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Noncommutative polynomial algebras

What kind of noncommutative graded algebras A deserve to be viewed as
“noncommutative polynomials”? (k = an arbitrary field.)

Notes: (1) We allow GKdim(A) =∞.
(2) Our graded algebras are all N-graded: A =

⊕∞
n=0 An.

Two candidates:

1 Artin-Schelter regular algebras

2 Graded twisted Calabi-Yau algebras

Q: How do these compare?

Same if A is connected: A0 = k .

Today’s talk: What happens when A is not connected?

Manny Reyes Twisted CY and AS regular properties September 15, 2016 3 / 32



Noncommutative polynomial algebras

What kind of noncommutative graded algebras A deserve to be viewed as
“noncommutative polynomials”? (k = an arbitrary field.)

Notes: (1) We allow GKdim(A) =∞.
(2) Our graded algebras are all N-graded: A =

⊕∞
n=0 An.

Two candidates:

1 Artin-Schelter regular algebras

2 Graded twisted Calabi-Yau algebras

Q: How do these compare?

Same if A is connected: A0 = k .

Today’s talk: What happens when A is not connected?

Manny Reyes Twisted CY and AS regular properties September 15, 2016 3 / 32



Noncommutative polynomial algebras

What kind of noncommutative graded algebras A deserve to be viewed as
“noncommutative polynomials”? (k = an arbitrary field.)

Notes: (1) We allow GKdim(A) =∞.
(2) Our graded algebras are all N-graded: A =

⊕∞
n=0 An.

Two candidates:

1 Artin-Schelter regular algebras

2 Graded twisted Calabi-Yau algebras

Q: How do these compare?

Same if A is connected: A0 = k .

Today’s talk: What happens when A is not connected?

Manny Reyes Twisted CY and AS regular properties September 15, 2016 3 / 32



Non-connected algebras: an apology

Why should we care about non-connected algebras?

“Intrinsic” examples: Quivers algebras with relations kQ/I have
nontrivial idempotents. (And their associated derived categories can be
useful.)

“Extrinsic” examples: Twisted group algebras (or smash products)
constructed from A can contain idempotents, even if A does not.

While nontrivial idempotents make these much less “like polynomials,” it’s
still useful to understand when they are “homologically nice.”
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Preliminaries: the enveloping algebra

The enveloping algebra of A is Ae = A⊗ Aop. A left/right Ae-module M
is the same as a k-central (A,A)-bimodule:

(a⊗ bop) ·m = a ·m · b = m · (b ⊗ aop)

Provides a convenient way to discuss homological algebra for bimodules:

Projective/injective bimodules ! Projective/injective Ae-modules

Resolutions of (A,A)-bimodules ! resolutions of Ae-modules

Def: A is homologically smooth if A has a projective resolution in Ae-Mod
of finite length whose terms are finitely generated over Ae . (A is a perfect
Ae-module.)

This implies finite global dimension.
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Calabi-Yau and twisted CY algebras

Definition

(i) A is twisted Calabi-Yau of dimension d if it is homologically smooth
and there is an invertible (A,A)-bimodule U such that, as Ae-modules,

ExtiAe (A,Ae) ∼=

{
0 if i 6= d ,

U if i = d .

(ii) [Ginzburg] A is Calabi-Yau of dimension d if it twisted CY of
dimension d with U = A.

The CY condition is “self-duality” of sorts: if P• → A→ 0 is a projective
Ae-resolution, then HomAe (P•,A

e) is also a resolution of A.
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Commutative examples of Calabi-Yau algebras

(1) Calabi-Yau varieties: Coordinate rings of smooth affine Calabi-Yau
varieties are CY algebras [Ginzburg]

We can also consider graded Calabi-Yau algebras: take the projective
Ae-resolution and Ext isomorphism to be in the graded category.

(2) Graded commutative examples: just direct sums of k[x1, . . . , xn].

We emphasize (2): So graded Calabi-Yau algebras are “noncommutative
polynomial rings.”

But so are the Artin-Schelter regular algebras. How do these compare?
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Artin-Schelter regular algebras

The more standard notion of “noncommutative polynomial algebra.”

Def: A connected graded algebra A is Artin-Schelter (AS) regular of
dimension d if A has global dimension d <∞ and

ExtiA(k,A) ∼=

{
0, i 6= d ,

k(`), i = d

in Mod -A, and similarly for ExtiAop(k,A). (We allow GKdim(A) =∞.)

Many examples already discussed at this conference!

How does this compare with the CY condition?

