Twisted Calabi-Yau and Artin-Schelter regular properties for locally finite graded algebras

Manuel L. Reyes

BIRS — 9/15/2016

Joint work with Daniel Rogalski
(1) Noncommutative polynomial algebras: two candidates

(2) Basics of twisted Calabi-Yau algebras

(3) Locally finite algebras

4 "Generalized AS regular" versus twisted CY algebras (5) Twisted CY algebras in dimensions 1 and 2

Noncommutative polynomial algebras

What kind of noncommutative graded algebras A deserve to be viewed as "noncommutative polynomials" ? ($k=$ an arbitrary field.)

Notes: (1) We allow $\operatorname{GK} \operatorname{dim}(A)=\infty$.
(2) Our graded algebras are all \mathbb{N}-graded: $A=\bigoplus_{n=0}^{\infty} A_{n}$.

Noncommutative polynomial algebras

What kind of noncommutative graded algebras A deserve to be viewed as "noncommutative polynomials"? ($k=$ an arbitrary field.)

Notes: (1) We allow $\operatorname{GK} \operatorname{dim}(A)=\infty$.
(2) Our graded algebras are all \mathbb{N}-graded: $A=\bigoplus_{n=0}^{\infty} A_{n}$.

Two candidates:

(1) Artin-Schelter regular algebras
(2) Graded twisted Calabi-Yau algebras

Noncommutative polynomial algebras

What kind of noncommutative graded algebras A deserve to be viewed as "noncommutative polynomials"? ($k=$ an arbitrary field.)

Notes: (1) We allow $\operatorname{GKdim}(A)=\infty$.
(2) Our graded algebras are all \mathbb{N}-graded: $A=\bigoplus_{n=0}^{\infty} A_{n}$.

Two candidates:

(1) Artin-Schelter regular algebras
(2) Graded twisted Calabi-Yau algebras

Q: How do these compare?

- Same if A is connected: $A_{0}=k$.
- Today's talk: What happens when A is not connected?

Non-connected algebras: an apology

Why should we care about non-connected algebras?
"Intrinsic" examples: Quivers algebras with relations $k Q / I$ have nontrivial idempotents. (And their associated derived categories can be useful.)
"Extrinsic" examples: Twisted group algebras (or smash products) constructed from A can contain idempotents, even if A does not.

While nontrivial idempotents make these much less "like polynomials," it's still useful to understand when they are "homologically nice."

(1) Noncommutative polynomial algebras: two candidates

(2) Basics of twisted Calabi-Yau algebras
(3) Locally finite algebras

4 "Generalized AS regular" versus twisted CY algebras

Preliminaries: the enveloping algebra

The enveloping algebra of A is $A^{e}=A \otimes A^{\mathrm{op}}$. A left/right A^{e}-module M is the same as a k-central (A, A)-bimodule:

$$
\left(a \otimes b^{\mathrm{op}}\right) \cdot m=a \cdot m \cdot b=m \cdot\left(b \otimes a^{\mathrm{op}}\right)
$$

Preliminaries: the enveloping algebra

The enveloping algebra of A is $A^{e}=A \otimes A^{\mathrm{op}}$. A left/right A^{e}-module M is the same as a k-central (A, A)-bimodule:

$$
\left(a \otimes b^{\mathrm{op}}\right) \cdot m=a \cdot m \cdot b=m \cdot\left(b \otimes a^{\mathrm{op}}\right)
$$

Provides a convenient way to discuss homological algebra for bimodules:

- Projective/injective bimodules $\rightsquigarrow>$ Projective/injective A^{e}-modules
- Resolutions of (A, A)-bimodules $\rightsquigarrow \leadsto$ resolutions of A^{e}-modules

Preliminaries: the enveloping algebra

The enveloping algebra of A is $A^{e}=A \otimes A^{\mathrm{op}}$. A left/right A^{e}-module M is the same as a k-central (A, A)-bimodule:

$$
\left(a \otimes b^{\mathrm{op}}\right) \cdot m=a \cdot m \cdot b=m \cdot\left(b \otimes a^{\mathrm{op}}\right)
$$

Provides a convenient way to discuss homological algebra for bimodules:

- Projective/injective bimodules $\rightsquigarrow>$ Projective/injective A^{e}-modules
- Resolutions of (A, A)-bimodules $\leadsto \leadsto$ resolutions of A^{e}-modules

Def: A is homologically smooth if A has a projective resolution in A^{e}-Mod of finite length whose terms are finitely generated over A^{e}. (A is a perfect A^{e}-module.)

This implies finite global dimension.

