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WHY CARTESIAN DECOMPOSITIONS?

Standard reductions in permutation group theory:

1. If G < SymQ is intransitive, then G < G x - .- x G** (the
Q; are the G-orbits).

2. If G < SymQ is imprimitive, then G < (GA)A ! Sy (Where
A is a block).
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WHY CARTESIAN DECOMPOSITIONS?

Standard reductions in permutation group theory:

1. If G < SymQ is intransitive, then G < G x - .- x G** (the
Q; are the G-orbits).

2. If G < SymQ is imprimitive, then G < (GA)A ! Sy (Where
A is a block).

There may be a further reduction if G < 2 is primitive and
Q = I'* (product imprimitive).
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WREATH PRODUCT IN PRODUCT ACTION

Suppose that  is a set and 2 = I'* (cartesian product).
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WREATH PRODUCT IN PRODUCT ACTION

Suppose that  is a set and 2 = I'* (cartesian product).
W = SymI'! S, has a faithful action (the product action) on §2:

(717 <o 773)(g17 - 805 7T) = (/ylﬂ_]glﬂ‘_17 cee 77€7r—1g£7r_1)'
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(717 <o 773)(g17 - 805 7T) = (/ylﬂ_]glﬂ‘_17 cee 77€7r—1g£7r_1)'

Thus W < Sym ) (maximal subgroup if €2 is finite and |I'| > 5).
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WREATH PRODUCT IN PRODUCT ACTION

Suppose that  is a set and 2 = I'* (cartesian product).
W = SymI'! S, has a faithful action (the product action) on §2:

(717 e 7’}’2)((?17 e 80 ﬂ-) = (Vlﬂ—]glﬂ—17 s 77€7r—1g£7r_1)'
Thus W < Sym ) (maximal subgroup if €2 is finite and |I'| > 5).

The inclusion problem: Given a group G < Sym (2, decide if
G <SymI'!Sy (if SymI: S, is an overgroup of G).
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WREATH PRODUCTS IN PRODUCT ACTION

W is the full stabiliser of a combinatorial structure: a cartesian
decomposition.



WREATH PRODUCTS IN PRODUCT ACTION

W is the full stabiliser of a combinatorial structure: a cartesian

decomposition.
Recall Q = I'Y. For v € T, define

51’,7:{(’717"'7'7@) GQ”%:V}

Define
Fi = {5i,’y ‘ v e F}'
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WREATH PRODUCTS IN PRODUCT ACTION

W is the full stabiliser of a combinatorial structure: a cartesian

decomposition.
Recall Q = I'Y. For v € T, define

Siy ={(v1,--,7) €Q |7 =7}

Define
Fi = {5i,’y ‘ v e F}'

Then we obtain the partitions I', ..., I'; of 2 which satisfy
1. || = |T';| (homogeneous);
2. |01n---ndy =1forall§; € I'y,..., 5 € I'y (intersection

roperty).
property) UF MG



THE DEFINITION OF CARTESIAN DECOMPOSITIONS

Definition

Qisasetand £ = {I'y,..., I/} is a set of partitions of Q2 such

that 2. holds. Then £ is said to be a cartesian decomposition of
Q.

If £ satisfies 1., then £ is said to be homogeneous.
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THE DEFINITION OF CARTESIAN DECOMPOSITIONS

Definition
Qisasetand £ = {I'y,..., I/} is a set of partitions of Q2 such
that 2. holds. Then £ is said to be a cartesian decomposition of
Q.
If £ satisfies 1., then £ is said to be homogeneous.
Themap ¥ :I'y x - xI'p = Q

(M) —w where {w}=mnN---Ny

is a bijection. Thus we may identify Q with I'y x --- x I';.
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Wreath products W = Sym T S, in product action are full
stabilisers of homogeneous cartesian decompositions.



THE DEFINITION OF CARTESIAN DECOMPOSITIONS

Definition

Qisasetand £ = {I'y,..., I/} is a set of partitions of Q2 such
that 2. holds. Then £ is said to be a cartesian decomposition of
Q.

If £ satisfies 1., then £ is said to be homogeneous.

Themap ¥ :I'y x - xI'p = Q
(M) —w where {w}=mnN---Ny
is a bijection. Thus we may identify Q with I'y x --- x I';.

