(L

ECOLE POLYTECHNIQUE
FEDERALE DELAUSANNE

Models for Complex Extreme Events

Anthony Davison

Joint with
Peiman Asadi, Raphaél de Fondeville, Sebastian Engelke,

Raphaél Huser, Simone Padoan, Mathieu Ribatet,
Marid Suveges, Emeric Thibaud

Funding: Swiss National Science Foundation

http://stat.epfl.ch Banff, June 2016 — slide 1



(L
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0 Classical extreme value theory/methods now widely used in climate
science

O Multivariate ideas also starting to be used

[

Major advances in more complex modelling over the past decade
O  Goal of talk:

— Recall some basics

—  Overview recent developments

O Applications illustrative—aim to show a toolkit, not build something with
it
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0 Extreme value theory is based on limiting models for tails of distributions
— Generalised extreme-value distribution (GEV) applies for maxima of an
infinite sample

— Generalized Pareto distribution (GPD) applies for peaks over an
‘infinite’ threshold

O In practice fitted to finite samples (e.g., seasonal maxima/minima), so fit
may extrapolate badly

— Shape parameter &, depends on sample size m?—penultimate
approximation

— Typically unstable, need a lot of data—but in climate contexts may
have this
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Figure 9. Mean and standard deviation of GP shape parameter versus sample size (record length)
the 1900-2011 sample.

From Serinaldi and Kilsby (2014), Water Resources Research
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i Flash-flood and debris flow path

Py

Matthew C. Larsen, USGS
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F(u) =0.97
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Top: Normalized clusters (coloured lines) of daily precipitation for the Venezuela data,
observed before December 1999, and the fitted signatures (black dots). The black lines
indicate the 0.025 and 0.975 quantiles of the fitted Dirichlet component.

Bottom: Frequency per month of the different signatures observed before December 1999
having peaks above u corresponding to F'(u) = 0.97. Signature 1 is plotted in black,
signature 2 in red, signature 3 in blue.
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Top: peaks of the clusters observed before December 1999 and used for the mixture fit
using F'(u) = 0.97. Bottom: GPD densities corresponding to the peaks of the three cluster
types. In both panels, signature 1 is plotted in black, signature 2 in red, signature 3 in blue.
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[0 Easiest to describe multivariate/complex extremes on a standard scale

— Consider bivariate maxima (Mx, My ), and suppose that each individually has
a GEV distribution

— Then back-transformation using the respective GEVs gives that

Zy = {1+ Ex(Mx —nx)/ox}/** 2y = {1+ & (My —ny)/my }/*

have unit Fréchet marginal distributions, P(Z < z) = exp(—1/z), for z > 0.

— Likewise for bivariate exceedances over high thresholds ux, uy.

0 In both cases, if a joint limiting distribution for (Mx, My ) exists, then
P(Zy < 21,25 < 29) = exp{—V(21,22)}, 21,22 >0,

where V' is called an exponent measure.

O For large R = Z1 + Zs, the variables R and W = Z; /R are (approximately)
independent, so we can extrapolate to rarer events than those observed.
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Histograms of W = 71 /(Z1 + Zs) given R > rq for pairs (Z1, Z3) from the
logistic dependence function, with ry corresponding to the 0.98, 0.99, 0.995,
0.998 quantiles of Z. Above: @ = 0.3. Below: a = 0.7.
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Histograms of W = 7, /(Z1 + Z5) given R > rq for pairs (271, Z3), with rq
corresponding to the 0.98, 0.99, 0.995, 0.998 quantiles of Z. Above: normal
data with p = 0.8. Below: successive pairs of Eskdalemuir observations.
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0 Classical models for multivariate extremes (logistic, bilogistic, ...) show

— asymptotic dependence: degree of dependence does not vary with
the severity of the event.

0 Data can (often?) show
— asymptotic independence: dependence decreases as severity
Increases.
O Multivariate Gaussian models (e.g., ARMA) are asymptotically
independent

O Asymptotic independence models can be constructed from asymptotic
dependence models by inversion, but few encompass both

1 Conclusion:
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Motivations for modelling extremes:

[0 pointwise maps of return levels
— joint probabilities not of interest but
— estimation may be aided by smoothing, ‘borrowing strength’
— but how many ‘independent’ station-years?