Calabi-Yau and twisted CY algebras

Definition

(i) A is twisted Calabi-Yau of dimension d if it is homologically smooth and there is an invertible (A, A)-bimodule U such that, as A^{e}-modules,

$$
\operatorname{Ext}_{A_{e}}^{i}\left(A, A^{e}\right) \cong \begin{cases}0 & \text { if } i \neq d, \\ U & \text { if } i=d .\end{cases}
$$

Calabi-Yau and twisted CY algebras

Definition

(i) A is twisted Calabi-Yau of dimension d if it is homologically smooth and there is an invertible (A, A)-bimodule U such that, as A^{e}-modules,

$$
\operatorname{Ext}_{A_{e}}^{i}\left(A, A^{e}\right) \cong \begin{cases}0 & \text { if } i \neq d, \\ U & \text { if } i=d .\end{cases}
$$

(ii) [Ginzburg] A is Calabi-Yau of dimension d if it twisted CY of dimension d with $U=A$.

The CY condition is "self-duality" of sorts: if $P_{\bullet} \rightarrow A \rightarrow 0$ is a projective A^{e}-resolution, then $\operatorname{Hom}_{A^{e}}\left(P_{\bullet}, A^{e}\right)$ is also a resolution of A.

Commutative examples of Calabi-Yau algebras

(1) Calabi-Yau varieties: Coordinate rings of smooth affine Calabi-Yau varieties are CY algebras [Ginzburg]

Commutative examples of Calabi-Yau algebras

(1) Calabi-Yau varieties: Coordinate rings of smooth affine Calabi-Yau varieties are CY algebras [Ginzburg]

We can also consider graded Calabi-Yau algebras: take the projective A^{e}-resolution and Ext isomorphism to be in the graded category.
(2) Graded commutative examples: just direct sums of $k\left[x_{1}, \ldots, x_{n}\right]$.

We emphasize (2): So graded Calabi-Yau algebras are "noncommutative polynomial rings."

But so are the Artin-Schelter regular algebras. How do these compare?

Artin-Schelter regular algebras

The more standard notion of "noncommutative polynomial algebra."
Def: A connected graded algebra A is Artin-Schelter (AS) regular of dimension d if A has global dimension $d<\infty$ and

$$
\operatorname{Ext}_{A}^{i}(k, A) \cong \begin{cases}0, & i \neq d \\ k(\ell), & i=d\end{cases}
$$

in $\operatorname{Mod}-A$, and similarly for $\operatorname{Ext}_{A^{\text {op }}}^{i}(k, A)$. (We allow $\operatorname{GKdim}(A)=\infty$.)
Many examples already discussed at this conference! How does this compare with the CY condition?

Artin-Schelter regular algebras

The more standard notion of "noncommutative polynomial algebra."
Def: A connected graded algebra A is Artin-Schelter (AS) regular of dimension d if A has global dimension $d<\infty$ and

$$
\operatorname{Ext}_{A}^{i}(k, A) \cong \begin{cases}0, & i \neq d \\ k(\ell), & i=d\end{cases}
$$

in Mod- A, and similarly for $\operatorname{Ext}_{A^{\text {op }}}^{i}(k, A)$. (We allow $\operatorname{GKdim}(A)=\infty$.)
Many examples already discussed at this conference! How does this compare with the CY condition?

Theorem [Yekutieli \& Zhang], [R., Rogalski, Zhang]: A connected graded algebra is twisted CY-d if and only if it is AS regular of dimension d.

So twisted CY yields the expected "noncommutative polynomial algebras."

Algebras from quivers and potentials

Quiver algebras: Quiver algebras with (twisted) superpotentials tend to give rise to (twisted) CY algebras.

Ex: [Bocklandt] For $Q=\overbrace{a_{3}, a_{4}}^{a_{1}, a_{2}}$ and the superpotential $W=\sum \circlearrowleft\left(a_{1} a_{3} a_{2} a_{4}+a_{1} a_{4} a_{2} a_{3}\right)$, the Jacobi algebra $B=\mathbb{C} Q /\left(\partial_{a} W\right)$ is Calabi-Yau of dimension 3.

Algebras from quivers and potentials

Quiver algebras: Quiver algebras with (twisted) superpotentials tend to give rise to (twisted) CY algebras.

