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Introduction
There is an increasing but still scarce literature concerning causal
inference with error-prone data.

Marginal structural models (MSM) are widely used to delineate
causal effects. In the presence of time-dependent confounding,
Robins et al. (2000) proposed the inverse-probability-of-treatment
weighted (IPTW) estimation of causal parameters of MSM.

However, their approach has a critical assumption:
measurements are precise!

Objectives:
We consider the case where the time-dependent confounders are
mismeasured and propose several methods to accommodate the
measurement error. To our knowledge, this problem has not been
considered before.
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Notation and Framework

I Observed data

· At visit k(k = 0, . . . ,K ) for subject i(i = 1, . . . , n):

∗ Zi (k): precisely-observed time-dependent confounders;
∗ Xi (k): mismeasured time-dependent confounders;
∗ Ai (k): observed binary treatment;
∗ Āi (k) = {Ai (u) : 0 ≤ u ≤ k, u is integer}: observed

treatment history up to visit k;
∗ Āi = Āi (K ): observed full treatment history;

· After visit K :

Yi : observed outcome variable;
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Notation and Framework

I Potential outcome/counterfactuals:

· At visit k(k = 0, . . . ,K ) for subject i(i = 1, . . . , n):

∗ ai (k): potential binary treatment;
∗ āi (k) = {ai (u) : 0 ≤ u ≤ k, u is integer}: potential

treatment history up to visit k;
∗ āi = āi (K ): potential full treatment history;

· After visit K :

Yāi : potential outcome that would have been observed had
the subject experienced treatment history āi ;
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Assumptions

I Assumption 1: the treatment assignment of subject j has no
effect on the potential outcomes of subject i for all i 6= j .

I Assumption 2: the potential outcome under the observed
treatment is equal to the observed outcome, i.e., YĀ = Y .

I Assumption 3: P(Ā|Z̄ , X̄ ,Yā) = P(Ā|Z̄ , X̄ ).
I Assumption 4: for k = 0, 1, . . . ,K ,

0 < P{A(k) = 1|Ā(k − 1), Z̄ (k), X̄ (k)} < 1.

I Assumption 5:
P(Ā|Z̄ , X̄ ) =

∏K
k=0 P{A(k)|, Ā(k − 1),Z (k),X (k)}.
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Model Setup

I Marginal structural model:

E (Yā) = h(ā; β), (1)

where β is the causal parameters of interest.
Only one of {ā} is actually observed for an individual.

↓

We can’t fit (1) directly using available data.
I Crude model:

E (Y |Ā) = h(Ā; α), (2)

where α is the associational parameters.
We can fit (2) directly using available data, as Ā are available.
But α 6= β in general (Robins et al. 2000).
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Estimation without Measurement Error
To produce a consistent estimator for β, Robins et al. (2000)
proposed the IPTW estimation method.

I Step 1 (Weight Estimation):
For each subject i , determine the weight

wi =
K∏

k=0

1
P{Ai (k)|, Āi (k − 1),Zi (k),Xi (k)}

, (3)

where

logit[P{Ai (k) = 1|Āi (k − 1),Zi (k),Xi (k)}]
= γ0k + γT

Ak Āi (k − 1) + γT
ZkZi (k) + γT

XkXi (k). (4)

Fitting (4) gives an estimator of (γ0k ,γ
T
Ak ,γ

T
Zk ,γ

T
Xk)T and

therefore an estimator ŵi of wi using (3).
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Estimation without Measurement Error

I Step 2 (Fitting the Weighted Outcome Model):
Fit model (2) with subject i assigned weights ŵi .

The resulting IPTW estimator β̂ is consistent for β, the
causal parameters of interest of (1).

The robust variance estimator (Huber 1967) can be employed
(Robins et al. 2000).
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Measurement Error Model
Confounders Xi (k) are error-prone.

Let X ∗
ik be an observed measurement of Xi (k). Assume that

conditional on Xi (k),

X ∗
ik = Xi (k) + εik (5)

for i = 1, . . . , n and k = 0, . . . ,K , where
I the εik and the Xi (k) are independent, and the εik are

independent across different i and k.
I εik follow N(0,Σεk), with covariance matrix Σεk .
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Adjusting for Measurement Error Effects
Recall the standard IPTW procedure:

I Step 1:

wi =
K∏

k=0

1
P{Ai (k)|, Āi (k − 1),Zi (k),Xi (k)}

,

I Step 2: fit E (Y |Ā) = h(Ā; α) with ŵi in step 1.

Note: ŵi , the estimator for wi plays a key role. But Xi (k) is
unobserved.

Naively ignoring the difference between X ∗
ik and Xi (k) leads to

biased estimation of β.

Idea: estimation of P{Ai (k) = 1|Āi (k − 1),Zi (k),Xi (k)} adjusted
for measurement error.
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Regression Calibration (RC)
The conditional probabilities in the denominators of wi are
modeled by

logit[P{Ai (k) = 1|Āi (k − 1),Zi (k),Xi (k)}]
= γ0k + γT

Ak Āi (k − 1) + γT
ZkZi (k) + γT

XkXi (k).

