Restricted Stirling numbers October 27, 2016 20 / 20



Other results and questions

Results

Can deal with homothetic copies of R with no exposed odds

e.g. {1, 4, 7, 10}, {1, 7, 9, 11}

Similar results for inverses of restricted Lah matrices and matrices of
Stirling numbers of the first kind

Practical questions

Is interpretation of reversion coefficients in terms of Schröder trees
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