Ex: [Bocklandt] For $Q=\overbrace{a_{3}, a_{4}}^{a_{1}, a_{2}} 0$ and the superpotential
$W=\sum \circlearrowleft\left(a_{1} a_{3} a_{2} a_{4}+a_{1} a_{4} a_{2} a_{3}\right)$, the Jacobi algebra $B=\mathbb{C} Q /\left(\partial_{a} W\right)$ is Calabi-Yau of dimension 3. Relations:

$$
\begin{array}{lll}
\partial_{a_{1}} W=0 & \rightsquigarrow & a_{3} a_{2} a_{4}=-a_{4} a_{2} a_{3} \\
\partial_{a_{2}} W=0 & \rightsquigarrow & a_{4} a_{1} a_{3}=-a_{2} a_{3} a_{1} \\
\partial_{a_{3}} W=0 & \rightsquigarrow & a_{2} a_{4} a_{1}=-a_{1} a_{4} a_{2} \\
\partial_{a_{4}} W=0 & \rightsquigarrow & a_{1} a_{3} a_{2}=-a_{2} a_{3} a_{1}
\end{array}
$$

Algebras from quivers and potentials

Quiver algebras: Quiver algebras with (twisted) superpotentials tend to give rise to (twisted) CY algebras.

Ex: [Bocklandt] For $Q=\overbrace{a_{3}, a_{4}}^{a_{1}, a_{2}} 0$ and the superpotential
$W=\sum \circlearrowleft\left(a_{1} a_{3} a_{2} a_{4}+a_{1} a_{4} a_{2} a_{3}\right)$, the Jacobi algebra $B=\mathbb{C} Q /\left(\partial_{a} W\right)$ is Calabi-Yau of dimension 3. Relations:

$$
\begin{array}{lll}
\partial_{a_{1}} W=0 & \rightsquigarrow & a_{3} a_{2} a_{4}=-a_{4} a_{2} a_{3} \\
\partial_{a_{2}} W=0 & \rightsquigarrow & a_{4} a_{1} a_{3}=-a_{2} a_{3} a_{1} \\
\partial_{a_{3}} W=0 & \rightsquigarrow & a_{2} a_{4} a_{1}=-a_{1} a_{4} a_{2} \\
\partial_{a_{4}} W=0 & \rightsquigarrow & a_{1} a_{3} a_{2}=-a_{2} a_{3} a_{1}
\end{array}
$$

Q: When is a superpotential "nice"? Hard in general, but answered for connected CY-3 algebras by [Mori \& Smith], [Mori \& Ueyama].

Constructions preserving twisted CY property

Direct and tensor products:

Theorem

Thm: Let A_{1} and A_{2} be twisted Calabi-Yau algebras of dimension d_{1} and d_{2}, respectively.

- If $d_{1}=d_{2}=d$, then $A_{1} \times A_{2}$ is twisted CY of dimension d.
- $A_{1} \otimes A_{2}$ is twisted $C Y$ of dimension $d_{1}+d_{2}$.

Constructions preserving twisted CY property

Direct and tensor products:

Theorem

Thm: Let A_{1} and A_{2} be twisted Calabi-Yau algebras of dimension d_{1} and d_{2}, respectively.

- If $d_{1}=d_{2}=d$, then $A_{1} \times A_{2}$ is twisted $C Y$ of dimension d.
- $A_{1} \otimes A_{2}$ is twisted CY of dimension $d_{1}+d_{2}$.

Extension of scalars and Morita equivalence:

Theorem

Thm: Let A be twisted $C Y$ of dimension d.

- $A \otimes K$ is twisted CY-d for every field extension K / k.
- Every algebra Morita equivalent to A is twisted CY-d.

An example with U nontrivial

How do we find examples with $U \neq{ }^{1} A^{\mu}(I)$?
Ex: Set $B=k[x, y] \rtimes \mathbb{Z}_{2}$: twisted CY-2 with a Nakayama automorphism and $B_{0}=k e_{1} \oplus k e_{2}$ (here $\operatorname{char}(k) \neq 2$).

An example with U nontrivial

How do we find examples with $U \neq{ }^{1} A^{\mu}(I)$?
Ex: Set $B=k[x, y] \rtimes \mathbb{Z}_{2}$: twisted CY-2 with a Nakayama automorphism and $B_{0}=k e_{1} \oplus k e_{2}$ (here $\operatorname{char}(k) \neq 2$).
$\mathbb{M}_{2}(B)$ has $1=f_{1}+f_{2}+f_{3}+f_{4}$ for primitive idempotents

$$
f_{1}=\left(\begin{array}{cc}
e_{1} & 0 \\
0 & 0
\end{array}\right), f_{2}=\left(\begin{array}{cc}
e_{2} & 0 \\
0 & 0
\end{array}\right), f_{3}=\left(\begin{array}{cc}
0 & 0 \\
0 & e_{1}
\end{array}\right), f_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & e_{2}
\end{array}\right)
$$

Set $e=f_{1}+f_{2}+f_{3}$ (full idempotent), then $A=e \mathbb{M}_{2}(B) e$ is Morita equivalent to A and thus is twisted CY-2.