The basic idea of RC (Prentice 1982) is to replace Xi (k) with its
conditional expectation E{Xi (k)|X ∗

ik} in the standard analysis.

By Carroll et al. (2006), we estimate E{Xi (k)|X ∗
ik} by

X̂i (k) = µ̂k + Σ̂Xk · (Σ̂Xk + Σεk)−1 · (X ∗
ik − µ̂k),

where
µ̂k =

∑n
i=1 X ∗

ik
n ,

Σ̂Xk =
∑n

i=1(X ∗
ik − µ̂k)(X ∗

ik − µ̂k)T − (n − 1)Σεk
n − 1 .
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Regression Calibration (RC)
Replacing Xi (k) with X̂i (k) and respectively fitting models (4)
gives estimate (γ̂0k , γ̂

T
Ak , γ̂

T
Zk , γ̂

T
Xk)T .

The conditional probabilities in the denominators of wi are
estimated by

P̂{Ai (k) = 1|Āi (k − 1),Zi (k),Xi (k)}

= 1
1 + exp{−γ̂0k − γ̂T

Ak Āi (k − 1)− γ̂T
ZkZi (k)− γ̂T

Xk X̂i (k)}
,

leading to the adjusted IPTW weights which will serve as the input
in Step 2 of the standard IPTW estimation.
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Regression Calibration (RC)
Remark:

X̂i (k) is a linear function in X ∗
ik .

↓

naive analysis and RC produce same estimate for wi .

↓

naive analysis and RC produce same estimate for β.

↓

naive analysis=RC.
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SIMEX-based Methods

I Direct SIMEX (SIMEX1)
The basic idea of SIMEX1 is to obtain causal parameters
estimates β̂ by using SIMEX method.

I Indirect SIMEX (SIMEX2)
The basic idea of SIMEX2 is to obtain logistic parameters
estimates (γ̂0k , γ̂

T
Ak , γ̂

T
Zk , γ̂

T
Xk)T by using SIMEX method.

Then the conditional probabilities are estimated by

P̂{Ai (k) = 1|Āi (k − 1),Zi (k),Xi (k)}

= 1
1 + exp{−γ̂0k − γ̂T

Ak Āi (k − 1)− γ̂T
ZkZi (k)− γ̂T

Xk X̂i (k)}
.
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Consistent Estimator (CS.∆)
Previous methods are only approximately consistent.

By adapting Stefanski and Carroll (1987), we directly estimate the
conditional probabilities by

P̂{Ai (k) = 1|Āi (k − 1),Zi (k), ∆̂i (k)}

= 1
1 + exp{−γ̂0k − γ̂T

Ak Āi (k − 1)− γ̂T
ZkZi (k)− γ̂T

Xk∆̂i (k)}
, (6)

where
I ∆̂i (k) = X ∗

ik + {Ai (k)− 1/2}Σεk γ̂Xk is a consistent estimate
for ∆i (k) = X ∗

ik + {Ai (k)− 1/2}ΣεkγXk .
I (γ̂0k , γ̂

T
Ak , γ̂

T
Zk , γ̂

T
Xk)T is consistent estimator for

(γ0k ,γ
T
Ak ,γ

T
Zk ,γ

T
Xk)T .
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Consistent Estimator (CS.∆)
Many methods have been developed to obtain consistent estimator
(γ̂0k , γ̂

T
Ak , γ̂

T
Zk , γ̂

T
Xk)T .

For example, Stefanski and Carroll (1987) proposed the conditional
score method to obtain (γ̂0k , γ̂

T
Ak , γ̂

T
Zk , γ̂

T
Xk)T by solving the

following estimating equations for (γ0k ,γ
T
Ak ,γ

T
Zk ,γ

T
Xk)T :

n∑
i=1

([
Ai (k)− 1

1 + exp{−γ0k − γT
Ak Āi (k − 1)− γT

ZkZi (k)− γT
Xk ∆i (k)}

]

·


1

Āi (k − 1)
Zi (k)
∆i (k)


 = 0, (7)

where ∆i (k) = X ∗
ik + {Ai (k)− 1/2}ΣεkγXk .
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Consistent Estimator (CS.∆)
Theorem: Let ŵi be the IPTW weights estimated by using (6).
The IPTW estimation with weights ŵi yields consistent estimator
for the causal parameters β.

Note: the causal mean E (Yā) under treatment ā is consistently
estimated by∑n

i=1 ŵi Yi I(Āi = ā)
n or

∑n
i=1 ŵi Yi I(Āi = ā)∑n

i=1 ŵi I(Āi = ā)
,

where I(·) is the indicator function.

Remark: based on the consistent estimators for causal mean E (Yā)
in the theorem, the causal odds ratio (OR), causal risk ratio (RR)
and causal risk difference (RD) can be estimated simultaneously to
assess the relative effectiveness of two treatment plans.
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Another Two Approaches Based on (6)
For the consistent method:

P̂{Ai (k) = 1|Āi (k − 1),Zi (k), ∆̂i (k)}

= 1
1 + exp{−γ̂0k − γ̂T

Ak Āi (k − 1)− γ̂T
ZkZi (k)− γ̂T

Xk∆̂i (k)}
.

where (γ̂0k , γ̂
T
Ak , γ̂

T
Zk , γ̂

T
Xk)T is consistent estimator.

