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Unstable Motivic Spaces

I will only work over the base scheme SpecC.

Motivic spaces are

1 start with the category Sm/C of C-schemes (smooth, fin. type)

2 add colimits by embedding it in

3 sPre(Sm/C) has point-wise model structures from sSet∗
4 Bousfield localize to

force Nisnevich covers to be homotopy colimits
make “the interval” A1

C contractible

Theorem (Morel-Voevodsky)

This gives a symmetric monoidal model category SpcC, and there is a
realization functor R by taking C-points

SpcC
R

GGA⊥
GDGG

Sing

Top.
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Motivic Spheres

There are two types of spheres in SpcC.

1 The constant U [GGA ∆1/∂∆1 = S1, which realizes to S1 ∈ Top.
This is called the simplicial sphere and denoted by S1,0.

2 The scheme Gm =
(
A1

C
)×

, which realizes to S1 ∈ Top.
This is called the geometric sphere and denoted by S1,1.

This gives bigraded spheres Sn+k,n =
(
S1,0

)∧k ∧ (S1,1
)∧n

for n, k ≥ 0,
and thus bigraded homotopy groups, and bigraded everything. . . .

The first index Sm,n is the topological dimension.
The second index Sm,n is called the weight.
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Motivic Spectra and Examples

Theorem (Morel-Voevodsky, Jardine, Hu)

There is a symmetric monoidal (with the smash product − ∧−) model
category of motivic spectra SptC

, and the realization pair stabilizes to
an adjunction

SptC
R

GGA⊥
GDGG

Sing

Spt.

A lot of classical spectra have their motivic analogues. We have

Spheres Sm,n

Eilenberg-Maclane spectra HFp
Complex K-theory KGL and kgl, with |β| = (2, 1)

(Algebraic) Cobordism MGL, with |xi| = (2i, i)

. . . etc

and they all realize to their classical analogues.
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The cofiber Cτ
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The Motivic Adams Spectral sequence

We now fix p = 2 for the remaining of the talk.

Theorem (Voevodsky)

The coefficients are HF2
∗,∗(S0,0) = M2

∼= F2[τ ] for |τ | = (0, 1).

The HF2-Steenrod Algebra is AC ∼= M2

〈
Sq1, Sq2, . . .

〉
/Adem.

The HF2 motivic Adams spectral sequence for S0,0 takes the form

ExtAC(M2,M2) =⇒ π∗,∗(Ŝ0,0
2),

and the element τ ∈ Ext0 survives to a map S0,−1 τ
GGGA Ŝ0,0

2, but
does not exist before 2-completion.

Therefore, we work in the 2-completed category, and S0,0 means
the 2-completed sphere.
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2),

and the element τ ∈ Ext0 survives to a map S0,−1 τ
GGGA Ŝ0,0
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2),

and the element τ ∈ Ext0 survives to a map S0,−1 τ
GGGA Ŝ0,0
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The realization functor and τ

The map S0,−1 τ
GGA S0,0 realizes to

S0 id
GGA S0

and realization has the computational effect of setting τ = 1.

From the motivic A.s.s. to the classical A.s.s.

copies of M2 become copies of F2

copies of M2/τ
n disappear, i.e., τ -torsion disappears.

For example η4 ∈ π4,4 is not zero, but is τ -torsion as τη4 = 0, and so
η4 realizes to 0 which is consistent with the classical η4 = 0 ∈ π4.

Question

What happens when we let τ = 0 ?
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The cofiber Cτ and its homotopy

Let’s look at the 2-cell complex Cτ that fits in the cofiber sequence

S0,−1 τ
GGA S0,0 i

GGA Cτ
p

GGA S1,−1.