An example with U nontrivial

How do we find examples with $U \neq{ }^{1} A^{\mu}(I)$?
Ex: Set $B=k[x, y] \rtimes \mathbb{Z}_{2}$: twisted CY-2 with a Nakayama automorphism and $B_{0}=k e_{1} \oplus k e_{2}$ (here $\operatorname{char}(k) \neq 2$).
$\mathbb{M}_{2}(B)$ has $1=f_{1}+f_{2}+f_{3}+f_{4}$ for primitive idempotents

$$
f_{1}=\left(\begin{array}{cc}
e_{1} & 0 \\
0 & 0
\end{array}\right), f_{2}=\left(\begin{array}{cc}
e_{2} & 0 \\
0 & 0
\end{array}\right), f_{3}=\left(\begin{array}{cc}
0 & 0 \\
0 & e_{1}
\end{array}\right), f_{4}=\left(\begin{array}{ll}
0 & 0 \\
0 & e_{2}
\end{array}\right)
$$

Set $e=f_{1}+f_{2}+f_{3}$ (full idempotent), then $A=e \mathbb{M}_{2}(B) e$ is Morita equivalent to A and thus is twisted CY-2.

Have indecomposable decomposition as projective right modules

$$
A_{A} \cong P \oplus P \oplus Q \quad \text { but } \quad U_{A} \cong P \oplus Q \oplus Q
$$

So U_{A} not free $\Longrightarrow U \not ¥^{1} A^{\mu}(\ell)$.

(1) Noncommutative polynomial algebras: two candidates

(2) Basics of twisted Calabi-Yau algebras
(3) Locally finite algebras
(4) "Generalized AS regular" versus twisted CY algebras

Working with locally finite algebras

We work in the setting of locally finite algebras: $A=\bigoplus A_{n}$ with all $\operatorname{dim}_{k}\left(A_{n}\right)<\infty$. So $A_{0}=$ (arbitrary!) finite-dimensional algebra

Working with locally finite algebras

We work in the setting of locally finite algebras: $A=\bigoplus A_{n}$ with all $\operatorname{dim}_{k}\left(A_{n}\right)<\infty$. So $A_{0}=$ (arbitrary!) finite-dimensional algebra

The "good" choice for graded Nakayama's Lemma \& minimal graded projective resolutions (after Minamoto \& Mori):

Graded Jacobson radical: $J(A)=J\left(A_{0}\right)+A_{\geq 1}$.
We obtain a f.d. semisimple algebra $S=A / J(A)=A_{0} / J\left(A_{0}\right)$.
First problem: We'd like the f.d. algebra $B:=A_{0}$ to be "well behaved."

Working with locally finite algebras

We work in the setting of locally finite algebras: $A=\bigoplus A_{n}$ with all $\operatorname{dim}_{k}\left(A_{n}\right)<\infty$. So $A_{0}=$ (arbitrary!) finite-dimensional algebra

The "good" choice for graded Nakayama's Lemma \& minimal graded projective resolutions (after Minamoto \& Mori):

Graded Jacobson radical: $J(A)=J\left(A_{0}\right)+A_{\geq 1}$.
We obtain a f.d. semisimple algebra $S=A / J(A)=A_{0} / J\left(A_{0}\right)$.
First problem: We'd like the f.d. algebra $B:=A_{0}$ to be "well behaved."
Recall that twisted CY algebras must be homologically smooth.
Lemma: If A is homologically smooth, then so is A_{0}.

Graded homologically smooth algebras

Lemma: If A is homologically smooth, then so is $B=A_{0}$.
How should we think about f.d. homologically smooth algebras?
Fact: If B is a f.d. algebra, then TFAE:
(1) B is homologically smooth
(2) $\operatorname{pdim}\left(B^{e} B\right)<\infty$
(3) B^{e} has finite global dimension
(9) $B \otimes K$ has finite global dimension for every field extension K / k

Graded homologically smooth algebras

Lemma: If A is homologically smooth, then so is $B=A_{0}$. How should we think about f.d. homologically smooth algebras?

