Towards multiscale modeling of incommensurate 2D van der Waals heterostructures

P. Cazeaux, E. Cancès, M. Luskin

pcazeaux@umn.edu School of Mathematics, University of Minnesota

September 1 2016

Cornocupia of 2D materials

Graphene

Semimetal

- Dirac cone: linear dispersion
- Inversion symmetry
- Extraordinary properties (mechanical strength, etc.)

Hexagonal Boron Nitride (hBN)

Insulator

- Broken inversion symmetry
- Large band gap, 5eV
- Stability
- Used to encapsulate graphene

And also: transition metal dichalcogenides MX₂, phosphorene, etc.

Heterostructures and incommensurability

- In general, the crystal lattices of the layers do not match.
- No more Bloch theorem!
- Traditionally, construction of supercells:
 - Possible for some magic angles for twisted bilayers;
 - Size increases quickly, very expensive calculations.

Multiscale hierarchy of models

Overview

1. Perturbation approach.

2. Incommensurate systems and noncommutative algebras.

3. 1D Toy Model

Perturbation approach

P. Cazeaux, E. Cancès, D. Massatt, M. Luskin

Perturbation calculation for the density matrix

- Practical example: h-BN monolayer perturbed by the the potential of another h-BN monolayer.
- Two ingredients:

 $\rightsquigarrow\,$ 5-bands Wannier orbital model

- 3D electric potential V computed from monolayer DFT calculations,

General tight-binding framework and notations

• Orthonormal basis of localized Wannier orbitals on a crystal lattice R:

$$(\chi_{\mu,R})_{\substack{1 \leq \mu \leq N_b \\ R \in \mathcal{R}}} \quad \text{where} \quad \chi_{\mu,R}(x) = \chi_{\mu}(x-R)$$

- $R \in \mathcal{R}$ indexes the lattice cell, μ the basis element within each cell.
- N_b basis elements per cell.
- ▶ Unperturbed hamiltonian H₀:
 - \rightsquigarrow Represented by a matrix *h*, provided by the TB model:

$$\left[h_{\mu,\mu'}^{R,R'}\right] = \langle \chi_{\mu,R} | H_0 | \chi_{\mu',R'} \rangle.$$

→ Invariant by lattice translations:

$$\left[h_{\mu,\mu'}^{R,R'}\right] = \mathfrak{h}_{\mu,\mu'}(R-R').$$

Perturbing potential V:

 \rightsquigarrow represented by an operator v in the TB model:

$$\left[\mathbf{v}_{\mu,\mu'}^{\mathbf{R},\mathbf{R}'}\right] = \left\langle \chi_{\mu,\mathbf{R}} | \mathbf{V} | \chi_{\mu',\mathbf{R}'} \right\rangle.$$

Density matrix perturbation

→ We investigate the perturbation of the **electronic density matrix**:

$$\begin{cases} \gamma_0 = 1_{(-\infty,\varepsilon_F]}(H_0), \\ \gamma_V = 1_{(-\infty,\varepsilon_F]}(H_0 + V) \end{cases}$$

- H_0 : Hamiltonian of the unperturbed layer, \mathcal{R} -periodic, ε_F : Fermi level,
- V: perturbing potential, $\widetilde{\mathcal{R}}$ -periodic. Weak Van der Waals forces between the layers \implies use a perturbation approach.
- In the Wannier basis, the density matrix coefficients write:

$$[D(V)]_{\mu,\mu'}^{R,R'} = \langle \chi_{\mu,R} | \gamma_V | \chi_{\mu',R'} \rangle.$$

 \rightsquigarrow We seek a perturbative expansion in the potential V:

$$D(\mathbf{V}) \approx D_0 + D_1 + \mathcal{O}(\|\mathbf{V}\|^2).$$

Note that the periodic lattices ${\mathcal R}$ and $\widetilde{{\mathcal R}}$ can be incommensurate!