— Approaches: Bayesian hierarchical models (‘non-extremal’), estimating
functions (Jun Yan, Thursday?)
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Why do it? Extrapolation! !ﬁlﬂ-
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Motivations for modelling extremes:
[0 pointwise maps of return levels
— joint probabilities not of interest but
— estimation may be aided by smoothing, ‘borrowing strength’
— but how many ‘independent’ station-years?
— Approaches: Bayesian hierarchical models (‘non-extremal’), estimating
functions (Jun Yan, Thursday?)
[0 estimation of probability of rare complex events
— joint probabilities essential

— max-stable processes/exceedances

[0 detection/attribution
[0 short-range forecasting

— statistics of extremes not very relevant? (a revoir)

http://stat.epfl.ch Banff, June 2016 — slide 14



(L

ECOLE POLYTECHNIQUE
FEDERALE DELAUSANNE

Opening

Basics

Max-stable
> processes

Likelihood inference

Rainfall at Val Ferret
Val Ferret, daily
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[0 The GEV distribution is max-stable: maxima of independent GEV variables are
also GEV—in fact, this is the defining property of the GEV distribution, and

allows extrapolation to rare events.

1 For the unit Fréchet distribution, this means that if Z, Z1, ..., Z, ~ exp(—1/2),

then for any n,
max{Z1i,...,Zn} 2nz

[0 For space/space-time problems we need a process analogue of the GEV, i.e., we
seek a process Z(x) such that if Zy(x),..., Z,(x) W Z(x), then

D

max{Z1(x),...,Zy(x)} = nZ(x), xeX,

where X represents a space/space-time domain of interest (e.g., the Rhine
watershed within Switzerland over the years 2020-2100).

[0 In the process case we first transform the process so that its marginal
distributions are standard Fréchet at every x.
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[0 Let W(x) be a non-negative random process with E{W (x)} =1 (z € X), and let

1 O

Z(z) =sup R;Wj(z), = €&, (1)

with {R;} a Poisson process on R of rate dr/r® and {W,} replicates of W.
Then

P12(0) < sa)a € ¥} =exp (< [sup { T ) —exp [V ()],

reX Z(ilf)
say, and this gives:

— a max-stable process {Z(x) : ¢ € X'}, i.e., there exist functions {b,(z)} and
{an(x)} > 0 such that

Z(z) 2 m%X{Zj(“”) — bn(2) } Czex.

ay, ()

— unit Fréchet margins at each x € X.

In fact any max-stable process can be written using the spectral representation (1).

Example: random Smith model ...
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Numerous max-stable models now exist, some more ‘realistic’ than others

[

[0 Particularly flexible example is the Brown—Resnick process, which takes

W(z) = exp{e(z) —v(2)},

where () is a stationary or intrinsically stationary Gaussian process with
semi-variance or semivariogram ~y(x)—can use panoply of functions + from
spatial statistics, or can invent your own.
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Altitude

m
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Asadi, Davison, Engelke (2016) Annals of Applied Statistics
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[0 Sources of dependence between data at locations ¢; and ¢5 on the network T
— flow-dependence; t5 is downstream of t1, or vice versa

— ‘geo’-dependence: the same events may impact nearby watersheds

[0 Overall semi-variogram
Y(s,t) = Ariv {1 — Criv(s, )} + Aguc YEUC(S, 1), 8,1 €T,

where Ar1v, Aguc > 0.

[0 Flow-dependence in terms of shortest river distance d(-, -):

Criv(s,u) = Ci{d(s,u)} x V0.6,
CRI\/(S,t) = C’l{d(s,t)} X \/04 X 03,
CRI\/(U,t) = 0,

Ci(h) = exp(=h/0), 60 >0.
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O Introduce hydrological location of each station, as h(s) € R? as centroid of its
sub-catchment, and define dependence measure

veuc(s,t) = ||h(s) — h(t)[|%, o € (0,2].

Altitude
m

200 2000 4000
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[

[0 Particularly flexible example is the Brown—Resnick process, which takes

W(z) = exp{e(z) —v(2)},

where () is a stationary or intrinsically stationary Gaussian process with
semi-variance or semivariogram ~y(x)—can use panoply of functions + from
spatial statistics, or can invent your own
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Numerous max-stable models now exist, some more ‘realistic’ than others

[

[0 Particularly flexible example is the Brown—Resnick process, which takes

W(z) = exp{e(z) —v(2)},

where () is a stationary or intrinsically stationary Gaussian process with
semi-variance or semivariogram ~y(x)—can use panoply of functions + from
spatial statistics, or can invent your own

[0 Can simulate from these models both unconditionally, and conditionally on
observed extremes

[0 BUT likelihood inference is awkward, because

— for D variables, all 2P derivatives of V are needed, and the number of terms
In the likelihood is monstrous

— for the B—R process, the derivatives involve multivariate normal integrals,
which are slow to compute
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L1 O

Suppose we have independent (annual) maxima observed at D = {x1,...,xp} C X for
n years, so the data for each year have joint distribution

P{Z(z1) < z1,...,Z(zxp) < zp} =exp{—V(21,...,2D)}, 21,...,2D > 0.