Although it realizes to a tiny ∗ ∈ Top, its homotopy is a miracle:

Theorem (Hu-Kriz-Ormsby, Isaksen)

There is an isomorphism of bigraded abelian groups

π∗,∗(Cτ)
∼=

GGA Ẽ2(S0;BP ),

where Ẽ2(S0;BP ) is a (harmless) regrading of the Adams-Novikov
E2-page for the sphere S0, i.e., ExtBP∗BP (BP∗, BP∗).
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Very cool question

Question

Is there a ring structure on Cτ inducing the product on Ẽ2-AN(S0) ?
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Notice the big vanishing regions for Cτ

The classical E2-AN(S0) has big vanishing areas:

f

s

zero

zerozero

zero

Adams-Novikov filtration > stem

negative Adams-Novikov filtration

negative stem.

These vanishing areas give via the isomorhism π∗,∗(Cτ) ∼= Ẽ2-AN(S0)

w

s

non-vanishing homotopy

zero

zero zero

zero

zero

lots of vanishing in πs,w(Cτ),

w

s

non-vanishing region

zero

zero zero

zero

zero
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The ring structure of Cτ

Smash with − ∧ Cτ the defining cofiber sequence of Cτ

S0,−1 τ
GGA S0,0 i

GGA Cτ
p

GGA S1,−1.

S0,−1 ∧ Cτ S0,0 ∧ Cτ Cτ ∧ Cτ S1,−1 ∧ Cτ

Cτ.

τ i p

∼= ∃ µ ?

τ ∈ [Σ0,−1Cτ,Cτ ] = 0

there is a left unital multipication µ
and a splitting Cτ ∧ Cτ ' Cτ ∨ Σ1,−1Cτ

[Σ1,−1Cτ,Cτ ] = 0

µ is unique
µ is the projection on the first factor Cτ
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The good ring structure on Cτ

Theorem (G.)

The multiplication on Cτ extends (uniquely) to an E∞-ring structure.

Corollary

The isomorphism π∗,∗(Cτ) ∼= Ẽ2-AN(S0) is an isomorphism of higher
rings, i.e., preserves all higher products.

Theorem (G.)

In fact every Cτn admits a unique E∞-ring structure.
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Operations and Co-operations on Cτ

Recall the maps i and p in the defining cofiber sequence of Cτ

S0,−1 τ
GGA S0,0 i

GGA Cτ
p

GGA S1,−1.

Proposition (G.)

The E∞-ring spectrum Cτ ∧ Cτ has homotopy ring

π∗,∗ (Cτ ∧ Cτ) ∼= Ẽ2-AN(S0)[x] /x2

The A∞-endomorphism spectrum End(Cτ) has homotopy ring

π∗,∗ (End(Cτ)) ∼= Ẽ2-AN(S0) 〈x〉
/

ax− (−1)|a|xa = i ◦ p(a)
x2 = 0
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Applications to Motivic Chromatic Homotopy
theory
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Parts of the classical Chromatic story

1 Start with complex cobordism MU .

2 Quillen showed MU(p) ' ∨BP .

3 From BP , we construct the fields K(n).

Here are some cool properties of these guys:

1 The Morava K-theories K(n) are essentially the only graded
fields, and K(n)∗-acyclic spectra the only thick subcategories
of FinSpt.

2 MU detects nilpotence, and p-locally BP does too.

3 Every X ∈ FinSpt(p) has a well-defined type, and any spectrum

of type n admits a periodic self-map inducing ·vkn in K(n).
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What is the Motivic Chromatic story ? Let p = 2.

1 There is an algebraic cobordism MGL, with MGL∗,∗ = Ẑ2[τ ][xi].

2 Similarly MGL ' ∨BPGL with BPGL∗,∗ ∼= Ẑ2[τ ][vi].

3 We also get Morava K-theories K(n) with K(n)∗,∗ ∼= F2[τ ][v±1n ].

However the story is more complicated, for example:

1 The K(n)’s are not fields (even though K(n) ∧ Cτ are).

2 There are more thick subcategories [Joachimi].

3 MGL does not detect nilpotence, as η : S1,1
GGA S0,0 is not

nilpotent and all |xi| = (2i, 2i−1) are in even degrees.

