Motivic Homotopy Theory	The cofiber $C \tau$	Applications to Motivic Chromatic Homotopy theory	
000	0000000	00000000	0000

The cofiber $C\tau$ and Motivic Chromatic stuff Motivic Homotopy Theory

Bogdan Gheorghe PhD student of Dan Isaksen

Wayne State University

Operations in Highly Structured Homology Theories Banff, May 22-27, 2016

うして ふぼう ふほう ふほう しょうく

Motivic Homotopy Theory	The cofiber $C \tau$	Applications to Motivic Chromatic Homotopy theory	Bonus
000	0000000	00000000	0000

Motivic Homotopy Theory

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Motivic Homotopy Theory OO	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory 000000000	Bonus 0000
Unstable Moti	vic Spaces	3	

I will only work over the base scheme $\operatorname{Spec} \mathbb{C}$.

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
•00		000000000	0000
Unstable Moti	vic Spaces	5	

0 start with the category $\operatorname{Sm}/\mathbb{C}$ of \mathbb{C} -schemes (smooth, fin. type)

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
•00		000000000	0000
Unstable Moti	vic Spaces	3	

9 start with the category $\operatorname{Sm}/\mathbb{C}$ of \mathbb{C} -schemes (smooth, fin. type)

2 add colimits by embedding it in presheaves

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
•00		000000000	0000
Unstable Moti	vic Spaces	3	

9 start with the category $\operatorname{Sm}/\mathbb{C}$ of \mathbb{C} -schemes (smooth, fin. type)

add *htpy* **colimits** by embedding it in simplicial presheaves

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
•00		000000000	0000
Unstable Moti	vic Spaces	3	

9 start with the category $\operatorname{Sm}/\mathbb{C}$ of \mathbb{C} -schemes (smooth, fin. type)

うつん 川田 スポット エット スロッ

- **add htpy colimits** by embedding it in simplicial presheaves
- sPre(Sm/ \mathbb{C}) has **point-wise model structures** from sSet_{*}

• ••• ••••••••••••••••••••••••••••••••	Unstable	Moti	vic Spaces		
hourse hoursely hear bonds to hourse chromatic hoursely bonds	●00	1 neory	00000000	00000000	0000

9 start with the category $\operatorname{Sm}/\mathbb{C}$ of \mathbb{C} -schemes (smooth, fin. type)

うつん 川田 スポット エット スロッ

- **add htpy colimits** by embedding it in simplicial presheaves
- sPre(Sm/ \mathbb{C}) has **point-wise model structures** from sSet_{*}
- Bousfield localize to
 - force Nisnevich covers to be homotopy colimits
 - make "the interval" $\mathbb{A}^1_{\mathbb{C}}$ contractible

Motivic Homotopy Theory	The cofiber $C\tau$	Applications to Motivic Chromatic Homotopy theory	Bonus
OO	00000000	000000000	0000
Unstable Moti	vic Spaces		

9 start with the category $\operatorname{Sm}/\mathbb{C}$ of \mathbb{C} -schemes (smooth, fin. type)

うつん 川田 スポット エット スロッ

- **add htpy colimits** by embedding it in simplicial presheaves
- sPre(Sm/ \mathbb{C}) has **point-wise model structures** from sSet_{*}
- Bousfield localize to
 - force Nisnevich covers to be homotopy colimits
 - make "the interval" $\mathbb{A}^1_{\mathbb{C}}$ contractible

Theorem (Morel-Voevodsky)

This gives a symmetric monoidal model category $\operatorname{Spc}_{\mathbb{C}}$

Unstable Motiv	vic Spaces		
Motivic Homotopy Theory	The cofiber $C\tau$	Applications to Motivic Chromatic Homotopy theory	Bonus
•00	00000000	000000000	0000

- **9** start with the category $\operatorname{Sm}/\mathbb{C}$ of \mathbb{C} -schemes (smooth, fin. type)
- **add htpy colimits** by embedding it in simplicial presheaves
- sPre(Sm/ \mathbb{C}) has **point-wise model structures** from sSet_{*}
- Bousfield localize to
 - force Nisnevich covers to be homotopy colimits
 - make "the interval" $\mathbb{A}^1_{\mathbb{C}}$ contractible

Theorem (Morel-Voevodsky)

This gives a symmetric monoidal model category $Spc_{\mathbb{C}}$, and there is a **realization** functor R by taking \mathbb{C} -points

$$Spc_{\mathbb{C}} \xrightarrow[Sing]{R} Top.$$

Motivic Homotopy Theory 000	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory 000000000	Bonus 0000
Motivic Sphere	es		

Motivic Spheres	

• The constant $U \mapsto \Delta^1/\partial \Delta^1 = S^1$, which realizes to $S^1 \in \text{Top.}$ This is called the **simplicial sphere** and denoted by $S^{1,0}$.

ション ふゆ く は と く ほ と く 見 と く ロ と

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
Motivic Sphere	es		

• The constant $U \mapsto \Delta^1/\partial \Delta^1 = S^1$, which realizes to $S^1 \in \text{Top.}$ This is called the **simplicial sphere** and denoted by $S^{1,0}$.

うつん 川田 スポット エット スロッ

2 The scheme $\mathbb{G}_m = (\mathbb{A}^1_{\mathbb{C}})^{\times}$, which realizes to $S^1 \in \mathbf{Top}$. This is called the **geometric sphere** and denoted by $S^{1,1}$.

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
Motivic Sphere	es		

- The constant $U \mapsto \Delta^1/\partial \Delta^1 = S^1$, which realizes to $S^1 \in \text{Top.}$ This is called the **simplicial sphere** and denoted by $S^{1,0}$.
- **2** The scheme $\mathbb{G}_m = (\mathbb{A}^1_{\mathbb{C}})^{\times}$, which realizes to $S^1 \in \mathbf{Top}$. This is called the **geometric sphere** and denoted by $S^{1,1}$.

This gives bigraded spheres $S^{n+k,n} = (S^{1,0})^{\wedge k} \wedge (S^{1,1})^{\wedge n}$ for $n, k \ge 0$, and thus bigraded homotopy groups, and **bigraded everything**....

うつん 川田 スポット エット スロッ

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
Motivic Sphere	es		

- The constant $U \mapsto \Delta^1/\partial \Delta^1 = S^1$, which realizes to $S^1 \in \text{Top}$. This is called the **simplicial sphere** and denoted by $S^{1,0}$.
- **2** The scheme $\mathbb{G}_m = (\mathbb{A}^1_{\mathbb{C}})^{\times}$, which realizes to $S^1 \in \mathbf{Top}$. This is called the **geometric sphere** and denoted by $S^{1,1}$.

This gives bigraded spheres $S^{n+k,n} = (S^{1,0})^{\wedge k} \wedge (S^{1,1})^{\wedge n}$ for $n, k \ge 0$, and thus bigraded homotopy groups, and **bigraded everything**....