Discrete Floquet-Bloch transform

The discrete Bloch transform writes for $u \in \ell^2(\mathcal{R}, \mathbb{C}^m)$:

For
$$q \in \Gamma^*$$
, $\check{u}(q) = \sum_{R \in \mathcal{R}} u(R) e^{-iq \cdot R}$.

- Γ* is the Brillouin zone.
- Bloch theorem ⇒ the Hamiltonian and the (unperturbed) density matrix are diagonalized by the Bloch transform:

$$\widetilde{(hu)}(q) = \left(\sum_{n=1}^{N_b} \varepsilon_{n,q} C_{n,q} C_{n,q}^*\right) \widecheck{u}(q), \quad \widetilde{(D_0 u)}(q) = \left(\sum_{n=1}^{N_f} C_{n,q} C_{n,q}^*\right) \widecheck{u}(q),$$

- \rightsquigarrow N_b is the number of orbitals per cell,
- $\rightsquigarrow~N_f$ the number of occupied orbitals per cell,
- $\rightsquigarrow \varepsilon_{n,q}$ and $C_{n,q}$ are the Bloch eigenvalues and eigenvectors of the Hamiltonian matrix.

Main formula

The first-order perturbation of the density matrix is given by:

$$(D_1)_{R,R'} = -\sum_{\widetilde{K}\in\widetilde{R}^*} \oint_{\Gamma^*} \mathrm{d}q \Big(\widetilde{D_1}\Big)_{\widetilde{K}}(q) e^{iq\cdot R - i(q-\widetilde{K})\cdot R'} + \mathrm{h.c.}$$

where Γ^* is the Brillouin zone and $\widetilde{\mathcal{R}^*}$ the reciprocal lattice of $\widetilde{\mathcal{R}}$,

$$\begin{split} \left(\begin{array}{c} \left(\widetilde{D_{1}} \right)_{\widetilde{K}}(q) = \sum_{n \leq N < n'} \left(\frac{C_{n,q}^{*} \widetilde{W}_{\widetilde{K}}(q) C_{n',q-\widetilde{K}}}{\varepsilon_{n',q-\widetilde{K}} - \varepsilon_{n,q}} \right) C_{n,q} C_{n',q-\widetilde{K}}^{*}, \\ \widetilde{W}_{\widetilde{K}}(q) = \sum_{R \in \mathcal{R}} W_{\widetilde{K}}(R) e^{-iq \cdot R}, \quad \text{and} \\ \left(W_{\widetilde{K}} \right)_{\mu,\mu'}(R) = \frac{1}{|\widetilde{\Gamma}^{*}|^{1/2}} \int_{\mathbb{R}^{3}} \chi_{\mu}^{*}(r-R) \chi_{\mu'}(r) \widehat{V}_{\widetilde{K}}(z) e^{i\widetilde{K} \cdot r} \mathrm{d}r. \end{split}$$

- Main assumption: unperturbed layer is an insulator (band gap).
- **Rapid decay** of $W_{\widetilde{K}}(R)$ due to basis localization \rightsquigarrow few terms.

Paul Cazeaux (UofM)

Physical understanding

• Each (x, y) Fourier mode $\widehat{V}_{\widetilde{K}}(z)$ of the potential leads to scattering of the Bloch modes:

- → Commensurate case: finite scattering (folding of the Brillouin zone),
- → Incommensurate case: each point of the Brillouin zone is scattered to an infinite number of other modes.

Numerical validation: k-sampling and convergence

- Uniform Monkhorst–Pack grid used for numerical integration over the Brillouin zone.
- Exponentially fast convergence due to smoothness of the Wannier functions.

Comparison between the convergence for the Wannier function basis (in blue) and for a Gaussian LCAO basis using analytic integrals (in green).

Calculations in the incommensurate case

- The perturbation formula allows us to visualize the electronic density perturbation for arbitrary angles.
- ▶ Example: h-BN layer perturbed by h-BN potential with a 8° twist:

 \rightsquigarrow Modulations of the electron density perturbation induced by a Moire pattern.