Theorem

Wreath products W = Sym T S, in product action are full
stabilisers of homogeneous cartesian decompositions.

Laci Kovécs ('89): system of product imprimitivity.



EXAMPLE: NORMAL (NATURAL) INCLUSIONS

Assume that M is a transitive minimal normal subgroup of G.

UFmMG



EXAMPLE: NORMAL (NATURAL) INCLUSIONS

Assume that M is a transitive minimal normal subgroup of G.

Suppose that M = M; x --- x M, such that
1. {My,...,M,}is a G,-conjugacy class;
2. M, = (M, NMjp) X - x (M, NMy).

Setting I = [M; : M,, N M;] (right coset space) we can embed
G <SymIS,.
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EXAMPLE: NORMAL (NATURAL) INCLUSIONS

Assume that M is a transitive minimal normal subgroup of G.

Suppose that M = M; x --- x M, such that
1. {My,...,M,}is a G,-conjugacy class;
2. M, = (M, NMjp) X - x (M, NMy).

Setting I = [M; : M,, N M;] (right coset space) we can embed
G <SymIS,.

KZ'ZM1><~-'><M1'_1X(MwﬁMi)XMi_;,_lX‘-'XMg.
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CARTESIAN FACTORISATIONS

Lemma
Suppose that M <1 G < SymT 1 Sy. Then M < B = (SymT)f,

trmin
and so M stabilises every partition T';.
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CARTESIAN FACTORISATIONS

Lemma
Suppose that M <1 G < SymT 1 Sy. Then M < B = (SymT)f,

trmin
and so M stabilises every partition T';.

Consider the permutation representations m; : B — Sym1I:
§=(81:---,80) = i

Fixw = (v,...,7) € I'"“.

M, is transitive on I', and let K; denote the stabiliser in M of ~
under ;.
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CARTESIAN FACTORISATIONS

Lemma
Suppose that M <1 G < SymT 1 Sy. Then M < B = (SymT)f,

trmin
and so M stabilises every partition T';.

Consider the permutation representations m; : B — Sym1I:
§=(81:---,80) = i

Fixw = (v,...,7) € I'"“.

M, is transitive on I', and let K; denote the stabiliser in M of ~
under ;.

Another way to look at the K;: choose d; , € I'; (w € d;,). Then
Ki = Ms, .- UFmMG



CARTESIAN FACTORISATIONS

The set {Kj, ..., Ky} of subgroups of M satisfies:

1.
[ Ki = M.; 1)
2.
K; (ﬂ Kj) =M foralli; )
J#
3. {Ki,...,K,} is invariant under conjugation by G;

4. homogeneous; thatis, [M : K;| = |I'| for all i.




CARTESIAN FACTORISATIONS

Definition

If Mis a group and K = {Kj, ..., K.} is a family of proper
subgroups of M such that (2) holds then K is said to be a
cartesian factorisation of M.
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CARTESIAN FACTORISATIONS

Definition

If Mis a group and K = {Kj, ..., K.} is a family of proper
subgroups of M such that (2) holds then K is said to be a
cartesian factorisation of M.

Theorem
Assuming M <1 G, the group G can embedded into a wreath

trmin

product SymI' Sy iff M admits a G,,-invariant homogeneous
cartesian factorisation that satisfies (1) and (2).
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GENERAL HYPOTHESIS

General hypothesis: Suppose that
1. Q =T¥ (not necessarily finite) with ¢ > 2;
W = SymI'! S, acting on €2 in product action;
7 : W — Sy is the natural projection;
G<W;

M is a transitive minimal normal subgroup of G;

ARSI

K ={Kj,...,K} is the corresponding cartesian
factorisation of M.

For instance: G is a finite primitive group of type PA, HC, TW,

CD; or quasiprimitive group of type Tw, CD.
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CARTESIAN FACTORISATIONS OF SIMPLE GROUPS

Theorem (Baddeley & Praeger 1998)
If M is a finite simple group and KC = {Kq, . .., Ky} is a cartesian
factorisation of M, then { < 3. Further,

1. if ¢ = 3, then M € {Sp(4a,2),PQ27(8,3),Sp(6,2)}.

