CornellEngineering

Fracture Surface Transition for Notched Bars in Torsion

Alan Zehnder

Field of Theoretical and Applied Mechanics & Mechanical and Aerospace Engineering

with:

Natasha Zella

Undergraduate

2016 BIRS Workshop

Overview

- Notched rods of a brittle material under torsional loading
 - Uniform rods break in a spiral and often fragment
 - Deeply notched rod will fail on a to flat (on macro-scale, rough on micro-scale) surface
- Hypothesis:
 - There is a notch depth for which surface transitions from:
 - spiral fracture surface
 - to flat (on macro-scale, rough on micro-scale) surface
- What is this depth?
- Does it depend on material or on notch geometry details?
- Can the transition be predicted?
- Challenges for theoretical and computational fracture mechanics:
 - Correct prediction of load for onset of failure with and without pre-cracks
 - Capturing crack path in 3D
 - Capturing formation, growth and linking of multiple fractures
 - Material behavior in a nominally brittle material must inelastic deformation and failure modes be considered?

Mode III Loading of Notched Rod

Torsional fracture surface of a notched rod - high strength steel

E. Tschegg, "Mode III and mode I fatigue crack propagation behaviour under torsional loading," **J. Mat. Sci, 18** (1983).

Transition: varying notch radius

(a)

(b)

Fig. 6. Failure modes in some specimens with d = 5 mm: U-notch, R = 0.5 mm (a), V-notch, R = 2 mm, (b). Failure modes in some specimens with d = 2 mm: U-notch, R = 0.5 (c), V-notch, R = 1 mm (d).

* Berto et al., "Fracture behaviour of notched round bars made of PMMA subjected to torsion at room temperature," **EFM, 90** (2012), 143-160

Our Experiments

- 25.4 mm and 19.05 dia notched PMMA rods
- Two types of circumferential pre-cracks, or notches were cut :
 - 0.7 mm wide, square notch
 - 0.5 mm wide, V-notch using utility knife blade as a cutting tool, notch root radius less than 0.04 mm.
- Notch depth/radius ratio from 0.05 to 0.25
- Classify fracture surfaces
- Image cracks with micro-CT scan
- Analysis of CT-scans

Experimental Setup

7

Nominal PMMA Properties

E \approx 2.95 GPa, v \approx 0.34, Yield strength \approx 50 MPa Ultimate strength \approx 80 MPa Strain to failure \approx 0.05 Toughness, $K_{IC} = 1 \text{ MPa m}^{1/2},$ $G = 338 \text{ J/m}^2,$ $\rho = 1152 \text{ kg/m}^3$ p-wave speed = 1990 m/s s-wave speed = 980 m/s

From NASA/TM—2007-214835 Polymethylmethacrylate (PMMA) Material Test

Results for the Capillary Flow Experiments (CFE) and Shu Liu, Yuh J. Chao *, Xiankui Zhu, Tensile-shear transition in 8 mixed mode I/III fracture, International Journal of Solids and Structures 41 (2004) 6147–6172

Length scales of this problem

- Notch depth to rod radius
 - .05 to .25
- Notch width
 - 0.7 and 0.5 mm
- Notch root radius
 - Less than about 0.04 mm
- Plastic zone at onset of fracture
 - $r \downarrow p = 1/\pi (K/\tau \downarrow y) \uparrow 2 \approx 2 mm$
- Rod diameter
 - 25 and 19 mm
- Rod length
 - 100 and 75 mm

Example torque-twist curves

19.05 mm dia samples, cut with utility knife

- Fracture of PMMA is not purely elastic under torsional loading

Surface Classification

- We classify surfaces at macro-scale as

 Spiral
 - Flat
 - Spiral/flat
- Note, that at micro-scale, surfaces are rough and have multiple microcracks

Spiral Fracture Surface

Flat Fracture Surface - notched sample

Spiral/flat Fracture Surface notched sample

Surfaces of knife cut samples

Notch depth/radius = 0.10

Notch depth/radius = 0.18

Fracture surface depends on notch depth

Nominal fracture toughness

Reported values of critical K_{III} :

- 1.4 1.7 MPa m^{1/2} Liu (1994) fatigue crack,
- 1.5 MPa m^{1/2} Aliha (2015), razor cut crack
- 3.5 MPa m^{1/2} Berto et al. (2013), .025 mm radius diamond wire saw cut $_{17}$

Mating fracture surfaces – cut through center

Cuts at ¼ diameter: Majority of cracks at angles of 30-25 deg.

19

Analysis of fracture surface: on circumferential paths

Typical spacing of facets along initial crack line is .07 mm On r= 8 mm, rms roughness = 0.22 mm, rms angle = 22 deg On r = 5 mm, rms roughness = 0.33 mm, rms angle = 33 deg.