Theorem [Yekutieli & Zhang], [R., Rogalski, Zhang]: A connected graded
algebra is twisted CY-d if and only if it is AS regular of dimension d .

So twisted CY yields the expected “noncommutative polynomial algebras.”
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Algebras from quivers and potentials

Quiver algebras: Quiver algebras with (twisted) superpotentials tend to
give rise to (twisted) CY algebras.

Ex: [Bocklandt] For Q =
a1,a2

!)

a3,a4

ai and the superpotential

W =
∑
	 (a1a3a2a4 + a1a4a2a3), the Jacobi algebra B = CQ/(∂aW ) is

Calabi-Yau of dimension 3.

Relations:

∂a1W = 0  a3a2a4 = −a4a2a3

∂a2W = 0  a4a1a3 = −a2a3a1

∂a3W = 0  a2a4a1 = −a1a4a2

∂a4W = 0  a1a3a2 = −a2a3a1

Q: When is a superpotential “nice”? Hard in general, but answered for
connected CY-3 algebras by [Mori & Smith], [Mori & Ueyama].
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Constructions preserving twisted CY property

Direct and tensor products:

Theorem

Thm: Let A1 and A2 be twisted Calabi-Yau algebras of dimension d1 and
d2, respectively.

If d1 = d2 = d, then A1 × A2 is twisted CY of dimension d.

A1 ⊗ A2 is twisted CY of dimension d1 + d2.

Extension of scalars and Morita equivalence:

Theorem

Thm: Let A be twisted CY of dimension d.

A⊗ K is twisted CY-d for every field extension K/k.

Every algebra Morita equivalent to A is twisted CY-d.
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An example with U nontrivial

How do we find examples with U 6= 1Aµ(l)?

Ex: Set B = k[x , y ]o Z2: twisted CY-2 with a Nakayama automorphism
and B0 = ke1 ⊕ ke2 (here char(k) 6= 2).

M2(B) has 1 = f1 + f2 + f3 + f4 for primitive idempotents

f1 =

(
e1 0
0 0

)
, f2 =

(
e2 0
0 0

)
, f3 =

(
0 0
0 e1

)
, f4 =

(
0 0
0 e2

)
Set e = f1 + f2 + f3 (full idempotent), then A = eM2(B)e is Morita
equivalent to A and thus is twisted CY-2.

Have indecomposable decomposition as projective right modules

AA
∼= P ⊕ P ⊕ Q but UA

∼= P ⊕ Q ⊕ Q.

So UA not free =⇒ U � 1Aµ(`).
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Working with locally finite algebras

We work in the setting of locally finite algebras: A =
⊕

An with all
dimk(An) <∞. So A0 = (arbitrary!) finite-dimensional algebra

The “good” choice for graded Nakayama’s Lemma & minimal graded
projective resolutions (after Minamoto & Mori):

Graded Jacobson radical: J(A) = J(A0) + A≥1.

We obtain a f.d. semisimple algebra S = A/J(A) = A0/J(A0).

First problem: We’d like the f.d. algebra B := A0 to be “well behaved.”

Recall that twisted CY algebras must be homologically smooth.

Lemma: If A is homologically smooth, then so is A0.
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Graded homologically smooth algebras

Lemma: If A is homologically smooth, then so is B = A0.

How should we think about f.d. homologically smooth algebras?

Fact: If B is a f.d. algebra, then TFAE:

1 B is homologically smooth

2 pdim(Be B) <∞
3 Be has finite global dimension

4 B ⊗ K has finite global dimension for every field extension K/k

Reminiscent of separable algebras S , defined by the equivalent conditions:

1 S is projective as a left Se-module

2 Se is semisimple

3 S ⊗ K is semisimple for all field extensions K/k

4 S ∼=
∏n

i=1Mni (Di ) with all Z (Di )/k separable
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Graded homolgically smooth algebras

For passage between A-modules and Ae-modules, it’s important that A
have S = A/J(A) = A0/J(A0) separable. One example:

Lemma

If A is locally finite with S separable, then gl. dim(A) is equal to

pdim(AS) = pdim(Ae A) = pdim(SA).

Fortunately, this holds in our case. (Special thanks to MathOverflow!)

Theorem (Rickard)

If B is a finite-dimensional homologically smooth algebra, then
S = B/J(B) is separable.

In particular, A twisted CY =⇒ S separable.
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Dualities and graded socles

It’s well known that twisted CY-d algebras satisfy Van den Bergh duality:

ExtiAe (A,M) ∼= TorA
e

d−i (A,U ⊗A M)

for left Ae-modules M.