2. if K is homogeneous, then { = 2 and
M e {Aé, M127 S;’)(4, 2d), PQT (8, 6])}
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INCLUSIONS OF GROUPS WITH NON-SIMPLE MINIMAL
NORMAL SUBGROUPS

Theorem
Suppose that M <1 G < SymI' Sy and M is transitive,

trmin
non-abelian finite simple. Then

1. £=2;

2. M € {As,M12, Sp(4,2%),PQT(8,9)};

3. M is the unique minimal normal subgroup of G, G < Aut(M),
and the action of M is known up to permutational equivalence.
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INTRANSITIVE INCLUSIONS

Theorem

Under the general hypothesis, suppose that T < M < G < W and
min trmin

that G is finite.

1. G can have at most two orbits in {1,...,¢}.
2. If Gr has two orbits then T € {Ag, M1, Sp(4,2%), PQ(8,9)}.

UFmMG
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that G is finite.

1. G can have at most two orbits in {1,...,¢}.
2. If Gr has two orbits then T € {Ag, M1, Sp(4,2%), PQ(8,9)}.

Suppose from now that Gr < Sy is transitive.
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INTRANSITIVE INCLUSIONS

Theorem

Under the general hypothesis, suppose that T < M < G < W and
min trmin

that G is finite.

1. G can have at most two orbits in {1,...,¢}.
2. If Gr has two orbits then T € {Ag, M1, Sp(4,2%), PQ(8,9)}.

Suppose from now that Gr < Sy is transitive.

Suppose the general hypothesis and that
M=Tyx- xTp=TF
where T is a simple group;
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INTRANSITIVE INCLUSIONS

Theorem

Under the general hypothesis, suppose that T < M < G < W and
min trmin

that G is finite.

1. G can have at most two orbits in {1,...,¢}.
2. If Gr has two orbits then T € {Ag, M1, Sp(4,2%), PQ(8,9)}.

Suppose from now that Gr < Sy is transitive.

Suppose the general hypothesis and that
M=Tyx- xTp=TF

where T is a simple group;

Then the cartesian factorisation K = {Kj, ..., Ky} is a single
UFmMG
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TRANSITIVE INCLUSIONS

Let 0; : M — T; denote the coordinate projection.

Lemma (Generalisation of Scott)

If Kjo; = T then K; = X x Cg;(X) where X = T is a diagonal
subgroup that “covers” Tj.
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TRANSITIVE INCLUSIONS

Let 0; : M — T; denote the coordinate projection.

Lemma (Generalisation of Scott)

If Kjo; = T then K; = X x Cg;(X) where X = T is a diagonal
subgroup that “covers” Tj.

For instance M = T® and

Ki = A; xByx{(t,tas) |t € T3} x T5 x Tg;
Ki = Ty xT2xAszx By x{(t,tas) |t € Ts};
K; = {(t,tal)|T€T1}><T3><T4><A5><B6

where A;, B; < T; and «; : T; — Tjy1 are isomorphisms.

UFmMG



TRANSITIVE INCLUSIONS

Let 0; : M — T; denote the coordinate projection.

Lemma (Generalisation of Scott)
If Kjo; = T then K; = X x Cg;(X) where X = T is a diagonal
subgroup that “covers” Tj.

For instance M = T® and

Ki = A; xByx{(t,tas) |t € T3} x T5 x Tg;
Ki = Ty xT2xAszx By x{(t,tas) |t € Ts};
K; = {(t,tal)|T€T1}><T3><T4><A5><B6

where A;, B; < T; and «; : T; — Tjy1 are isomorphisms.

The diagonal subgroup X in the lemma is called a strip
involved in K;. X is a non-trivial strip if X # T;. UFEMmMG



UNIFORM AUTOMORPHISMS

A group automorphism « is said to be uniform if the map
¢+ ¢~ 1(ga) is surjective.
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UNIFORM AUTOMORPHISMS
A group automorphism « is said to be uniform if the map
¢+ g 1(ga) is surjective.

Lemma
Let Y be a group and let o € AutY. Then

YxY={(y,y) |lyeY}t-{(y,ya) |y €Y} 3)

if and only if o is uniform.
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UNIFORM AUTOMORPHISMS

A group automorphism « is said to be uniform if the map
¢+ ¢~ 1(ga) is surjective.

Lemma
Let Y be a group and let o € AutY. Then

YxY={(yy) lyeY} {yya) [y e Y} ®)
if and only if o is uniform.