Fact: If B is a f.d. algebra, then TFAE:
(1) B is homologically smooth
(2) $\operatorname{pdim}\left(B^{e} B\right)<\infty$
(3) B^{e} has finite global dimension
(9) $B \otimes K$ has finite global dimension for every field extension K / K

Reminiscent of separable algebras S, defined by the equivalent conditions:
(1) S is projective as a left S^{e}-module
(2) S^{e} is semisimple
(3) $S \otimes K$ is semisimple for all field extensions K / k
(9) $S \cong \prod_{i=1}^{n} \mathbb{M}_{n_{i}}\left(D_{i}\right)$ with all $Z\left(D_{i}\right) / k$ separable

Graded homolgically smooth algebras

For passage between A-modules and A^{e}-modules, it's important that A have $S=A / J(A)=A_{0} / J\left(A_{0}\right)$ separable. One example:

Lemma

If A is locally finite with S separable, then $\operatorname{gl} \operatorname{dim}(A)$ is equal to

$$
\operatorname{pdim}\left({ }_{A} S\right)=\operatorname{pdim}\left(A^{e} A\right)=\operatorname{pdim}\left(S_{A}\right)
$$

Graded homolgically smooth algebras

For passage between A-modules and A^{e}-modules, it's important that A have $S=A / J(A)=A_{0} / J\left(A_{0}\right)$ separable. One example:

Lemma

If A is locally finite with S separable, then $\operatorname{gl} \operatorname{dim}(A)$ is equal to

$$
\operatorname{pdim}\left({ }_{A} S\right)=\operatorname{pdim}\left({ }_{A^{e}} A\right)=\operatorname{pdim}\left(S_{A}\right)
$$

Fortunately, this holds in our case. (Special thanks to MathOverflow!)

Theorem (Rickard)

If B is a finite-dimensional homologically smooth algebra, then $S=B / J(B)$ is separable.

In particular, A twisted $C Y \Longrightarrow S$ separable.

Dualities and graded socles

It's well known that twisted CY-d algebras satisfy Van den Bergh duality:

$$
\operatorname{Ext}_{A^{e}}^{i}(A, M) \cong \operatorname{Tor}_{d-i}^{A^{e}}\left(A, U \otimes_{A} M\right)
$$

for left A^{e}-modules M.

We can use this to deduce further dualities for "1-sided" modules...

Dualities and graded socles

It's well known that twisted CY-d algebras satisfy Van den Bergh duality:

$$
\operatorname{Ext}_{A^{e}}^{i}(A, M) \cong \operatorname{Tor}_{d-i}^{A^{e}}\left(A, U \otimes_{A} M\right)
$$

for left A^{e}-modules M.
We can use this to deduce further dualities for " 1 -sided" modules...
One important consequence allows us to "homologically compute" the socle of a module:

Proposition: For A locally finite twisted $C Y-d$ and ${ }_{A} M$ a graded module, there is an isomorphism of graded left S-modules

$$
\operatorname{Tor}_{d}^{A}(S, M) \cong U^{-1} \otimes_{A} \operatorname{soc}(M)
$$

Twisted CY algebras of dimension 0

Socle formula: $\operatorname{Tor}_{d}^{A}(S, M) \cong U^{-1} \otimes_{A} \operatorname{soc}(M)$

Taking the case $M=A$ yields:
Cor: If A is locally finite twisted $C Y-d$, if $d>1$ then $\operatorname{soc}(A)=0$.

Twisted CY algebras of dimension 0

Socle formula: $\operatorname{Tor}_{d}^{A}(S, M) \cong U^{-1} \otimes_{A} \operatorname{soc}(M)$

Taking the case $M=A$ yields:
Cor: If A is locally finite twisted CY- d, if $d>1$ then $\operatorname{soc}(A)=0$.

For the $d=0$ case we have:
Cor: For a (not necessarily graded) algebra A, TFAE:
(1) A is (twisted) CY-0
(2) A is twisted CY and is a finite-dimensional k-algebra
(3) A is a separable k-algebra.

(1) Noncommutative polynomial algebras: two candidates

(2) Basics of twisted Calabi-Yau algebras
(3) Locally finite algebras
(4) "Generalized AS regular" versus twisted CY algebras

Existing notions of generalized regularity

What should play the role of the AS regular property for non-connected algebras? There is precedent in the work of:

Martinez-Villa: $\mathrm{gl} \operatorname{dim}(A)=d$, the functors $\operatorname{Ext}_{A}^{d}(-, A)$ and $\mathrm{Ext}_{A^{\text {op }}}^{d}(-, A)$ interchange graded simple modules, and other $\operatorname{Ext}_{A}^{i}(S, A)=0=\operatorname{Ext}_{A^{\text {op }}}^{i}(T, A)$.