We can use this to deduce further dualities for “1-sided” modules. . .

One important consequence allows us to “homologically compute” the
socle of a module:

Proposition: For A locally finite twisted CY-d and AM a graded module,
there is an isomorphism of graded left S-modules

TorAd (S ,M) ∼= U−1 ⊗A soc(M).
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Twisted CY algebras of dimension 0

Socle formula: TorAd (S ,M) ∼= U−1 ⊗A soc(M)

Taking the case M = A yields:

Cor: If A is locally finite twisted CY-d , if d > 1 then soc(A) = 0.

For the d = 0 case we have:

Cor: For a (not necessarily graded) algebra A, TFAE:

1 A is (twisted) CY-0

2 A is twisted CY and is a finite-dimensional k-algebra

3 A is a separable k-algebra.
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Existing notions of generalized regularity

What should play the role of the AS regular property for non-connected
algebras? There is precedent in the work of:

Martinez-Villa: gl. dim(A) = d , the functors ExtdA(−,A) and
ExtdAop(−,A) interchange graded simple modules, and other
ExtiA(S ,A) = 0 = ExtiAop(T ,A).

Minamoto & Mori: gl. dim(A) = d and there is a bimodule isomorphism:

ExtiA(A0,A) ∼=

{
0, i 6= d ,

(A∗0)σ(`), i = d .

Note: The Ext condition can be written as RHomA(A0,A) ∼= (A∗0)σ(`)[d ].
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Generalized regularity properties

For our purposes, we wish to allow a “twist” by a general invertible AUA.

Definitions: Let A be a locally finite graded algebra of (graded) global
dimension d <∞.

(a) A is MV-regular if there is a bijection π from the iso-classes of graded
simple left modules to the graded simple right modules with
RHomA(M,A) ∼= π(M)[d ] for all graded simple AM.

(b) A is MM-regular if RHomA(A0,A) ∼= A∗0 ⊗A U[d ] as Ae-complexes for
some invertible U.

(c) A is J-regular if RHomA(S ,A) ∼= S ⊗A U[d ] as Ae-complexes for some
invertible U, where S = A/J(A).
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Equivalence of twisted CY and AS regular properties

These properties are exactly what we need to characterize twisted CY
algebras:

Theorem

Let A be a locally finite graded algebra, and set S = A/J(A). Then TFAE:

1 A is twisted Calabi-Yau of dimension d.

2 A is MV-regular of dimension d and S is separable.

3 A is MM-regular of dimension d and S is separable.

4 A is J-regular of dimension d and S is separable.

So the twisted CY property (involving bimodules) can be verified using one
of these AS regular properties (involving one-sided modules).
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AS regular properties for quivers with relations

Q: Suppose A = kQ/I is a graded quotient for a connected quiver Q.
How do these regularity properties translate?

Here S = A0 = ke1 ⊕ · · · ⊕ ken, with non-iso. simple modules Si = kei .

Lemma: For such A, every invertible AUA is “boring”: U = 1Aµ(`).

Such µ permutes the vertices {1, . . . , n}; call this permutation µ also.

The regularity conditions (and equivalently, the twisted CY condition)
amount to:

ExtiA(Sj ,A) ∼=

{
Sµ(j)(`), i = d ,

0, i 6= d ,

for all the graded simple Sj , and similar condition as simple right modules.

Manny Reyes Twisted CY and AS regular properties September 15, 2016 23 / 32



AS regular properties for quivers with relations

Q: Suppose A = kQ/I is a graded quotient for a connected quiver Q.
How do these regularity properties translate?

Here S = A0 = ke1 ⊕ · · · ⊕ ken, with non-iso. simple modules Si = kei .

Lemma: For such A, every invertible AUA is “boring”: U = 1Aµ(`).

Such µ permutes the vertices {1, . . . , n}; call this permutation µ also.

The regularity conditions (and equivalently, the twisted CY condition)
amount to:

ExtiA(Sj ,A) ∼=

{
Sµ(j)(`), i = d ,

0, i 6= d ,

for all the graded simple Sj , and similar condition as simple right modules.

Manny Reyes Twisted CY and AS regular properties September 15, 2016 23 / 32



1 Noncommutative polynomial algebras: two candidates

2 Basics of twisted Calabi-Yau algebras

3 Locally finite algebras

4 “Generalized AS regular” versus twisted CY algebras

5 Twisted CY algebras in dimensions 1 and 2

Manny Reyes Twisted CY and AS regular properties September 15, 2016 24 / 32



The noetherian property for low-dimensional algebras

If A is twisted CY-d of finite GK dimension, then is A noetherian?