Lemma (CFSG)

Finite non-solvable groups do not admit uniform (fixed-point-free)
automorphisms.
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STRIPS AND UNIFORM AUTOMORPHISMS

Theorem

Suppose that T does not admit a uniform automorphism and X, Y are
direct products of non-trivial strips in T¥. Then TF # XY.

The theorem applies if T is finite simple (Baddeley & Praeger
2003).
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STRIPS AND UNIFORM AUTOMORPHISMS

Theorem
Suppose that T does not admit a uniform automorphism and X, Y are
direct products of non-trivial strips in T¥. Then TF # XY.

The theorem applies if T is finite simple (Baddeley & Praeger
2003).

Theorem

If T does not admit a uniform automorphism then two non-trivial
strips X1 and X, involved in Kj, and K;, are disjoint.

UFmMG



STRIPS AND UNIFORM AUTOMORPHISMS

Theorem

Suppose that T does not admit a uniform automorphism and X, Y are
direct products of non-trivial strips in T¥. Then TF # XY.

The theorem applies if T is finite simple (Baddeley & Praeger
2003).

Theorem

If T does not admit a uniform automorphism then two non-trivial
strips X1 and X, involved in Kj, and K;, are disjoint.

There are infinite simple groups that admit uniform
automorphisms, for instance T = PSL(d, F) where F = F,,.
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THE PROJECTIONS OF THE CARTESIAN
FACTORISATIONS

Under the general hypothesis, let o; : M — T; denote the i-th
coordinate projection. Then

Fi={Kjo; |j=1,...,4, Kjo; # Ti}

is a cartesian factorisation for the simple group T;.
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THE PROJECTIONS OF THE CARTESIAN
FACTORISATIONS

Under the general hypothesis, let o; : M — T; denote the i-th
coordinate projection. Then

Fi={Kjo; |j=1,...,4, Kjo; # Ti}

is a cartesian factorisation for the simple group T;.

F; is independent of i.
If G is finite, then | F;| < 3.
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O’'NAN-SCOTT TYPE THEOREM

Theorem (6-Class Theorem)

If G is finite there are 6 different possibilities for the structure of K;.

CDs |F| = 0, the K; are subdirect subgroups of M = T*
(direct products of strips)

CD; |Fi| =1, the K; do not involve strips;
CD;s |Fi| =1, the K; involve strips;

CDy. |Fi| = 2, F; contain isomorphic subgroups, the K; do
not involve strips;

CD,.. |Fi| = 2, F; contain non-isomorphic subgroups, the K;
do not involve strips;

CDs |Fi| = 3, the K; do not involve strips.
UFmG



TRANSITIVE INCLUSIONS

Theorem

Assume that T = M < G < W are as above and that Gr is
transitive:

1. The inclusions of type CDy and CDg are normal.
2. Case CDg holds iff G is quasiprimitive of type CD.

3. In the cases of CD1g and CD,, T admits a factorisation
T = AB with isomorphic subgroups. If G is finite, then
T e {A67 MlZa SP(47 zd)’ PQ+ (87 q)}
4. In case of CD3, T admits a cartesian factorisation with 3
subgroups. In particular, T € {Sp(4a,2),PQ"(8,3),Sp(6,2)}.
5. G is not quasiprimitive of type SD.
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SPECIAL CASES: PSL(2,9)

Knowing the factorisations of T, we may obtain more detailed
information.

Theorem
Suppose that T < M < G < W =S8ymI'1Sypand T = PSL(2,9).

min  trmin
1. If g # 9, then the inclusion G < W is of type CD;, CDg or
CD274
2. Ifg=1 (mod 4) and g & {5,9,29}, then the inclusion G < W
is of type CDg or CD;.
3. Ifg=3 (mod 4) and g & {7,11,19} and the inclusion G < W

is of type CDy,, then G admits an inclusion G < Wy of type
CD;.
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AN APPLICATION IN GRAPH THEORY

Theorem (Li, Praeger, Sch, 2016)
Supposethat T 9 M < G < W =S8ymI'!S,. If & is a finite

min trmin
(G, 2)-arc-transitive graph on the vertex set T', then one of the

following must hold:
1. Tt = 6% M = Ag, and & is Sylvester’s Double Six Graph;
2. I'* = 1202, M = Sp(4,4), and & is a graph of valency 17;
3. the inclusion G < W is of type CDy.
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