Rough ideas on stability of single vs. multiple cracks

FEM Simulations of Crack Initiation and Growth

- Finite element models of notched and un-notched rods in torsion and tension
- Goal is to illustrate crack propagation and determine if transition can be predicted with such a simple model.
- Key model parameters:
 - Sharp crack
 - Rod length = 100 mm, radius = 10 mm, notch depth: [0, 1, 2, 3] mm
 - E=2.95 GPa, v=0.34, ultimate strength = 80 MPa, toughness, K_{IC} = 1 MPa m^{1/2}, (G = 338 J/m²), ρ = 1152 kg/m³
 - Linear tet elements, 1.0, 0.5 and 0.25 mm size
 - Quasi-static loading, dynamic crack growth
 - Abaqus brittle cracking model with element deletion. Linear elastic behavior up to failure onset. Linear tension softening, critical displacement is 8.5 μm.
 - Mass scaling used to increase stable time step
 - Rayleigh stiffness and mass damping at about 1% damping ratio

Uncracked rod in torsion

Progression of fracture in 4 time steps. Color scale is theta displacement

Torsional fracture surfaces for notched rods

0.1 notch depth/radius 0.2 notch depth/radius

bit of the set of

Torsional Fracture Surface: notch depth/radius = 0.3

Progression of fracture in 4 time steps. Color scale is theta displacement

ODB: grack-tet-3-sf.odb Abagus/Explicit 6.14-1 Thu May 05 09:29:06 Eastern Daylight Time 2016

Step; Step-1 Increment 4369: Step Time = 0.4101 Primary Var: U, U2 (CSYS-1) Deformed Var: U Deformation Scale Factor: +1.000e+00 Status Var: STATUS

ODB: crack-tet-3-sf.odb Abagus/Explicit 6.14-1 Thu May 05 09:29:06 Eastern Daylight Time 2016

Step: Step-1 Increment 4369: Step Time = 0.4101 Primary Var: U, U2 (CSYS-1) Deformed Var: U Deformation Scale Factor: +1.000e+00 Status Var: STATUS

ODB: crack-tet-3-sf.odb Abaqus/Explicit 6.14-1 Thu May 05 09:29:06 Eastern Daylight Time 2016

Step: Step-1 Increment 4369: Step Time = 0.4101 Primary Var: U, U2 (CSYS-1) Deformed Var: U Deformation Scale Factor: +1.000e+00 Status Var: STATUS

ODB: crack-tet-3-sf.odb Abaqus/Explicit 6.14-1 Thu May 05 09:29:06 Eastern Daylight Time 2016

Step: Step-1 Increment 4369: Step Time = 0.4101 Primary Var: U, U2 (CSYS-1) Deformed Var: U Deformation Scale Factor: +1.000e+00 Status Var: STATUS

Notes on simulations

- Details of crack patterns are mesh dependent. Overall behavior not.
- In un-notched rod simulations crack speeds are unrealistic can run above shear wave speed
- Transition from spiral to flat but faceted is evident but not strongly supported by simulation results
- Actual material behavior is elastic-plastic while model is elastic-brittle
- Models over predict failure load and torque.
 - Input $K_{IC} = 1.0 \text{ MPa m}^{1/2}$
 - Models fail with $K_{\rm I}\approx 2.1$ MPa $m^{1/2}~$ and $K_{\rm III}\approx 2.2\mathchar`-2.5$ MPa $m^{1/2}~$

Summary and Questions

- Under torsion loading, as notch depth increases to about 0.18 of radius, fracture surface transitions
 - from spiral or spiral/flat
 - to macroscale flat "factory roof" surface
 - Facet angles are less than 45° .
- Is transition sensitive
 - to notch sharpness?
 - to brittleness of material?
- What are the conditions that govern the stability of the fracture surface ?
- What computational approaches could predict the transitions and capture sufficient detail of the fracture?
- Note: PMMA used here (and in many other studies) as a "model" brittle material – but it does have plastic deformation prior to fracture

Some general comments

- Fracture is among the hardest problems in mechanics
 - Materials are taken to their limits
 - You don't know the geometry ahead of time
 - Fracture is dynamic
 - Inherently multi-scale in the sense that failure involves separation of atoms but the application is to a structure
- It matters
 - An example is frangible joints used for rocket stage separation.
 They must break not early not late but when needed
 - Getting the failure load right matters and getting the crack path right matters – does the joint generate fragments that might cause damage?

Typical model: crack depth/radius =0.3

Mesh near crack surface

Cracked rod in tension fails along flat surface

Progression of fracture in 4 consecutive time steps. Color scale is axial displacement

Under Mode III fracture starts with microcracks at 45° to crack front

W.G. Knauss, "An observation of crack propagation in anti-plane shear," **IJF 6**, 1970.

45° microcracks link to form "Factory Roof" surface

Pons and Karma, "Helical crack front instability in mixed-mode fracture," **Nature, 464**, March 2010.