うつん 川田 スポット エット スロッ

The first index $S^{\mathbf{m},n}$ is the topological dimension. The second index $S^{m,\mathbf{n}}$ is called the weight. Motivic Homotopy Theory 00

The cofiber C -

Applications to Motivic Chromatic Homotopy theory

うして ふぼう ふほう ふほう しょうく

Motivic Spectra and Examples

Theorem (Morel-Voevodsky, Jardine, Hu)

There is a symmetric monoidal (with the smash product $- \wedge -$) model category of motivic spectra $Spt_{\mathbb{C}}$

Motivic Homotopy Theory

The cofiber C:

うして ふぼう ふほう ふほう しょうく

Motivic Spectra and Examples

Theorem (Morel-Voevodsky, Jardine, Hu)

There is a symmetric monoidal (with the smash product $- \wedge -$) model category of motivic spectra $Spt_{\mathbb{C}}$, and the realization pair stabilizes to an adjunction

$$Spt_{\mathbb{C}} \xrightarrow[Sing]{R} Spt.$$

The cofiber C₇ 00000000

うして ふぼう ふほう ふほう しょうく

Motivic Spectra and Examples

Theorem (Morel-Voevodsky, Jardine, Hu)

There is a symmetric monoidal (with the smash product $- \wedge -$) model category of motivic spectra $Spt_{\mathbb{C}}$, and the realization pair stabilizes to an adjunction

$$Spt_{\mathbb{C}} \xrightarrow[\text{Sing}]{R} Spt.$$

The cofiber C₁ 00000000

うして ふぼう ふほう ふほう しょうく

Motivic Spectra and Examples

Theorem (Morel-Voevodsky, Jardine, Hu)

There is a symmetric monoidal (with the smash product $- \wedge -$) model category of motivic spectra $Spt_{\mathbb{C}}$, and the realization pair stabilizes to an adjunction

$$Spt_{\mathbb{C}} \xrightarrow[\text{Sing}]{R} Spt.$$

A lot of classical spectra have their motivic analogues. We have

• Spheres $S^{m,n}$

うして ふぼう ふほう ふほう しょうく

Motivic Spectra and Examples

Theorem (Morel-Voevodsky, Jardine, Hu)

There is a symmetric monoidal (with the smash product $- \wedge -$) model category of motivic spectra $Spt_{\mathbb{C}}$, and the realization pair stabilizes to an adjunction

$$Spt_{\mathbb{C}} \xrightarrow[\text{Sing}]{R} Spt.$$

- Spheres $S^{m,n}$
- Eilenberg-Maclane spectra $H\mathbb{F}_p$

The cofiber $C\tau$ 00000000

うつん 川田 スポット エット スロッ

Motivic Spectra and Examples

Theorem (Morel-Voevodsky, Jardine, Hu)

There is a symmetric monoidal (with the smash product $- \wedge -$) model category of motivic spectra $Spt_{\mathbb{C}}$, and the realization pair stabilizes to an adjunction

$$Spt_{\mathbb{C}} \xrightarrow[\text{Sing}]{R} Spt.$$

- Spheres $S^{m,n}$
- Eilenberg-Maclane spectra $H\mathbb{F}_p$
- \bullet Complex K-theory KGL and kgl

The cofiber $C\tau$ 00000000

うつん 川田 スポット エット スロッ

Motivic Spectra and Examples

Theorem (Morel-Voevodsky, Jardine, Hu)

There is a symmetric monoidal (with the smash product $- \wedge -$) model category of motivic spectra $Spt_{\mathbb{C}}$, and the realization pair stabilizes to an adjunction

$$Spt_{\mathbb{C}} \xrightarrow[\text{Sing}]{R} Spt.$$

- Spheres $S^{m,n}$
- Eilenberg-Maclane spectra $H\mathbb{F}_p$
- Complex K-theory KGL and kgl, with $|\beta| = (2, 1)$

うつん 川田 スポット エット スロッ

Motivic Spectra and Examples

Theorem (Morel-Voevodsky, Jardine, Hu)

There is a symmetric monoidal (with the smash product $- \wedge -$) model category of motivic spectra $Spt_{\mathbb{C}}$, and the realization pair stabilizes to an adjunction

$$Spt_{\mathbb{C}} \xrightarrow[\text{Sing}]{R} Spt.$$

- Spheres $S^{m,n}$
- Eilenberg-Maclane spectra $H\mathbb{F}_p$
- Complex K-theory KGL and kgl, with $|\beta| = (2, 1)$
- (Algebraic) Cobordism MGL

The cofiber C1 00000000

うして ふぼう ふほう ふほう しょうく

Motivic Spectra and Examples

Theorem (Morel-Voevodsky, Jardine, Hu)

There is a symmetric monoidal (with the smash product $- \wedge -$) model category of motivic spectra $Spt_{\mathbb{C}}$, and the realization pair stabilizes to an adjunction

$$Spt_{\mathbb{C}} \xrightarrow[\text{Sing}]{R} Spt.$$

- Spheres $S^{m,n}$
- Eilenberg-Maclane spectra $H\mathbb{F}_p$
- Complex K-theory KGL and kgl, with $|\beta| = (2, 1)$
- (Algebraic) Cobordism MGL, with $|x_i| = (2i, i)$

Motivic Spectra and Examples

Theorem (Morel-Voevodsky, Jardine, Hu)

There is a symmetric monoidal (with the smash product $- \wedge -$) model category of motivic spectra $Spt_{\mathbb{C}}$, and the realization pair stabilizes to an adjunction

$$Spt_{\mathbb{C}} \xrightarrow[\text{Sing}]{R} Spt.$$

A lot of classical spectra have their motivic analogues. We have

- Spheres $S^{m,n}$
- Eilenberg-Maclane spectra $H\mathbb{F}_p$
- Complex K-theory KGL and kgl, with $|\beta| = (2, 1)$
- (Algebraic) Cobordism MGL, with $|x_i| = (2i, i)$
- ...etc

and they all realize to their classical analogues.

Motivic Homotopy Theory	The cofiber $C\tau$	Applications to Motivic Chromatic Homotopy theory	
000	0000000	00000000	0000

The cofiber $C\tau$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Motivic Homotopy Theory	The cofiber $C\tau$	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
The Motivic A	dams Spe	ctral sequence	

Motivic Homotopy Theory	The cofiber $C\tau$	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
The Motivic A	dams Spe	ctral sequence	

Theorem (Voevodsky)

- The coefficients are $H\mathbb{F}_2^{*,*}(S^{0,0}) = \mathbb{M}_2 \cong \mathbb{F}_2[\tau]$ for $|\tau| = (0,1)$.
- The $H\mathbb{F}_2$ -Steenrod Algebra is $\mathcal{A}_{\mathbb{C}} \cong \mathbb{M}_2 \langle Sq^1, Sq^2, \ldots \rangle / Adem$.

うして ふぼう ふほう ふほう しょうく

Motivic Homotopy Theory	The cofiber $C\tau$ •0000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
The Motivic A	dams Spe	ctral sequence	

Theorem (Voevodsky)

- The coefficients are $H\mathbb{F}_2^{*,*}(S^{0,0}) = \mathbb{M}_2 \cong \mathbb{F}_2[\tau]$ for $|\tau| = (0,1)$.
- The $H\mathbb{F}_2$ -Steenrod Algebra is $\mathcal{A}_{\mathbb{C}} \cong \mathbb{M}_2 \langle Sq^1, Sq^2, \ldots \rangle / Adem$.

The $H\mathbb{F}_2$ motivic Adams spectral sequence for $S^{0,0}$ takes the form

$$\operatorname{Ext}_{\mathcal{A}_{\mathbb{C}}}(\mathbb{M}_2, \mathbb{M}_2) \Longrightarrow \pi_{*,*}(\widehat{S^{0,0}}_2),$$

うつん 川田 スポット エット スロッ

Motivic Homotopy Theory	The cofiber $C\tau$ ••••••••••••••••••••••••••••••••••••	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
The Motivic A	Adams Spe	ectral sequence	

Theorem (Voevodsky)

- The coefficients are $H\mathbb{F}_2^{*,*}(S^{0,0}) = \mathbb{M}_2 \cong \mathbb{F}_2[\tau]$ for $|\tau| = (0,1)$.
- The $H\mathbb{F}_2$ -Steenrod Algebra is $\mathcal{A}_{\mathbb{C}} \cong \mathbb{M}_2 \langle Sq^1, Sq^2, \ldots \rangle / Adem$.

The $H\mathbb{F}_2$ motivic Adams spectral sequence for $S^{0,0}$ takes the form $\operatorname{Ext}_{4_{\mathbb{C}}}(\mathbb{M}_2, \mathbb{M}_2) \Longrightarrow \pi_{**}(\widehat{S^{0,0}}_2),$

うつん 川田 スポット エット スロッ

and the element $\tau \in \operatorname{Ext}^0$ survives to a map $S^{0,-1} \xrightarrow{\tau} \widehat{S^{0,0}}_2$

Motivic Homotopy Theory	The cofiber $C\tau$ $\bullet 0000000$	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
The Motivic A	Adams Spe	ectral sequence	

Theorem (Voevodsky)

- The coefficients are $H\mathbb{F}_2^{*,*}(S^{0,0}) = \mathbb{M}_2 \cong \mathbb{F}_2[\tau]$ for $|\tau| = (0,1)$.
- The $H\mathbb{F}_2$ -Steenrod Algebra is $\mathcal{A}_{\mathbb{C}} \cong \mathbb{M}_2 \langle Sq^1, Sq^2, \ldots \rangle / Adem$.