Minamoto \& Mori: $\operatorname{gl} \operatorname{dim}(A)=d$ and there is a bimodule isomorphism:

$$
\operatorname{Ext}_{A}^{i}\left(A_{0}, A\right) \cong \begin{cases}0, & i \neq d \\ \left(A_{0}^{*}\right)^{\sigma}(\ell), & i=d\end{cases}
$$

Note: The Ext condition can be written as $\operatorname{RHom}_{A}\left(A_{0}, A\right) \cong\left(A_{0}^{*}\right)^{\sigma}(\ell)[d]$.

Generalized regularity properties

For our purposes, we wish to allow a "twist" by a general invertible ${ }_{A} U_{A}$.

Definitions: Let A be a locally finite graded algebra of (graded) global dimension $d<\infty$.
(a) A is MV-regular if there is a bijection π from the iso-classes of graded simple left modules to the graded simple right modules with $\mathrm{RHom}_{A}(M, A) \cong \pi(M)[d]$ for all graded simple ${ }_{A} M$.
(b) A is MM-regular if $\mathrm{RHom}_{A}\left(A_{0}, A\right) \cong A_{0}^{*} \otimes_{A} U[d]$ as A^{e}-complexes for some invertible U.
(c) A is J-regular if $\operatorname{RHom}_{A}(S, A) \cong S \otimes_{A} U[d]$ as A^{e}-complexes for some invertible U, where $S=A / J(A)$.

Equivalence of twisted CY and AS regular properties

These properties are exactly what we need to characterize twisted CY algebras:

Theorem

Let A be a locally finite graded algebra, and set $S=A / J(A)$. Then TFAE:
(1) A is twisted Calabi-Yau of dimension d.
(2) A is MV-regular of dimension d and S is separable.
(3) A is $M M$-regular of dimension d and S is separable.
(3) A is J-regular of dimension d and S is separable.

So the twisted CY property (involving bimodules) can be verified using one of these AS regular properties (involving one-sided modules).

AS regular properties for quivers with relations

Q: Suppose $A=k Q / l$ is a graded quotient for a connected quiver Q. How do these regularity properties translate?

Here $S=A_{0}=k e_{1} \oplus \cdots \oplus k e_{n}$, with non-iso. simple modules $S_{i}=k e_{i}$.
Lemma: For such A, every invertible ${ }_{A} U_{A}$ is "boring": $U={ }^{1} A^{\mu}(\ell)$.
Such μ permutes the vertices $\{1, \ldots, n\}$; call this permutation μ also.

AS regular properties for quivers with relations

Q: Suppose $A=k Q / l$ is a graded quotient for a connected quiver Q. How do these regularity properties translate?

Here $S=A_{0}=k e_{1} \oplus \cdots \oplus k e_{n}$, with non-iso. simple modules $S_{i}=k e_{i}$.
Lemma: For such A, every invertible ${ }_{A} U_{A}$ is "boring": $U={ }^{1} A^{\mu}(\ell)$.
Such μ permutes the vertices $\{1, \ldots, n\}$; call this permutation μ also.

The regularity conditions (and equivalently, the twisted CY condition) amount to:

$$
\operatorname{Ext}_{A}^{i}\left(S_{j}, A\right) \cong \begin{cases}S_{\mu(j)}(\ell), & i=d \\ 0, & i \neq d\end{cases}
$$

for all the graded simple S_{j}, and similar condition as simple right modules.

(1) Noncommutative polynomial algebras: two candidates

(2) Basics of twisted Calabi-Yau algebras
(3) Locally finite algebras
(4) "Generalized AS regular" versus twisted CY algebras
(5) Twisted CY algebras in dimensions 1 and 2

The noetherian property for low-dimensional algebras

If A is twisted CY- d of finite GK dimension, then is A noetherian?

We can answer yes when $d \leq 2$.

The noetherian property for low-dimensional algebras

If A is twisted CY- d of finite GK dimension, then is A noetherian?

We can answer yes when $d \leq 2$.

How to show an algebra is noetherian? The following is essentially part of "Cohen-type" arguments to establish that a ring is (left) noetherian.

Lemma: A graded algebra A is left noetherian if (and only if) every graded left noetherian A-module is finitely presented.

The noetherian property for low-dimensional algebras

If A is twisted CY- d of finite GK dimension, then is A noetherian?

We can answer yes when $d \leq 2$.
How to show an algebra is noetherian? The following is essentially part of "Cohen-type" arguments to establish that a ring is (left) noetherian.

Lemma: A graded algebra A is left noetherian if (and only if) every graded left noetherian A-module is finitely presented.

Proof: Suppose A weren't left noetherian. "Zornify" to obtain left ideal I maximal w.r.t. not being finitely generated.