The formulation of the model using its CDF means that to compute the likelihood
function we must differentiate e~ with respect to z1, ..., zp, leading to combinatorial
explosion:

—Vie Vv, (ViVa — V12)€_V, (—=ViVaVs + Via V53] — V123)€_V, ceey

with about 10° terms for D = 10. Clearly this is infeasible for realistic applications, so
we need to avoid this, by

— using a composite (usually a pairwise) likelihood; or

— using the Stephenson—Tawn approach, using the timing of events to inform us which
term of the partition should enter the likelihood;

— using threshold exceedances

Bayesian inference is possible (Emeric Thibaud’s poster)

In any case we must compute (many) derivatives of V', and sometimes integrate them
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/\ gauging stations

@ Sensorscope stations

channel network

- shallow landslides

shrubs
- bedrock outcrops

glacier

grassland

talus deposit
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Top: Daily cumulative rainfall totals for 575 days in summers 2009 to 2012, recorded by
Sensorscope stations 1-4. White spaces correspond to missing data.
Bottom: Daily cumulative rainfall totals for 31 years in summers 1982 to 2012, recorded by
MétéoSuisse at the Grand St-Bernard.
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T TQSB 13 Dependence parameters e* CLIC*
Max-stable models
Smith 7.48 4.69 0.11 0.48 2.94 0.57 —6122 12264
Schlather 7.34 5.17 0.09 10.63 0.52 —6035 12087
B-R 6.89 5.46 0.10 5.82 0.46 —6036 12092
Asymptotic independence models
Schlather 7.85 6.42 0.04 186 0.60 —6023 12065
B-R 7.79 6.48 0.04 113 0.57 —6027 12074
GC 7.53 6.21 0.06 103 0.50 —6029 12118

[J  For the Smith model, 8 = (7, 7asB, £, Y11, 222, X12), Where X is the variance matrix of
the underlying bivariate Gaussian density.

[0 For the Brown—Resnick (B—R), Schlather, and Gaussian copula (GC) models,
0 = (1,7asB, &, \, k). The units of 7, Tgsp and the range parameter are respectively
mm, mm and km.

[1  The likelihood maximisation fails for the inverted Smith model.

http://stat.epfl.ch Banff, June 2016 — slide 38



)
Simulated extreme rain at Val Ferret Fglﬂ.o

FEDERALE DELAUSANNE

| | | | | |
572 573 574 575 576 STT 972 573 574 575 576 5TT7 972 573 574 575 576 5TT

Simulation of max-stable random fields, on the original data scale (mm), from the fitted (a)
Smith and (b) Schlather models and (c) an inverted max-stable process based on the
Schlather model. Black dots show the locations of the 24 stations.
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[J The individual events of the max-stable process are (say)
Q(z) = RW(z), =z € X,

where R ~ a Poisson process with intensity 1/7% on r > 0, and W (z) is log-Gaussian,
so we can get an explicit intensity for the Poisson ‘event’ QQ(x) observed to take values
Z1,...,2p at points x1,...,xp

[1 This intensity may have to be applied to values that are not extreme, for which the
extremal model will be poor.

0 If zq > u for a subset C of {1,..., D}, with C = |C|, and that z4 < u for the remaining
subset C’, we end up with a censored likelihood contribution

1 B ~ _ ~
5 ¢pc—1(log Zc; Qc.c)Pp—c (Mc’|c;QC/|c) ;
2122 . .ZC

where ¢ and ®; denote the k-dimensional normal density and distribution functions,
and for c,d € {1,...,D}, Qc.a = 1{Qc1 + Q1,0 — Qe a} and
log Zg = log zqg — logz1 + Qq4,1/2, and with C = {2,...,C}, and ' ={C +1,..., D},

1 S A1 - x ~ = &A_1g
peric = (logu —logz1 + 5Q1 /) — Qer cQe cZe,  Qerje = Qerer — Qer e e e

[1 Nasty but manageable for D not too big, extends to extremal-t processes.
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[0 Modelling threshold exceedances is widely used in (scalar) practice:
— more flexible than using maxima

— statistically more efficient, makes better use of data

[0 For scalar data, choosing rare events is easy: either they're big or they're

L]

For multivariate data, we need to say what ‘direction’ is extreme

[0 Do this via a scalar risk function f applied to the individual events
Q;(x) = R;W,(x) of the max-stable process