The $H\mathbb{F}_2$ motivic Adams spectral sequence for $S^{0,0}$ takes the form

$$\operatorname{Ext}_{\mathcal{A}_{\mathbb{C}}}(\mathbb{M}_2, \mathbb{M}_2) \Longrightarrow \pi_{*,*}(\widehat{S^{0,0}}_2),$$

and the element $\tau \in \text{Ext}^0$ survives to a map $S^{0,-1} \xrightarrow{\tau} \widehat{S^{0,0}}_2$, but does not exist before 2-completion.

Therefore, we work in the **2-completed category**, and $S^{0,0}$ means the 2-completed sphere.

うつん 川田 スポット エット スロッ

Motivic Homotopy Theory 000	The cofiber $C\tau$ 0000000	Applications to Motivic Chromatic Homotopy theory 000000000	Bonus 0000
The realization	functor a	and $ au$	

$$S^0 \xrightarrow{\mathrm{id}} S^0$$

and realization has the computational effect of setting $\tau = 1$.

 $S^0 \xrightarrow{\mathrm{id}} S^0$

うして ふぼう ふほう ふほう しょうく

and realization has the computational effect of setting $\tau = 1$.

From the motivic A.s.s. to the classical A.s.s.

- copies of \mathbb{M}_2 become copies of \mathbb{F}_2
- copies of \mathbb{M}_2/τ^n disappear, i.e., τ -torsion disappears.

 $S^0 \xrightarrow{\mathrm{id}} S^0$

and realization has the computational effect of setting $\tau = 1$. From the motivic A.s.s. to the classical A.s.s.

- copies of \mathbb{M}_2 become copies of \mathbb{F}_2
- copies of \mathbb{M}_2/τ^n disappear, i.e., τ -torsion disappears.

For example $\eta^4 \in \pi_{4,4}$ is not zero

 $S^0 \xrightarrow{\mathrm{id}} S^0$

and realization has the computational effect of setting $\tau = 1$. From the motivic A.s.s. to the classical A.s.s.

- copies of \mathbb{M}_2 become copies of \mathbb{F}_2
- copies of \mathbb{M}_2/τ^n disappear, i.e., τ -torsion disappears.

For example $\eta^4 \in \pi_{4,4}$ is not zero, but is τ -torsion as $\tau \eta^4 = 0$

 $S^0 \xrightarrow{\mathrm{id}} S^0$

and realization has the computational effect of setting $\tau = 1$.

From the motivic A.s.s. to the classical A.s.s.

- copies of \mathbb{M}_2 become copies of \mathbb{F}_2
- copies of \mathbb{M}_2/τ^n disappear, i.e., τ -torsion disappears.

For example $\eta^4 \in \pi_{4,4}$ is not zero, but is τ -torsion as $\tau \eta^4 = 0$, and so η^4 realizes to 0 which is consistent with the classical $\eta^4 = 0 \in \pi_4$.

うつん 川田 スポット エット スロッ
The map $S^{0,-1} \xrightarrow{\tau} S^{0,0}$ realizes to

 $S^0 \xrightarrow{\mathrm{id}} S^0$

and realization has the computational effect of setting $\tau = 1$.

From the motivic A.s.s. to the classical A.s.s.

- copies of \mathbb{M}_2 become copies of \mathbb{F}_2
- copies of \mathbb{M}_2/τ^n disappear, i.e., τ -torsion disappears.

For example $\eta^4 \in \pi_{4,4}$ is not zero, but is τ -torsion as $\tau \eta^4 = 0$, and so η^4 realizes to 0 which is consistent with the classical $\eta^4 = 0 \in \pi_4$.

うつん 川田 スポット エット スロッ

Question

What happens when we let $\tau = 0$?

$$S^{0,-1} \xrightarrow{\tau} S^{0,0} \xrightarrow{i} C\tau \xrightarrow{p} S^{1,-1}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

$$S^{0,-1} \xrightarrow{\tau} S^{0,0} \xrightarrow{i} C\tau \xrightarrow{p} S^{1,-1}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Although it realizes to a tiny $* \in \mathbf{Top}$

$$S^{0,-1} \xrightarrow{\tau} S^{0,0} \xrightarrow{i} C\tau \xrightarrow{p} S^{1,-1}.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Although it realizes to a tiny $* \in \mathbf{Top}$, its homotopy is a miracle:

$$S^{0,-1} \xrightarrow{\tau} S^{0,0} \xrightarrow{i} C\tau \xrightarrow{p} S^{1,-1}.$$

Although it realizes to a tiny $* \in \mathbf{Top}$, its homotopy is a miracle:

Theorem (Hu-Kriz-Ormsby, Isaksen)

There is an isomorphism of bigraded abelian groups

$$\pi_{*,*}(C\tau) \xrightarrow{\cong} \tilde{E}_2(S^0; BP),$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

$$S^{0,-1} \xrightarrow{\tau} S^{0,0} \xrightarrow{i} C\tau \xrightarrow{p} S^{1,-1}.$$

Although it realizes to a tiny $* \in \mathbf{Top}$, its homotopy is a miracle:

Theorem (Hu-Kriz-Ormsby, Isaksen)

There is an isomorphism of bigraded abelian groups

$$\pi_{*,*}(C\tau) \xrightarrow{\cong} \tilde{E}_2(S^0; BP),$$

where $\tilde{E}_2(S^0; BP)$ is a (harmless) regrading of the Adams-Novikov E_2 -page for the sphere S^0 , i.e., $\operatorname{Ext}_{BP_*BP}(BP_*, BP_*)$.

・ロト ・ 西ト ・ ヨト ・ ヨー ・ つへぐ

000	$000 \bullet 0000$	Applications to Motivic Unromatic Homotopy theory 000000000	0000
Very cool ques	tion		

Question

Is there a ring structure on $C\tau$ inducing the product on \widetilde{E}_2 -AN(S^0)?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Motivic Homotopy Theory	The cofiber $C\tau$	Applications to Motivic Chromatic Homotopy theory	Bonus
000	00000000	000000000	0000
Notice the big	vanishing	regions for $C\tau$	

The classical E_2 -AN (S^0) has big vanishing areas:

• Adams-Novikov filtration > stem

- Adams-Novikov filtration > stem
- negative Adams-Novikov filtration

- \bullet Adams-Novikov filtration > stem
- negative Adams-Novikov filtration

うつん 川田 スポット エット スロッ

• negative stem.

- Adams-Novikov filtration > stem
- negative Adams-Novikov filtration

うつん 川田 スポット エット スロッ

• negative stem.

These vanishing areas give via the isomorphism $\pi_{*,*}(C\tau) \cong \widetilde{E}_2$ -AN (S^0)

- Adams-Novikov filtration > stem
- negative Adams-Novikov filtration

• negative stem.

These vanishing areas give via the isomorphism $\pi_{*,*}(C\tau) \cong \widetilde{E}_2$ -AN (S^0)

lots of vanishing in $\pi_{s,w}(C\tau)$,

- Adams-Novikov filtration > stem
- negative Adams-Novikov filtration
- negative stem.

These vanishing areas give via the isomorphism $\pi_{*,*}(C\tau) \cong \widetilde{E}_2$ -AN (S^0)

lots of vanishing in $\pi_{s,w}(C\tau)$,

and lots of vanishing in $[\sum_{s,w} C\tau, C\tau]$.

- Adams-Novikov filtration > stem
- negative Adams-Novikov filtration
- negative stem.

These vanishing areas give via the isomorphism $\pi_{*,*}(C\tau) \cong \widetilde{E}_2$ -AN (S^0)

lots of vanishing in $\pi_{s,w}(C\tau)$,

- Adams-Novikov filtration > stem
- negative Adams-Novikov filtration
- negative stem.