(γ̂0k , γ̂
T
Ak , γ̂

T
Zk , γ̂

T
Xk)T can also be obtained by approximately

consistent method:
I using regression calibration method
I using SIEMX method

We call the two resulting approaches RC.∆ and SIMEX2.∆.
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Selected Simulation Results

Σεk = 0.52 Σεk = 1.52

Method Bias% CP% Bias% CP%

Naive 2.110 91.4 7.358 15.2
RC 2.110 91.4 7.358 15.2

RC.∆ 0.578 95.5 2.089 89.9
SIMEX2 1.923 92.2 8.620 5.00

SIMEX2.∆ 0.357 95.9 5.513 49.8
CS.∆ 0.032 95.8 0.270 90.6

SIMEX1 0.394 94.9 5.325 47.4

Bias%: relative bias=bias/true value×100%
CP%: coverage percentage based on robust variance estimate
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Selected Simulation Results
CS.∆ is consistent, as expected. But the coverage percentage is
90.6%, not close to 95%. → robust variance underestimates the
variance.

The robust variance estimate is valid in the absence of
measurement error, but not in the presence of measurement error.

By using the jackknife variance estimate (Efron 1982), the
resulting CP for CS.∆ is 94.8%. Resampling-based variance is
more reliable.

RC.∆ performs the second best.

RC is equivalent to the naive analysis, as expected.
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Assumptions Revisit
Assumption 1-4 are standard assumptions for causal inference.

Assumption 5:
P(Ā|Z̄ , X̄ ) =

∏K
k=0 P{A(k)|, Ā(k − 1),Z (k),X (k)}.

It means that the current treatment depends on the previous
treatments and current confounders.

As a restriction on the generally true statement
P(Ā|Z̄ , X̄ ) =

∏K
k=0 P{A(k)|, Ā(k − 1), Z̄ (k), X̄ (k)}, this

assumption is often violated.

However, this Markov-type assumption is often reasonable, when
the previous confounders have no effects on the current treatment
assignment, given previous treatments and current confounders.
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Summary of Proposed Methods
There is an increasing but still scarce literature concerning causal
inference with measurement error.

To adjust for measurement error effects on IPTW estimation, we
propose six methods: RC, SIMEX1, SIMEX2, CS.∆, RC.∆ and
SIMEX2.∆.

I They are straightforward and easy to implement.
I Ignoring measurement error effects produce biased results.
I SIMEX-based methods are more computation intensive.
I RC and naive analysis is equivalent.
I CS.∆ consistently estimate the causal parameters.
I RC.∆ performs the second best in simulation studies.
I Resampling-based variance estimates are preferred to the

invalid robust variance estimates.
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Extension

I Previously, we assume Σεk is known. This is applicable when
conducting sensitivity analysis.

I When Σεk is unknown, we can estimate it using additional
data sources: validation sample or repeated data.
Alternatively, we can use the empirical SIMEX developed by
Devanarayan and Stefanski (2002) when repeated
measurements are available.

I In the situations where the heteroscedastic measurement error
is unknown but repeated measurements are available, the
empirical SIMEX is still applicable.



24/27

Acknowledgements
Di Shu was partially supported by the Canadian Institutes of
Health Research (CIHR) Drug Safety and Effectiveness Network
grant TD3-137716 through the scholarship from the CAnadian
Network for Advanced Interdisciplinary Methods for comparative
effectiveness research (CAN-AIM) team.

This research was supported by the Natural Sciences and
Engineering Research Council of Canada.



25/27

Some References
Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C.
M. (2006). Measurement Error in Nonlinear Models: A Modern
Perspective, CRC press.

Cook, J. R. and Stefanski, L. A. (1994). Simulation-extrapolation
estimation in parametric measurement error models. Journal of the
American Statistical Association, 89, 1314-1328.

Devanarayan, V. and Stefanski, L. A. (2002). Empirical simulation
extrapolation for measurement error models with replicate
measurements. Statistics & Probability Letters 59, 219-225.

Efron, B. (1982). The Jackknife, the Bootstrap and Other
Resampling Plans, Philadelphia: Society for industrial and applied
mathematics, Vol. 38.



26/27

Some References
Huber, P. J. (1967). The behavior of maximum likelihood
estimates under nonstandard conditions. Proceedings of the fifth
Berkeley symposium on mathematical statistics and probability, 1,
221-233.

Prentice, R. L. (1982). Covariate measurement errors and
parameter estimation in a failure time regression model.
Biometrika, 69, 331-342.

Robins, J. M., Hernán, M. A., and Brumback, B. (2000). Marginal
structural models and causal inference in epidemiology.
Epidemiology, 11, 550-560.

Stefanski, L. A. and Carroll. R. J. (1987). Conditional scores and
optimal scores in generalized linear measurement error models.
Biometrika, 74, 703-716.



Thank you for listening!

27/27