— Choose those events @); for which f((Q);) exceeds a threshold u

— Red: extremes on [0, 2], selected using risk function

1(Q) = /O Q) d

— Blue: most intense events, selected using risk function

f(Q) = max Q(x)

small.
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O Fitting for the ‘exceedances’ (); is (in principle) much easier than for the
max-stable process Z(x):

— likelihoods can be constructed, but

— they still involve lots of computationally expensive integrals

O Fixes
— estimate the integrals using quasi-Monte Carlo or other methods,

— avoid likelihood inference, using the gradient score

0 Big problems (D = 1000s) feasible
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[] 15-minute radar rainfall measurements over Florida from 1994-2010

[1 We focus on a 120 kmx 120 km square south-west of Orlando and on the wet season,
i.e., June to September.
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[1 Generalized Pareto distributions are fitted for each of the locations s; using exceedances
over the 99 percentile.

A model with common shape parameter &, = 0.124 is retained.
Margins are then transformed to unit Fréchet:

X" (s:) = —1/log F;{X (s:)},
where

s ixien = | FAX (s, X(s:) < qoo(si),
FitX(s:)) { 1 — G{Eoﬁ(sz'),qgg(sz')}{X(Si)}a X (8i) > qoo(si),

and

— Fj is the empirical cumulative distribution function at location s;,

= G{ey,5(s:).q00(s;)} 1S the distribution function of a generalized Pareto random
variable with shape &, scale o(s;) and location ggo(s;).
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[  We define two risk functionals

’ ~41/20
fmax(X7) = Z{X*(Sz‘)}20 :
o :1/50
fsum(X*) — Z{X }50 )

where ¢ = 3600 is the number of grid ceIIs and & is the shape parameter of the
marginal model.

[0 fmax is a continuous and differentiable approximation of max;—1,. . ¢ X™(s;) which
satisfies the requirements for the gradient score.

[1  fsum selects events with large spatial cover. The power & approximately transforms the
data X ™ back to a scale where summing observations has a physical meaning.
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[1 Non-separable semi-variogram model

) = HM . si,8; €1]0,1201%, 4,7 € {1,...3600},

K
. 1

with 0 < k < 2,7 > 0 and anisotropy matrix

Q:[ cos 1) —sinn], ne (-
asinn acosn

Ny
no[3

; } , a> 1.
[J Fitted parameters obtained for both risk functionals with exceedances of fimax(X™) and
foum (X ™) over the 99 quantile:

K T n a
fmax  1.192.02 9.060.19 0.080.61 1.0080.005
feum  0.3260.007 46.670.018 —0.300.10 1.0640.017

—  fmax estimates are quite smooth with a small scale, they capture high quantiles and
induce a model similar to that in earlier work.

— For fsum, the semi-variogram is rougher but with a much larger scale, which is
consistent with large-scale events.

— Anisotropy does not seem significant.
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Observations

Simulations

15-minute cumulated rainfall (inches): observed (first row) and simulated (second and third

rows) for the risk functionals fsum (left) and fmax (right) with intensity equivalent to the
0.99 quantile.
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O Care needed with extrapolation of scalar and multivariate extremes

[0 Basic ideas on maxima and point processes extend to spatial and
space-time settings.

O Max-stable processes give asymptotic dependence models, but asymptotic
independence models exist

0 Can fit either using pairwise likelihood (can be inefficient), or, for
‘exceedances’, full likelihood (D < 30, say).

O Model-checking possible, using simulation from fitted models, and
extensions of previous ideas (e.g., x and ).

0 Current ‘hot’ research area: lots going on (e.g., threshold models,
non-stationarity, gridded data, non-Euclidean spaces, ...).
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Coles (2001), Introduction to the Statistical Modeling of Extreme Values, Springer

[]

de Haan and Ferreira (2006) Extreme Value Theory: An Introduction, Springer

[

Davison and Huser (2015) Annual Review of Statistics and its Applications

de Haan (1984) Annals of Probability

Smith (1990) unpublished

Schlather (2002) Extremes

Stiveges and Davison (2012) European Physical Journal Special Topics
Davison, Padoan and Ribatet (2012) Statistical Science
Wadsworth and Tawn (2012) Biometrika

Thibaud, Mutzner and Davison (2013), Water Resources Research
Huser and Davison (2014) J. R. Statist. Soc., series B
Wadsworth and Tawn (2015) Biometrika

Thibaud and Opitz (2015) Biometrika

Asadi, Davison and Engelke (2016) Annals of Applied Statistics
de Fondeville and Davison (2016) arXiv
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