These vanishing areas give via the isomorphism $\pi_{*,*}(C\tau) \cong \widetilde{E}_2$ -AN (S^0)

lots of vanishing in $\pi_{s,w}(C\tau)$,

Motivic Ho	omotopy Theory	The cofiber $C\tau$	Applications to Motivic Chromatic Homotopy theory	Bonus		
000		00000 \bullet 00	000000000	0000		
The ring structure of $C\tau$						

Smash with $-\wedge C\tau$ the defining cofiber sequence of $C\tau$

$$S^{0,-1} \xrightarrow{\tau} S^{0,0} \xrightarrow{i} C\tau \xrightarrow{p} S^{1,-1}.$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Motivic Homotopy Theory	The cofiber $C\tau$	Applications to Motivic Chromatic Homotopy theory	Bonus
000	00000000	000000000	0000
The ring struct	ture of $C\tau$		

Smash with $-\wedge C\tau$ the defining cofiber sequence of $C\tau$

$$S^{0,-1} \wedge C\tau \xrightarrow{\tau} S^{0,0} \wedge C\tau \xrightarrow{i} C\tau \wedge C\tau \xrightarrow{p} S^{1,-1} \wedge C\tau.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Smash with $-\wedge C\tau$ the defining cofiber sequence of $C\tau$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Smash with $- \wedge C\tau$ the defining cofiber sequence of $C\tau$

ション ふゆ く は と く ほ と く 日 と

•
$$\tau \in [\Sigma^{0,-1}C\tau, C\tau] = 0$$

- there is a left unital multiplication μ
- $\bullet\,$ and a splitting $C\tau\wedge C\tau\simeq C\tau\vee\Sigma^{1,-1}C\tau$

Smash with $- \wedge C\tau$ the defining cofiber sequence of $C\tau$

うして ふぼう ふほう ふほう しょうく

•
$$\tau \in [\Sigma^{0,-1}C\tau, C\tau] = 0$$

- there is a left unital multipication μ
- and a splitting $C\tau \wedge C\tau \simeq C\tau \vee \Sigma^{1,-1}C\tau$

•
$$[\Sigma^{1,-1}C\tau,C\tau]=0$$

- μ is unique
- μ is the projection on the first factor $C\tau$

Motivic Homotopy Theory 000	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory 000000000	Bonus 0000
The good ring	structure	on $C\tau$	
			_
Theorem (G.)			

The multiplication on $C\tau$ extends (uniquely) to an E_{∞} -ring structure.

Motivic Homotopy Theory 000	The cofiber $C\tau$ 000000	Applications to Motivic Chromatic Homotopy theory 000000000	Bonus 0000
The good ring	structure	on $C\tau$	
\square			
1 neorem (G.)			

The multiplication on $C\tau$ extends (uniquely) to an E_{∞} -ring structure.

Corollary

The isomorphism $\pi_{*,*}(C\tau) \cong \widetilde{E}_2$ -AN(S⁰) is an isomorphism of higher rings, i.e., preserves all higher products.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivic Homotopy Theory 000	The cofiber $C\tau$ 000000	Applications to Motivic Chromatic Homotopy theory 000000000	Bonus 0000
The good ring	structure	on $C\tau$	
Theorem (G.)			

The multiplication on $C\tau$ extends (uniquely) to an E_{∞} -ring structure.

Corollary

The isomorphism $\pi_{*,*}(C\tau) \cong \widetilde{E}_2$ -AN(S⁰) is an isomorphism of higher rings, i.e., preserves all higher products.

うつん 川田 スポット エット スロッ

Theorem (G.)

In fact every $C\tau^n$ admits a unique E_{∞} -ring structure.

Motivic Homotopy Theory	The cofiber $C\tau$ 0000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
Operations and	d Co-oper	ations on $C\tau$	

Recall the maps i and p in the defining cofiber sequence of $C\tau$

$$S^{0,-1} \xrightarrow{\tau} S^{0,0} \xrightarrow{i} C\tau \xrightarrow{p} S^{1,-1}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

 $\begin{array}{c|cccc} & \text{Motivic Homotopy Theory} & \text{The cofiber } \mathcal{C}\tau & \text{Applications to Motivic Chromatic Homotopy theory} & \text{Bonus} \\ \hline & \text{oooooooo} & \text{oooooooo} & \text{oooooooo} & \text{oooooooo} \\ \hline & \text{Operations and Co-operations on } \mathcal{C}\tau \end{array}$

Recall the maps i and p in the defining cofiber sequence of $C\tau$

$$S^{0,-1} \xrightarrow{\tau} S^{0,0} \xrightarrow{i} C\tau \xrightarrow{p} S^{1,-1}$$

Proposition (G.)

• The E_{∞} -ring spectrum $C\tau \wedge C\tau$ has homotopy ring

$$\pi_{*,*}\left(C\tau\wedge C\tau\right)\cong\widetilde{E}_2\text{-}AN(S^0)[x]/x^2$$

イロト 不得下 イヨト イヨト 一日 うらつ

Recall the maps i and p in the defining cofiber sequence of $C\tau$

$$S^{0,-1} \xrightarrow{\tau} S^{0,0} \xrightarrow{i} C\tau \xrightarrow{p} S^{1,-1}.$$

Proposition (G.)

• The E_{∞} -ring spectrum $C\tau \wedge C\tau$ has homotopy ring

$$\pi_{*,*}\left(C\tau\wedge C\tau\right)\cong\widetilde{E}_2\text{-}AN(S^0)[x]/x^2$$

• The A_{∞} -endomorphism spectrum $\operatorname{End}(C\tau)$ has homotopy ring

$$\pi_{*,*} \left(\operatorname{End}(C\tau) \right) \cong \widetilde{E}_2 \text{-} AN(S^0) \left\langle x \right\rangle \middle/ \begin{array}{c} ax - (-1)^{|a|} xa = i \circ p(a) \\ x^2 = 0 \end{array}$$

うつう 山田 エル・エー・ エー・ショー

Motivic Homotopy Theory	The cofiber $C \tau$	Applications to Motivic Chromatic Homotopy theory	
000	0000000	00000000	0000

Applications to Motivic Chromatic Homotopy theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		•00000000	0000
Parts of the cla	assical Chi	romatic story	

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□▶ ◆○▶

Motivic Homotopy Theory 000	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory ©00000000	Bonus 0000
Parts of the cla	assical Chi	romatic story	

Motivic Homotopy Theory 000	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory •00000000	Bonus 0000
Parts of the cl	assical Ch	romatic story	

- 0 Start with complex cobordism <math>MU.
- 2 Quillen showed $MU_{(p)} \simeq \lor BP$.

Parts of the classical Chromatic story	Motivic Homotopy Theory 000	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory •00000000	Bonus 0000
	Parts of the cla	assical Chi	romatic story	

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

- 0 Start with complex cobordism MU.
- **2** Quillen showed $MU_{(p)} \simeq \lor BP$.
- **③** From BP, we construct the fields K(n).

000 0000000	00000000000000000000000000000000000000	0000	
Parts of the classica	al Chromatic sto	ry	

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

- 0 Start with complex cobordism MU.
- **2** Quillen showed $MU_{(p)} \simeq \lor BP$.
- **③** From BP, we construct the fields K(n).

Here are some cool properties of these guys:

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		•00000000	0000
Parts of the c	lassical Ch	aromatic story	

- 0 Start with complex cobordism <math>MU.
- ② Quillen showed $MU_{(p)} \simeq \lor BP$.
- **③** From BP, we construct the fields K(n).

Here are some cool properties of these guys:

• The Morava *K*-theories *K*(*n*) are essentially the **only graded** fields

うして ふぼう ふほう ふほう しょうく

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		•00000000	0000
Parts of the c	lassical Cl	hromatic story	

- 0 Start with complex cobordism MU.
- ② Quillen showed $MU_{(p)} \simeq \lor BP$.
- **③** From BP, we construct the fields K(n).