The noetherian property for low-dimensional algebras

If A is twisted CY- d of finite GK dimension, then is A noetherian?

We can answer yes when $d \leq 2$.
How to show an algebra is noetherian? The following is essentially part of "Cohen-type" arguments to establish that a ring is (left) noetherian.

Lemma: A graded algebra A is left noetherian if (and only if) every graded left noetherian A-module is finitely presented.

Proof: Suppose A weren't left noetherian. "Zornify" to obtain left ideal I maximal w.r.t. not being finitely generated. Then A / I is not finitely presented (Schanuel's Lemma).

The noetherian property for low-dimensional algebras

If A is twisted CY-d of finite GK dimension, then is A noetherian?

We can answer yes when $d \leq 2$.
How to show an algebra is noetherian? The following is essentially part of "Cohen-type" arguments to establish that a ring is (left) noetherian.

Lemma: A graded algebra A is left noetherian if (and only if) every graded left noetherian A-module is finitely presented.

Proof: Suppose A weren't left noetherian. "Zornify" to obtain left ideal I maximal w.r.t. not being finitely generated. Then A / I is not finitely presented (Schanuel's Lemma). But every $J \supsetneq I$ finitely generated implies A / I is noetherian, a contradiction.

The noetherian property

Original Goal: Show A left noetherian.
New Goal: Show noetherian A-modules are finitely presented.

The noetherian property

Original Goal: Show A left noetherian.
New Goal: Show noetherian A-modules are finitely presented.
But how? The "socle formula" $\operatorname{Tor}_{d}^{A}(S, M) \cong U^{-1} \otimes \operatorname{soc}(M)$ is handier than it might seem. .

Fact: If M has minimal resolution $\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$, then each P_{i} is f.g. (or zero) if and only if $\operatorname{Tor}_{i}^{A}(S, M)$ is f.d. (or zero).

The noetherian property

Original Goal: Show A left noetherian.
New Goal: Show noetherian A-modules are finitely presented.
But how? The "socle formula" $\operatorname{Tor}_{d}^{A}(S, M) \cong U^{-1} \otimes \operatorname{soc}(M)$ is handier than it might seem. . .

Fact: If M has minimal resolution $\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$, then each P_{i} is f.g. (or zero) if and only if $\operatorname{Tor}_{i}^{A}(S, M)$ is f.d. (or zero).

Cor: If A is twisted $C Y-d$ and ${ }_{A} M$ is graded noetherian, then the term P_{d} in the resolution above is finitely generated.

Proof: M is noetherian $\Rightarrow \operatorname{soc}(M)$ is f.d. $\Rightarrow \operatorname{Tor}_{d}^{A}(S, M)$ is f.d.

Twisted CY-1 algebras

This is already enough for algebras of dimension 1 :
Theorem: If A is locally finite twisted Calabi-Yau of dimension 1 , then A is noetherian.

Twisted CY-1 algebras

This is already enough for algebras of dimension 1 :
Theorem: If A is locally finite twisted Calabi-Yau of dimension 1 , then A is noetherian.

Proof: If M is noetherian with minimal resolution $0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow M$, we have P_{1} f.g. by the "socle argument." So M is finitely presented.

Twisted CY-1 algebras

This is already enough for algebras of dimension 1 :
Theorem: If A is locally finite twisted Calabi-Yau of dimension 1 , then A is noetherian.

Proof: If M is noetherian with minimal resolution $0 \rightarrow P_{1} \rightarrow P_{0} \rightarrow M$, we have P_{1} f.g. by the "socle argument." So M is finitely presented.

By the way, what do twisted CY-1 algebras look like?
Theorem: A locally finite graded algebra A is twisted Calabi-Yau of dimension 1 if and only if $A \cong T_{S}(V)$ is a tensor algebra, where S is a separable algebra and V is an invertible positively graded S^{e}-module.

But note that the noetherian result is proved without the structure theorem!

The noetherian argument in dimension 2

We don't expect all twisted CY-2 algebras to be noetherian:

Zhang: studied non-noetherian AS regular algebras A of dimension 2. He found that such A is noetherian $\Longleftrightarrow G \operatorname{Gdim}(A)<\infty$

The noetherian argument in dimension 2

We don't expect all twisted CY-2 algebras to be noetherian:

Zhang: studied non-noetherian AS regular algebras A of dimension 2. He found that such A is noetherian $\Longleftrightarrow G K \operatorname{dim}(A)<\infty$

We found that a similar result holds for twisted CY algebras:

Theorem

Let A be a locally finite twisted Calabi-Yau algebra of dimension 2. Then A is noetherian if and only if A has finite GK dimension.