Incommensurate systems and noncommutative algebras. Towards electronic transport

P. Cazeaux, E. Cancès, M. Luskin

Incommensurate bilayer systems

• Two layers: incommensurate lattices \mathcal{L}_1 , \mathcal{L}_2 .

Incommensurate rotated hexagonal bilayer, $\theta = 6^{\circ}$.

Space of configurations

• Sites of \mathcal{R}_1 :

- Other sites of layer \mathcal{R}_1 are known,
- Other sites of layer \mathcal{R}_2 are given by

$$\boldsymbol{\gamma}_2 \in \boldsymbol{\Gamma}_2 = \mathbb{R}^2/\mathcal{R}_2$$

Sites of \mathcal{R}_2 : local configuration parameterized by

 $\boldsymbol{\gamma}_1 \in \boldsymbol{\Gamma}_1 = \mathbb{R}^2 / \mathcal{R}_1.$

- Each possible configuration corresponds to a point of the disjoint union

 $X \equiv \Gamma_2 \sqcup \Gamma_1.$

 \blacktriangleright For each possible configuration, discrete set of hopping vectors towards 0:

Γ(*X*).

Parameterization of bilayer systems

- Natural C-* algebra formulation [Belissard, Shulz-Baldes, Prodan,...]
- One can write a block decomposition of functions $f \in C^*(\Gamma(X), B)$ as:

$$f = \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix}$$

Each block corresponds to a set of possible hoppings:

$$\begin{split} f_{11}: \quad \vec{\Gamma}_{11} &= \Gamma_2 \times \mathcal{R}_1 \to \mathbb{C}, \\ f_{12}: \quad \vec{\Gamma}_{12} &= \mathbf{R}^2 \to \mathbb{C}, \\ f_{21}: \quad \vec{\Gamma}_{21} &= \mathbf{R}^2 \to \mathbb{C}, \\ f_{22}: \quad \vec{\Gamma}_{22} &= \Gamma_1 \times \mathcal{R}_2 \to \mathbb{C}. \end{split}$$

- Sum, product rules including magnetic fields.
- Operator representation.

Ergodicity and trace

Suppose now that the lattices are incommensurate:

 $\mathcal{R}_1 \cap \mathcal{R}_2 = \mathbf{0}.$

→ Equidistribution theorem for shifts under groupoid translations.

Proposition

Let \mathbb{P} be the probability measure on X with uniform density $(|\Gamma_1| + |\Gamma_2|)^{-1} d\gamma$ on both Γ_1 and Γ_2 . Then

- \mathbb{P} is invariant and ergodic under the action of the groupoid $\Gamma(X)$,
- + $\mathcal{T}:=\mathcal{T}_{\mathbb{P}}$ is uniquely defined as a trace per unit volume in the sense that

$$\mathcal{T}(f) = \lim_{R \to \infty} \frac{1}{\# \left(B_R \cap \mathcal{L}^{\omega} \right)} \mathrm{Tr} \left(\pi_{\omega}(f) |_{B_R} \right),$$

where B_R is the ball of radius R centered at **0**.

• The trace is computed by the formula:

$$\mathcal{T}(f) = \frac{1}{|\Gamma_1| + |\Gamma_2|} \left(\int_{\Gamma_2} f_{11}(\boldsymbol{\gamma}_2, \boldsymbol{0}) d\boldsymbol{\gamma}_2 + \int_{\Gamma_1} f_{22}(\boldsymbol{\gamma}_1, \boldsymbol{0}) d\boldsymbol{\gamma}_1 \right).$$

A reference example: the Hofstadter butterfly

[Hofstadter 1976, Energy levels and wave functions of Bloch electrons in rational and

irrational magnetic fields]

Incommensurability between magnetic flux and lattice constant.

Square lattice,

Single band,

Peierls substitution.

Harper tight-binding model,

A one-dimensional bilayer toy model

Idea: two atomic chains with different lattice constants.