We can answer yes when d ≤ 2.

How to show an algebra is noetherian? The following is essentially part of
“Cohen-type” arguments to establish that a ring is (left) noetherian.

Lemma: A graded algebra A is left noetherian if (and only if) every
graded left noetherian A-module is finitely presented.

Proof: Suppose A weren’t left noetherian. “Zornify” to obtain left ideal I
maximal w.r.t. not being finitely generated. Then A/I is not finitely
presented (Schanuel’s Lemma). But every J ) I finitely generated implies
A/I is noetherian, a contradiction.
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The noetherian property

Original Goal: Show A left noetherian.

New Goal: Show noetherian A-modules are finitely presented.

But how? The “socle formula” TorAd (S ,M) ∼= U−1 ⊗ soc(M) is handier
than it might seem. . .

Fact: If M has minimal resolution · · · → P2 → P1 → P0 → M → 0, then
each Pi is f.g. (or zero) if and only if TorAi (S ,M) is f.d. (or zero).

Cor: If A is twisted CY-d and AM is graded noetherian, then the term Pd

in the resolution above is finitely generated.

Proof: M is noetherian ⇒ soc(M) is f.d. ⇒ TorAd (S ,M) is f.d.
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Twisted CY-1 algebras

This is already enough for algebras of dimension 1:

Theorem: If A is locally finite twisted Calabi-Yau of dimension 1, then A
is noetherian.

Proof: If M is noetherian with minimal resolution 0→ P1 → P0 → M, we
have P1 f.g. by the “socle argument.” So M is finitely presented.

By the way, what do twisted CY-1 algebras look like?

Theorem: A locally finite graded algebra A is twisted Calabi-Yau of
dimension 1 if and only if A ∼= TS(V ) is a tensor algebra, where S is a
separable algebra and V is an invertible positively graded Se-module.

But note that the noetherian result is proved without the structure
theorem!
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The noetherian argument in dimension 2

We don’t expect all twisted CY-2 algebras to be noetherian:

Zhang: studied non-noetherian AS regular algebras A of dimension 2. He
found that such A is noetherian ⇐⇒ GKdim(A) <∞

We found that a similar result holds for twisted CY algebras:

Theorem

Let A be a locally finite twisted Calabi-Yau algebra of dimension 2. Then
A is noetherian if and only if A has finite GK dimension.

Again, this is proved without first classifying the iso-types of A.
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The noetherian argument in dimension 2

Theorem

Let A be a locally finite twisted Calabi-Yau algebra of dimension 2. Then
A is noetherian if and only if A has finite GK dimension.

Idea of Proof: Suppose M is a graded noetherian A-module.

Projective resolution: 0→ P2 → P1 → P0 → M → 0.

Clearly P0 is f.g.

“Socle argument” =⇒ P2 is also f.g.

Exactness above with P2,P0 f.g. and GKdim(A) <∞ implies
GKdim(P1) <∞.

Deduce that P1 is finitely generated.

Open Q: If A above is not graded, must A still be noetherian?
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Presentation of twisted CY-2 algebras

So what do twisted CY-2 algebras actually look like?

Zhang: AS regular algebras of dimension 2 are “free algebras in n ≥ 2
indeterminates modulo twisted potentials.”

If A is a graded quotient of a quiver algebra kQ, obtain a similar
description as follows.

Denote:

Vertex space: (kQ)0 = ke1 ⊕ · · · ⊕ ken

Arrow space: V = (kQ)1; space of arrows j → i is eiVej

Required data:

Permutation µ of {1, . . . , n}
Linear automorphism τ of V such that τ(ejVei ) = eµ(i)Vej
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Presentation of twisted CY-2 algebras

Required data:

Permutation µ of {1, . . . , n}
Linear automorphism τ of V such that τ(ejVei ) = eµ(i)Vej

Def: A(Q, τ) = kQ/(
∑

a τ(a)a). (Algebra with “mesh relations.”)

This construction generalizes preprojective algebras (where µ = id)

Theorem: Every twisted CY-2 algebra that is a graded quotient of kQ is
of the form A = A(Q, τ), such that the incidence matrix M of Q has
spectral radius ρ(M) ≥ 2. (GKdim(A) <∞ ⇐⇒ ρ(M) = 2.)

(The converse should hold, too.)
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Thank you!
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