Again, this is proved without first classifying the iso-types of A.

The noetherian argument in dimension 2

Theorem

Let A be a locally finite twisted Calabi-Yau algebra of dimension 2. Then A is noetherian if and only if A has finite GK dimension.

Idea of Proof: Suppose M is a graded noetherian A-module.
Projective resolution: $0 \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$.
Clearly P_{0} is f.g.

The noetherian argument in dimension 2

Theorem

Let A be a locally finite twisted Calabi-Yau algebra of dimension 2. Then A is noetherian if and only if A has finite GK dimension.

Idea of Proof: Suppose M is a graded noetherian A-module.
Projective resolution: $0 \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$.
Clearly P_{0} is f.g. "Socle argument" $\Longrightarrow P_{2}$ is also f.g.

The noetherian argument in dimension 2

Theorem

Let A be a locally finite twisted Calabi-Yau algebra of dimension 2. Then A is noetherian if and only if A has finite GK dimension.

Idea of Proof: Suppose M is a graded noetherian A-module.
Projective resolution: $0 \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$.
Clearly P_{0} is f.g. "Socle argument" $\Longrightarrow P_{2}$ is also f.g.
Exactness above with P_{2}, P_{0} f.g. and $\operatorname{GKdim}(A)<\infty$ implies $\operatorname{GKdim}\left(P_{1}\right)<\infty$.

Deduce that P_{1} is finitely generated.

The noetherian argument in dimension 2

Theorem

Let A be a locally finite twisted Calabi-Yau algebra of dimension 2. Then A is noetherian if and only if A has finite GK dimension.

Idea of Proof: Suppose M is a graded noetherian A-module.
Projective resolution: $0 \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$.
Clearly P_{0} is f.g. "Socle argument" $\Longrightarrow P_{2}$ is also f.g.
Exactness above with P_{2}, P_{0} f.g. and $\operatorname{GKdim}(A)<\infty$ implies $\operatorname{GKdim}\left(P_{1}\right)<\infty$.

Deduce that P_{1} is finitely generated.

Open Q: If A above is not graded, must A still be noetherian?

Presentation of twisted CY-2 algebras

So what do twisted CY-2 algebras actually look like?
Zhang: AS regular algebras of dimension 2 are "free algebras in $n \geq 2$ indeterminates modulo twisted potentials."

If A is a graded quotient of a quiver algebra $k Q$, obtain a similar description as follows.

Presentation of twisted CY-2 algebras

So what do twisted CY-2 algebras actually look like?
Zhang: AS regular algebras of dimension 2 are "free algebras in $n \geq 2$ indeterminates modulo twisted potentials."

If A is a graded quotient of a quiver algebra $k Q$, obtain a similar description as follows.

Denote:

- Vertex space: $(k Q)_{0}=k e_{1} \oplus \cdots \oplus k e_{n}$
- Arrow space: $V=(k Q)_{1}$; space of arrows $j \rightarrow i$ is $e_{i} V e_{j}$

Required data:

- Permutation μ of $\{1, \ldots, n\}$
- Linear automorphism τ of V such that $\tau\left(e_{j} V e_{i}\right)=e_{\mu(i)} V e_{j}$

Presentation of twisted CY-2 algebras

Required data:

- Permutation μ of $\{1, \ldots, n\}$
- Linear automorphism τ of V such that $\tau\left(e_{j} V e_{i}\right)=e_{\mu(i)} V e_{j}$

Def: $A(Q, \tau)=k Q /\left(\sum_{a} \tau(a) a\right)$. (Algebra with "mesh relations.")
This construction generalizes preprojective algebras (where $\mu=\mathrm{id}$)

Presentation of twisted CY-2 algebras

Required data:

- Permutation μ of $\{1, \ldots, n\}$
- Linear automorphism τ of V such that $\tau\left(e_{j} V e_{i}\right)=e_{\mu(i)} V e_{j}$

Def: $A(Q, \tau)=k Q /\left(\sum_{a} \tau(a) a\right)$. (Algebra with "mesh relations.")
This construction generalizes preprojective algebras (where $\mu=\mathrm{id}$)

Theorem: Every twisted CY-2 algebra that is a graded quotient of $k Q$ is of the form $A=A(Q, \tau)$, such that the incidence matrix M of Q has spectral radius $\rho(M) \geq 2$. $(\operatorname{GKdim}(A)<\infty \Longleftrightarrow \rho(M)=2$.)
(The converse should hold, too.)

Thank you!