Here are some cool properties of these guys:

 The Morava K-theories K(n) are essentially the only graded fields, and K(n)*-acyclic spectra the only thick subcategories of FinSpt.

うして ふぼう ふほう ふほう しょうく

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		•00000000	0000
Parts of the c	lassical Cl	hromatic story	

- 0 Start with complex cobordism MU.
- **2** Quillen showed $MU_{(p)} \simeq \lor BP$.
- **③** From BP, we construct the fields K(n).

Here are some cool properties of these guys:

• The Morava K-theories K(n) are essentially the **only graded** fields, and $K(n)_*$ -acyclic spectra the **only thick subcategories** of **FinSpt**.

(日) (日) (日) (日) (日) (日) (日) (日)

2 *MU* detects nilpotence
Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		•00000000	0000
Parts of the c	lassical Ch	romatic story	

- 0 Start with complex cobordism MU.
- **2** Quillen showed $MU_{(p)} \simeq \lor BP$.
- **③** From BP, we construct the fields K(n).

Here are some cool properties of these guys:

• The Morava K-theories K(n) are essentially the only graded fields, and $K(n)_*$ -acyclic spectra the only thick subcategories of FinSpt.

2 *MU* **detects nilpotence**, and *p*-locally *BP* does too.

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		•00000000	0000
Parts of the cl	assical Ch	nromatic story	

- 0 Start with complex cobordism MU.
- **2** Quillen showed $MU_{(p)} \simeq \lor BP$.
- **③** From BP, we construct the fields K(n).

Here are some cool properties of these guys:

- The Morava K-theories K(n) are essentially the only graded fields, and $K(n)_*$ -acyclic spectra the only thick subcategories of FinSpt.
- **2** *MU* **detects nilpotence**, and *p*-locally *BP* does too.
- Every $X \in \mathbf{FinSpt}_{(p)}$ has a well-defined type, and any spectrum of type *n* admits a periodic self-map inducing v_n^k in K(n).

• There is an algebraic cobordism MGL, with $MGL_{*,*} = \hat{\mathbb{Z}}_2[\tau][x_i]$.

O There is an algebraic cobordism MGL, with MGL_{*,*} = Â₂[τ][x_i].
O Similarly MGL ≃ ∨BPGL with BPGL_{*,*} ≃ Â₂[τ][v_i].

うして ふぼう ふほう ふほう しょうく

- There is an algebraic cobordism MGL, with $MGL_{*,*} = \hat{\mathbb{Z}}_2[\tau][x_i]$.
- ② Similarly $MGL \simeq \lor BPGL$ with $BPGL_{*,*} \cong \hat{\mathbb{Z}}_2[\tau][v_i]$.
- **③** We also get Morava K-theories K(n) with $K(n)_{*,*} \cong \mathbb{F}_2[\tau][v_n^{\pm 1}]$.

うして ふぼう ふほう ふほう しょうく

- There is an algebraic cobordism MGL, with $MGL_{*,*} = \hat{\mathbb{Z}}_2[\tau][x_i]$.
- **2** Similarly $MGL \simeq \lor BPGL$ with $BPGL_{*,*} \cong \hat{\mathbb{Z}}_2[\tau][v_i]$.
- **③** We also get Morava K-theories K(n) with $K(n)_{*,*} \cong \mathbb{F}_2[\tau][v_n^{\pm 1}]$.

うつん 川田 スポット エット スロッ

However the story is more complicated, for example:

- There is an algebraic cobordism MGL, with $MGL_{*,*} = \hat{\mathbb{Z}}_2[\tau][x_i]$.
- **②** Similarly $MGL \simeq \lor BPGL$ with $BPGL_{*,*} \cong \hat{\mathbb{Z}}_2[\tau][v_i]$.
- **③** We also get Morava K-theories K(n) with $K(n)_{*,*} \cong \mathbb{F}_2[\tau][v_n^{\pm 1}]$.

うつん 川田 スポット エット スロッ

However the story is more complicated, for example:

9 The K(n)'s are **not fields** (even though $K(n) \wedge C\tau$ are).

- There is an algebraic cobordism MGL, with $MGL_{*,*} = \hat{\mathbb{Z}}_2[\tau][x_i]$.
- **②** Similarly $MGL \simeq \lor BPGL$ with $BPGL_{*,*} \cong \hat{\mathbb{Z}}_2[\tau][v_i]$.
- **③** We also get Morava K-theories K(n) with $K(n)_{*,*} \cong \mathbb{F}_2[\tau][v_n^{\pm 1}]$.

うつん 川田 スポット エット スロッ

However the story is more complicated, for example:

- **9** The K(n)'s are **not fields** (even though $K(n) \wedge C\tau$ are).
- **②** There are **more thick subcategories** [Joachimi].

What is the Motivic Chromatic story ? Let p = 2.

- **9** There is an algebraic cobordism MGL, with $MGL_{*,*} = \hat{\mathbb{Z}}_2[\tau][x_i]$.
- **2** Similarly $MGL \simeq \lor BPGL$ with $BPGL_{*,*} \cong \hat{\mathbb{Z}}_2[\tau][v_i]$.
- **③** We also get Morava K-theories K(n) with $K(n)_{*,*} \cong \mathbb{F}_2[\tau][v_n^{\pm 1}]$.

(日) (日) (日) (日) (日) (日) (日) (日)

However the story is more complicated, for example:

- **9** The K(n)'s are **not fields** (even though $K(n) \wedge C\tau$ are).
- **②** There are **more thick subcategories** [Joachimi].
- In MGL does not detect nilpotence

What is the Motivic Chromatic story ? Let p = 2.

- There is an algebraic cobordism MGL, with $MGL_{*,*} = \hat{\mathbb{Z}}_2[\tau][x_i]$.
- ② Similarly $MGL \simeq \lor BPGL$ with $BPGL_{*,*} \cong \hat{\mathbb{Z}}_2[\tau][v_i]$.
- **③** We also get Morava K-theories K(n) with $K(n)_{*,*} \cong \mathbb{F}_2[\tau][v_n^{\pm 1}]$.

However the story is more complicated, for example:

- **9** The K(n)'s are **not fields** (even though $K(n) \wedge C\tau$ are).
- **②** There are **more thick subcategories** [Joachimi].
- MGL does not detect nilpotence, as η: S^{1,1} → S^{0,0} is not nilpotent and all |x_i| = (2ⁱ, 2ⁱ⁻¹) are in even degrees.

What is the Motivic Chromatic story ? Let p = 2.

- There is an algebraic cobordism MGL, with $MGL_{*,*} = \hat{\mathbb{Z}}_2[\tau][x_i]$.
- **2** Similarly $MGL \simeq \lor BPGL$ with $BPGL_{*,*} \cong \hat{\mathbb{Z}}_2[\tau][v_i]$.
- **③** We also get Morava K-theories K(n) with $K(n)_{*,*} \cong \mathbb{F}_2[\tau][v_n^{\pm 1}]$.

However the story is more complicated, for example:

- **9** The K(n)'s are **not fields** (even though $K(n) \wedge C\tau$ are).
- **②** There are **more thick subcategories** [Joachimi].
- MGL does not detect nilpotence, as η: S^{1,1} → S^{0,0} is not nilpotent and all |x_i| = (2ⁱ, 2ⁱ⁻¹) are in even degrees.

(日) (日) (日) (日) (日) (日) (日) (日)

In the set of the s

Motivic Homotopy Theory	The cofiber $C\tau$	Applications to Motivic Chromatic Homotopy theory	Bonus
000	00000000	00000000	0000
There is more	(non-)Nilp	otence and Periodicity	

• There are more non-nilpotent elements than $\eta \in \pi_{1,1}$. For example the classes detected by $Ph_1 \in \pi_{9,5}$, or $d_1 \in \pi_{32,18}$.

うつん 川田 スポット エット スロッ

• There are more non-nilpotent elements than $\eta \in \pi_{1,1}$. For example the classes detected by $Ph_1 \in \pi_{9,5}$, or $d_1 \in \pi_{32,18}$.