Geometric normalization:

$$\ell_1\ell_2=1.$$

Model Hamiltonian:

- Intra-chain interactions: nearest neighbor hopping with parameter 1,
- Distance-dependent inter-chains interactions:

$$t_{mn} = W e^{-\frac{1}{2} \left(\frac{X_m - X_n}{\sigma}\right)^2}.$$

A one-dimensional bilayer toy model

Idea: two atomic chains with different lattice constants.

Geometric normalization:

$$\ell_1\ell_2=1.$$

Model Hamiltonian:

- Intra-chain interactions: nearest neighbor hopping with parameter 1,
- Distance-dependent inter-chains interactions:

$$t_{mn} = W e^{-\frac{1}{2} \left(\frac{X_m - X_n}{\sigma}\right)^2}.$$

A one-dimensional bilayer toy model

Idea: two atomic chains with different lattice constants.

Geometric normalization:

$$\ell_1\ell_2=1.$$

Model Hamiltonian:

- Intra-chain interactions: nearest neighbor hopping with parameter 1,
- Distance-dependent inter-chains interactions:

$$t_{mn} = W e^{-\frac{1}{2} \left(\frac{X_m - X_n}{\sigma}\right)^2}.$$

Density of States

Technique: Periodic approximants and Kernel Polynomial Method.

Paul Cazeaux (UofM)

Electronic transport: a phenomenological model

• Effective quantum Boltzman equation [Schulz-Baldes and Belissard, 1994]:

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \mathcal{L}_{H_{\mathsf{E}}}(\rho) = -\frac{1-\kappa^*}{\tau}(\rho), \quad \mathcal{L}_{H}(\cdot) = i/\hbar[H, \cdot].$$

Noncommutative Kubo formula (Relaxation Time Approximation):

$$\sigma_{kl} = \left(\frac{e}{\hbar}\right)^2 \mathcal{T}\left(i[X_k, H] * (1/\tau_{rel} + \mathcal{L}_H)^{-1} i[X_l, f_{\beta, \mu}(H)]\right).$$

Electronic transport: a phenomenological model

• Effective quantum Boltzman equation [Schulz-Baldes and Belissard, 1994]:

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} + \mathcal{L}_{H_{\mathsf{E}}}(\rho) = -\frac{1-\kappa^*}{\tau}(\rho), \quad \mathcal{L}_{H}(\cdot) = i/\hbar[H, \cdot].$$

Noncommutative Kubo formula (Relaxation Time Approximation):

$$\sigma_{kl} = \left(\frac{e}{\hbar}\right)^2 \mathcal{T}\left(i[X_k, H] * (1/\tau_{rel} + \mathcal{L}_H)^{-1} i[X_l, f_{\beta, \mu}(H)]\right).$$

Current-current correlation function

$$\int \int_{\mathbf{R}^2} f(E)g(E') \mathrm{d}m_{kl}(E,E') = \mathcal{T}\left(f(E)i[X_i,H]g(E)i[X_j,H]\right).$$

 \rightsquigarrow Computation of the conductivity for any $(\beta, \mu, \tau_{\it rel})$:

$$\sigma_{kl} = \left(\frac{e}{\hbar}\right)^2 \int \int_{\mathbf{R}^2} \frac{f_{\beta,\mu}(E') - f_{\beta,\mu}(E)}{E - E'} \frac{\mathrm{d}m_{kl}(E,E')}{1/\tau_{rel} - i/\hbar(E - E')}.$$

2D Kernel Polynomial Method.

Conclusion and perspectives

Perturbation methods:

- An appropriate first-order approach for heterostructures.
- Need for higher order perturbation to compute the linear response.

C*-algebras:

- A mathematical tool appropriate for describing observables in disordered / incommensurate materials.
- A lot of work to do to implement correctly the existing formulas, e.g.
 - Contour integrals,
 - Chebyshev polynomials,
 - Lanczos recursion chains.

Atomic relaxation and conduction

 \rightsquigarrow how accurate are the tight-binding coefficients in this case?

Thank you for your attention!