2 There are more periodicity operators than the v_i 's.

• There are more non-nilpotent elements than $\eta \in \pi_{1,1}$. For example the classes detected by $Ph_1 \in \pi_{9,5}$, or $d_1 \in \pi_{32,18}$.

うつん 川田 スポット エット スロッ

② There are **more periodicity operators** than the v_i 's. For example, the class that Ph_1 detects is η -periodic

 Motivic Homotopy Theory
 The coffber Gr
 Applications to Motivic Chromatic Homotopy theory
 Bonus

 000
 0000000
 0000000
 0000000
 000000
 0000

 There is more (non-)Nilpotence and Periodicity
 0000000
 0000000
 0000000
 0000000

We need something bigger than MGL to detect nilpotence and to capture all the periodicity.

- There are more non-nilpotent elements than $\eta \in \pi_{1,1}$. For example the classes detected by $Ph_1 \in \pi_{9,5}$, or $d_1 \in \pi_{32,18}$.
- **②** There are **more periodicity operators** than the v_i 's. For example, the class that Ph_1 detects is η -periodic, and Dan Isaksen observed g-periodic classes in $\pi_{*,*}(S^{0,0})$.

うつん 川田 スポット エット スロッ

 Motivic Homotopy Theory
 The coffber Gr
 Applications to Motivic Chromatic Homotopy theory
 Bonus

 000
 0000000
 0000000
 0000000
 000000
 0000

 There is more (non-)Nilpotence and Periodicity
 0000000
 0000000
 0000000
 0000000

We need something bigger than MGL to detect nilpotence and to capture all the periodicity.

- There are more non-nilpotent elements than $\eta \in \pi_{1,1}$. For example the classes detected by $Ph_1 \in \pi_{9,5}$, or $d_1 \in \pi_{32,18}$.
- **2** There are more periodicity operators than the v_i 's. For example, the class that Ph_1 detects is η -periodic, and Dan Isaksen observed g-periodic classes in $\pi_{*,*}(S^{0,0})$.

Michael Andrews et al. suggested that $\eta = w_0$, and that there should be an infinite family of w_i 's behaving like the v_i 's.

There is more (non-)Nilpotence and Periodicity

We need something bigger than MGL to detect nilpotence and to capture all the periodicity.

- There are more non-nilpotent elements than $\eta \in \pi_{1,1}$. For example the classes detected by $Ph_1 \in \pi_{9,5}$, or $d_1 \in \pi_{32,18}$.
- **②** There are **more periodicity operators** than the v_i 's. For example, the class that Ph_1 detects is η -periodic, and Dan Isaksen observed g-periodic classes in $\pi_{*,*}(S^{0,0})$.

Michael Andrews et al. suggested that $\eta = w_0$, and that there should be an infinite family of w_i 's behaving like the v_i 's. He started the process and constructed a w_1^4 -map on $C\eta$, at the prime p = 2.

There is more (non-)Nilpotence and Periodicity

We need something bigger than MGL to detect nilpotence and to capture all the periodicity.

- There are more non-nilpotent elements than $\eta \in \pi_{1,1}$. For example the classes detected by $Ph_1 \in \pi_{9,5}$, or $d_1 \in \pi_{32,18}$.
- **②** There are **more periodicity operators** than the v_i 's. For example, the class that Ph_1 detects is η -periodic, and Dan Isaksen observed g-periodic classes in $\pi_{*,*}(S^{0,0})$.

Michael Andrews et al. suggested that $\eta = w_0$, and that there should be an infinite family of w_i 's behaving like the v_i 's. He started the process and constructed a w_1^4 -map on $C\eta$, at the prime p = 2. His intuition for these maps comes from using the algebraic Novikov s.s.

・ロト ・ 通 ト ・ ヨ ト ・ ヨ ・ の へ ()・

There is more (non-)Nilpotence and Periodicity

We need something bigger than MGL to detect nilpotence and to capture all the periodicity.

- There are more non-nilpotent elements than $\eta \in \pi_{1,1}$. For example the classes detected by $Ph_1 \in \pi_{9,5}$, or $d_1 \in \pi_{32,18}$.
- **②** There are **more periodicity operators** than the v_i 's. For example, the class that Ph_1 detects is η -periodic, and Dan Isaksen observed g-periodic classes in $\pi_{*,*}(S^{0,0})$.

Michael Andrews et al. suggested that $\eta = w_0$, and that there should be an infinite family of w_i 's behaving like the v_i 's. He started the process and constructed a w_1^4 -map on $C\eta$, at the prime p = 2. His intuition for these maps comes from using the algebraic Novikov s.s.

Using $C\tau$, the w_i 's fit in the following setting:

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		00000000	0000
wBP and Mor	rava K -the	Pories $K(w_i)$	

U,

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Theorem (G.)

9 For every n, there is an E_{∞} -ring spectrum $K(w_n)$ with homotopy

 $\pi_{*,*}(K(w_n)) \cong \mathbb{F}_2[w_n^{\pm 1}]$

 $\begin{array}{c} \begin{array}{c} & \text{Motivie Homotopy Theory} \\ \text{OOO} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{The coffiber } \mathcal{C}\tau \\ \text{OOO} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{Applications to Motivic Chromatic Homotopy theory} \\ \text{OOO} \end{array} \begin{array}{c} \begin{array}{c} \text{Bonus} \\ \text{OOO} \end{array} \end{array} \end{array} \\ \begin{array}{c} \text{OOO} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array}$

Theorem (G.)

9 For every n, there is an E_{∞} -ring spectrum $K(w_n)$ with homotopy

 $\pi_{*,*}(K(w_n)) \cong \mathbb{F}_2[w_n^{\pm 1}],$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

which is a graded field and with the correct cohomology.

wBP and Morava K-theories $K(w_i)$

Theorem (G.)

9 For every n, there is an E_{∞} -ring spectrum $K(w_n)$ with homotopy

 $\pi_{*,*}(K(w_n)) \cong \mathbb{F}_2[w_n^{\pm 1}],$

which is a graded field and with the correct cohomology.

2 There is a (almost certainly E_{∞}) ring spectrum wBP with homotopy

 $\pi_{*,*}(wBP) \cong \mathbb{F}_2[w_0, w_1, \ldots]$

うして ふぼう ふほう ふほう しょうく

 Motivic Homotopy Theory
 The cofiber Cr
 Applications to Motivic Chromatic Homotopy theory
 Bonus

 000
 0000000
 00000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

wBP and Morava K-theories $K(w_i)$

Theorem (G.)

9 For every n, there is an E_{∞} -ring spectrum $K(w_n)$ with homotopy

 $\pi_{*,*}(K(w_n)) \cong \mathbb{F}_2[w_n^{\pm 1}],$

which is a graded field and with the correct cohomology.

2 There is a (almost certainly E_{∞}) ring spectrum wBP with homotopy

 $\pi_{*,*}(wBP) \cong \mathbb{F}_2[w_0, w_1, \ldots],$

うして ふぼう ふほう ふほう しょうく

and with the correct cohomology.

 Motivic Homotopy Theory
 The cofiber $C\tau$ Applications to Motivic Chromatic Homotopy theory
 Bonus

 000
 000<0000</td>
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</td

wBP and Morava K-theories $K(w_i)$

Theorem (G.)

9 For every n, there is an E_{∞} -ring spectrum $K(w_n)$ with homotopy

 $\pi_{*,*}(K(w_n)) \cong \mathbb{F}_2[w_n^{\pm 1}],$

which is a graded field and with the correct cohomology.

2 There is a (almost certainly E_{∞}) ring spectrum wBP with homotopy

 $\pi_{*,*}(wBP) \cong \mathbb{F}_2[w_0, w_1, \ldots],$

うつん 川田 スポット エット スロッ

and with the correct cohomology.

Question

Where do the w_i 's come from ?

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		00000000	0000
The v_i 's and the	he Steenro	od Algebra	

$$\mathcal{A}_{*,*} \cong \mathbb{M}_2[\xi_1, \xi_2, \dots, \tau_0, \tau_1, \dots] / \tau_i^2 = \tau \xi_{i+1}$$

$$\mathcal{A}_{*,*} \cong \mathbb{M}_2[\xi_1, \xi_2, \dots, \tau_0, \tau_1, \dots] / \tau_i^2 = \tau \xi_{i+1},$$

and denote by $Q_i \in \mathcal{A}$ the dual of τ_i in the monomial basis.

$$\mathcal{A}_{*,*} \cong \mathbb{M}_2[\xi_1, \xi_2, \dots, \tau_0, \tau_1, \dots] / \tau_i^2 = \tau \xi_{i+1},$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

and denote by $Q_i \in \mathcal{A}$ the dual of τ_i in the monomial basis.

• The Q_i 's are primitive

$$\mathcal{A}_{*,*} \cong \mathbb{M}_2[\xi_1, \xi_2, \dots, \tau_0, \tau_1, \dots] / \tau_i^2 = \tau \xi_{i+1},$$

and denote by $Q_i \in \mathcal{A}$ the dual of τ_i in the monomial basis.

• The Q_i 's are primitive and exterior.

$$\mathcal{A}_{*,*} \cong \mathbb{M}_2[\xi_1,\xi_2,\ldots,\tau_0,\tau_1,\ldots] / \tau_i^2 = \tau \xi_{i+1},$$

うつん 川田 スポット エット スロッ

and denote by $Q_i \in \mathcal{A}$ the dual of τ_i in the monomial basis.

O The Q_i's are primitive and exterior.
O HF₂^{*,*}(BPGL) ≅ A//E(Q₀, Q₁,...).

$$\mathcal{A}_{*,*} \cong \mathbb{M}_2[\xi_1,\xi_2,\ldots,\tau_0,\tau_1,\ldots] / \tau_i^2 = \tau \xi_{i+1},$$

and denote by $Q_i \in \mathcal{A}$ the dual of τ_i in the monomial basis.

- The Q_i 's are primitive and exterior.
- $H\mathbb{F}_2^{*,*}(BPGL) \cong \mathcal{A}//E(Q_0,Q_1,\ldots).$
- ⁽⁶⁾ By a change of rings, its Adams s.s. collapses giving

$$\pi_{*,*}(BPGL)_2 \cong \hat{\mathbb{Z}}_2[\tau][v_1, v_2, \ldots].$$

Motivic Homotopy Theory 000	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory 000000000	Bonus 0000
The w_i 's and t	he Steenro	od Algebra	

$$\mathcal{A}_{*,*} \cong \mathbb{M}_2[\xi_1, \xi_2, \dots, \tau_0, \tau_1, \dots] / \tau_i^2 = \tau \xi_{i+1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

$$\mathcal{A}_{*,*} \cong \mathbb{M}_2[\xi_1, \xi_2, \dots, \tau_0, \tau_1, \dots] / \tau_i^2 = \tau \xi_{i+1},$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

and denote by $R_i \in \mathcal{A}$ the dual of ξ_i in the monomial basis.

$$\mathcal{A}_{*,*} \cong \mathbb{M}_2[\xi_1, \xi_2, \dots, \tau_0, \tau_1, \dots] / \tau_i^2 = \tau \xi_{i+1},$$

and denote by $R_i \in \mathcal{A}$ the dual of ξ_i in the monomial basis.

The w_i 's would like to arise from the R_i 's, but they are not exterior.

$$\mathcal{A}_{*,*} \cong \mathbb{M}_2[\xi_1, \xi_2, \dots, \tau_0, \tau_1, \dots] / \tau_i^2 = \tau \xi_{i+1},$$

and denote by $R_i \in \mathcal{A}$ the dual of ξ_i in the monomial basis.

The w_i 's would like to arise from the R_i 's, but they are not exterior.

うつん 川田 スポット エット スロッ

Remark

• The R_i 's are exterior modulo τ .

$$\mathcal{A}_{*,*} \cong \mathbb{M}_2[\xi_1, \xi_2, \dots, \tau_0, \tau_1, \dots] / \tau_i^2 = \tau \xi_{i+1},$$

and denote by $R_i \in \mathcal{A}$ the dual of ξ_i in the monomial basis.

The w_i 's would like to arise from the R_i 's, but they are not exterior.

うつん 川田 スポット エット スロッ

Remark

- The R_i 's are exterior modulo τ .
- Since $\tau \eta^4 = 0 \in \pi_{*,*}$
Voevodsky computed the motivic $H\mathbb{F}_2$ -Steenrod Algebra, its dual is

$$\mathcal{A}_{*,*} \cong \mathbb{M}_2[\xi_1, \xi_2, \dots, \tau_0, \tau_1, \dots] / \tau_i^2 = \tau \xi_{i+1},$$

and denote by $R_i \in \mathcal{A}$ the dual of ξ_i in the monomial basis.

The w_i 's would like to arise from the R_i 's, but they are not exterior.

Remark

- The R_i 's are exterior modulo τ .
- Since $\tau \eta^4 = 0 \in \pi_{*,*}$, we need to mod out by τ if we want polynomial homotopy in the w_i 's.

000 0000000 000000 00	0000
The w_i 's from $H\mathbb{F}_2 \wedge C\tau$	

Therefore, let $\overline{H} = H\mathbb{F}_2 \wedge C\tau$ and it has coefficients $\overline{H}_{*,*} \cong \mathbb{F}_2$.

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
The w_i 's from	$H\mathbb{F}_2 \wedge C\tau$		

$$\bar{\mathcal{A}}_{*,*} \cong \mathbb{F}_2[\xi_1, \xi_2, \ldots] \otimes E(\tau_0, \tau_1, \ldots) \otimes E(x),$$

うして ふぼう ふほう ふほう しょうく

where x is a τ -Bockstein

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
The w_i 's from	$H\mathbb{F}_2 \wedge C\tau$		

$$\bar{\mathcal{A}}_{*,*} \cong \mathbb{F}_2[\xi_1, \xi_2, \ldots] \otimes E(\tau_0, \tau_1, \ldots) \otimes E(x),$$

where x is a τ -Bockstein and the R_i 's are now primitive and exterior.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

$$\bar{\mathcal{A}}_{*,*} \cong \mathbb{F}_2[\xi_1, \xi_2, \ldots] \otimes E(\tau_0, \tau_1, \ldots) \otimes E(x),$$

where x is a τ -Bockstein and the R_i 's are now primitive and exterior. We are looking for a spectrum with the property

$$\bar{H}^{*,*}(wBP) \cong \bar{\mathcal{A}}//E(R_1, R_2, \ldots)$$

うつん 川田 スポット エット スロッ

$$\bar{\mathcal{A}}_{*,*} \cong \mathbb{F}_2[\xi_1,\xi_2,\ldots] \otimes E(\tau_0,\tau_1,\ldots) \otimes E(x),$$

where x is a τ -Bockstein and the R_i 's are now primitive and exterior. We are looking for a spectrum with the property

$$\bar{H}^{*,*}(wBP) \cong \bar{\mathcal{A}}//E(R_1, R_2, \ldots),$$

its Adams s.s. would collapse and give $\pi_{*,*}(wBP)_2 \cong \mathbb{F}_2[w_0, w_1, \ldots]$.

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
How about wN	MU?		

The degree of the w_i 's on $\pi_{*,*}(wBP)$ are $|w_i| = (2^{i+1} - 3, 2^i - 1)$

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
How about wN	MU?		

The degree of the w_i 's on $\pi_{*,*}(wBP)$ are $|w_i| = (2^{i+1} - 3, 2^i - 1)$, so

$$|w_0| = (1, 1)$$

 $|w_1| = (5, 3)$
nothing in (9, 5)
 $|w_2| = (13, 7)$
etc,

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		0000000000	0000
How about wN	MU?		

The degree of the w_i 's on $\pi_{*,*}(wBP)$ are $|w_i| = (2^{i+1} - 3, 2^i - 1)$, so

$$|w_0| = (1, 1)$$

 $|w_1| = (5, 3)$
nothing in (9, 5)
 $|w_2| = (13, 7)$
etc,

which is the same pattern as the v_i 's of BP_* between the x_i 's of MU_* .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	0000
How about wN	MU?		

The degree of the w_i 's on $\pi_{*,*}(wBP)$ are $|w_i| = (2^{i+1} - 3, 2^i - 1)$, so

 $|w_0| = (1, 1)$ $|w_1| = (5, 3)$ nothing in (9, 5) $|w_2| = (13, 7)$ etc,

which is the same pattern as the v_i 's of BP_* between the x_i 's of MU_* .

Corollary

There is a (almost certainly E_{∞}) ring spectrum wMU with homotopy

$$\pi_{*,*}(wMU) \cong \mathbb{F}_2[y_1, y_2, \ldots],$$

where $|y_i| = (4i + 1, 2i + 1)$, and which splits as a wedge of wBP's.

Motivic Homotopy Theory 000	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory 00000000	Bonus 0000
What's next ?			

▲□▶ ▲課▶ ▲注▶ ▲注▶ … 注: のへぐ

Question

• Is there an interpretation of wMU ?

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		00000000	0000
What's next?			

Question

- Is there an interpretation of wMU ?
- Do motivic BP and wBP capture all the chromatic phenomena ?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Motivic	Theory

The cofiber $C\tau$

うつん 川田 スポット エット スロッ

What's next ?

Question

- Is there an interpretation of wMU ?
- Do motivic BP and wBP capture all the chromatic phenomena ?
- The $K(w_0)$ -local sphere was computed by Andrews-Miller with Guillou-Isaksen

$$\pi_{*,*}\left(L_{K(w_0)}S^{0,0}\right) \cong \mathbb{F}_2[\eta^{\pm 1}][\sigma,\mu_9] / (\eta\sigma)^2.$$

Homotopy	Theory

The cofiber $C\tau$

うして ふぼう ふほう ふほう しょうく

What's next ?

Question

- Is there an interpretation of wMU ?
- Do motivic BP and wBP capture all the chromatic phenomena ?
- The $K(w_0)$ -local sphere was computed by Andrews-Miller with Guillou-Isaksen

$$\pi_{*,*}\left(L_{K(w_0)}S^{0,0}\right) \cong \mathbb{F}_2[\eta^{\pm 1}][\sigma,\mu_9] / (\eta\sigma)^2.$$

What is the $L_{K(w_1)}S^{0,0}$?

Motivic Homotopy Theory	The cofiber $C\tau$	Applications to Motivic Chromatic Homotopy theory	Bonus
000	0000000	00000000	0000

Bonus

Motivic Homotopy Theory	The cofiber $C\tau$ 00000000	Applications to Motivic Chromatic Homotopy theory	Bonus
000		000000000	OOO
Bonus			

- **9** Bonus 1: $S/2 \wedge C\tau$ admits a v_1^1 -self map (instead of v_1^4 on S/2)
- **2** Bonus 2: $kO \wedge C\tau$ admits a v_1^2 -self map (instead of v_1^4 on kO)

 $\begin{array}{c} \begin{array}{c} \text{Motivic Homotopy Theory} \\ \text{OO} \end{array} \begin{array}{c} \text{The cofiber } \mathcal{C}_{\tau} \\ \text{OOO} \end{array} \begin{array}{c} \text{Applications to Motivic Chromatic Homotopy theory} \\ \text{OOOOOOOOO} \end{array} \begin{array}{c} \text{Bonus} \\ \text{OOO} \end{array} \end{array}$

There is no map $\Sigma^{2,1}S/2 \xrightarrow{v_1} S/2$. Indeed

うつん 川田 スポット エット スロッ

 $\begin{array}{c} \begin{array}{c} \text{Motivic Homotopy Theory} \\ \text{OO} \end{array} \begin{array}{c} \text{The cofiber } \mathcal{C}_{\tau} \\ \text{OOO} \end{array} \begin{array}{c} \text{Applications to Motivic Chromatic Homotopy theory} \\ \text{OOOOOOOOO} \end{array} \begin{array}{c} \text{Bonus} \\ \text{OOO} \end{array} \end{array}$

There is no map $\Sigma^{2,1}S/2 \xrightarrow{v_1} S/2$. Indeed

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

 $\begin{array}{c} \begin{array}{c} \text{Motivic Homotopy Theory}\\ \text{oo} \end{array} \begin{array}{c} \text{The cofiber } \mathcal{C}_{\tau} \\ \text{ooo} \end{array} \begin{array}{c} \text{Applications to Motivic Chromatic Homotopy theory}\\ \text{ooooooooo} \end{array} \begin{array}{c} \text{Bonus}\\ \text{ooo} \end{array} \end{array}$

There is no map $\Sigma^{2,1}S/2 \xrightarrow{v_1} S/2$. Indeed

うつん 川田 スポット エット スロッ

since $2 \cdot \bar{\eta}$ is not zero in $\pi_{2,1}S/2 \cong \mathbb{Z}/4$.

 $\begin{array}{c|c} \begin{array}{c} \mbox{Motivic Homotopy Theory} & \mbox{The cofiber } \mathcal{C}\tau & \mbox{Applications to Motivic Chromatic Homotopy theory} & \mbox{Bonus} \\ \mbox{oooooooo} & \mbox{oooooooo} & \mbox{oooooooo} \\ \end{array} \\ \begin{array}{c} \mbox{Bonus 1: } S/2 \wedge C\tau & \mbox{admits a } v_1^1 \mbox{-map} \end{array} \end{array}$

After smashing with $C\tau$, there is a map $\Sigma^{2,1}C\tau/2 \xrightarrow{v_1} C\tau/2$. Indeed

$$\Sigma^{2,1}C\tau/2 \longleftrightarrow \Sigma^{2,1}C\tau \xleftarrow{2} \Sigma^{2,1}C\tau$$

$$\downarrow \eta$$

$$C\tau/2 \longrightarrow \Sigma^{1,0}C\tau \xrightarrow{2} \Sigma^{1,0}C\tau$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

After smashing with $C\tau$, there is a map $\Sigma^{2,1}C\tau/2 \xrightarrow{v_1} C\tau/2$. Indeed

$$\Sigma^{2,1}C\tau/2 \longleftrightarrow \Sigma^{2,1}C\tau \xleftarrow{2} \Sigma^{2,1}C\tau$$

$$\downarrow \eta$$

$$C\tau/2 \xrightarrow{} \Sigma^{1,0}C\tau \xrightarrow{2} \Sigma^{1,0}C\tau$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

After smashing with $C\tau$, there is a map $\Sigma^{2,1}C\tau/2 \xrightarrow{v_1} C\tau/2$. Indeed

ション ふゆ く は と く ほ と く 日 と

since $2 \cdot \bar{\eta}$ is zero in $\left[\Sigma^{2,1}C\tau, C\tau/2\right] \cong \mathbb{Z}/2$.

$\begin{array}{c} \text{Motivic Homotopy Theory}\\ \text{oo} \end{array} \begin{array}{c} \text{The cofiber } C\tau \\ \text{oo} \text{oo} \end{array} \begin{array}{c} \text{Applications to Motivic Chromatic Homotopy theory} \\ \text{oo} \text{oo} \text{oo} \end{array} \begin{array}{c} \text{Bonus} \\ \text{oo} \text{oo} \text{oo} \end{array} \end{array}$

After smashing with $C\tau$, there is a map $\Sigma^{2,1}C\tau/2 \xrightarrow{v_1} C\tau/2$. Indeed

since $2 \cdot \bar{\eta}$ is zero in $[\Sigma^{2,1}C\tau, C\tau/2] \cong \mathbb{Z}/2$. More concisely, the obstruction to having a v_1^1 -map is the bracket $\langle 2, \eta, 2 \rangle = \tau \eta^2$, and thus $C\tau/2$ enjoys it.

うして ふぼう ふほう ふほう しょうく

Figure: The homotopy groups $\pi_{s,w}(C\tau)$, with lots of non-nilpotent elements $2, \alpha_1, \alpha_3, \alpha_5, \alpha_7, \ldots$

▲ロト ▲園ト ▲ヨト ▲ヨト 三臣 - のへで