4 No idea what to say about type.
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There is more (non-)Nilpotence and Periodicity

We need something bigger than MGL to detect nilpotence and to
capture all the periodicity.

1 There are more non-nilpotent elements than η ∈ π1,1. For
example the classes detected by Ph1 ∈ π9,5, or d1 ∈ π32,18.

2 There are more periodicity operators than the vi’s. For
example, the class that Ph1 detects is η-periodic, and Dan
Isaksen observed g-periodic classes in π∗,∗(S

0,0).

Michael Andrews et al. suggested that η = w0, and that there should
be an infinite family of wi’s behaving like the vi’s. He started the
process and constructed a w4

1-map on Cη, at the prime p = 2. His
intuition for these maps comes from using the algebraic Novikov s.s.

Using Cτ , the wi’s fit in the following setting:
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wBP and Morava K-theories K(wi)

Theorem (G.)

1 For every n, there is an E∞-ring spectrum K(wn) with homotopy

π∗,∗(K(wn)) ∼= F2[w±1n ]

,

which is a graded field and with the correct cohomology.

2 There is a (almost certainly E∞) ring spectrum wBP with
homotopy

π∗,∗(wBP ) ∼= F2[w0, w1, . . .],

and with the correct cohomology.

Question

Where do the wi’s come from ?
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The vi’s and the Steenrod Algebra

Voevodsky computed the motivic HF2-Steenrod Algebra, its dual is

A∗,∗ ∼= M2[ξ1, ξ2, . . . , τ0, τ1, . . .]
/
τ2i = τξi+1

,

and denote by Qi ∈ A the dual of τi in the monomial basis.

1 The Qi’s are primitive and exterior.

2 HF∗,∗2 (BPGL) ∼= A//E(Q0, Q1, . . .).

3 By a change of rings, its Adams s.s. collapses giving

π∗,∗(BPGL)̂2 ∼= Ẑ2[τ ][v1, v2, . . .].
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A∗,∗ ∼= M2[ξ1, ξ2, . . . , τ0, τ1, . . .]
/
τ2i = τξi+1

,

and denote by Ri ∈ A the dual of ξi in the monomial basis.

The wi’s would like to arise from the Ri’s, but they are not exterior.

Remark

The Ri’s are exterior modulo τ .

Since τη4 = 0 ∈ π∗,∗, we need to mod out by τ if we want
polynomial homotopy in the wi’s.
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The wi’s from HF2 ∧ Cτ

Therefore, let H̄ = HF2 ∧ Cτ and it has coefficients H̄∗,∗ ∼= F2.

We
can compute its Steenrod algebra since we understand End(Cτ), and
its dual is

Ā∗,∗ ∼= F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .)⊗ E(x),

where x is a τ -Bockstein and the Ri’s are now primitive and exterior.

We are looking for a spectrum with the property

H̄∗,∗(wBP ) ∼= Ā//E(R1, R2, . . .),

its Adams s.s. would collapse and give π∗,∗(wBP )̂2 ∼= F2[w0, w1, . . .].
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Ā∗,∗ ∼= F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .)⊗ E(x),

where x is a τ -Bockstein and the Ri’s are now primitive and exterior.

We are looking for a spectrum with the property
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Therefore, let H̄ = HF2 ∧ Cτ and it has coefficients H̄∗,∗ ∼= F2. We
can compute its Steenrod algebra since we understand End(Cτ), and
its dual is

Ā∗,∗ ∼= F2[ξ1, ξ2, . . .]⊗ E(τ0, τ1, . . .)⊗ E(x),

where x is a τ -Bockstein and the Ri’s are now primitive and exterior.

We are looking for a spectrum with the property

H̄∗,∗(wBP ) ∼= Ā//E(R1, R2, . . .),

its Adams s.s. would collapse and give π∗,∗(wBP )̂2 ∼= F2[w0, w1, . . .].
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How about wMU ?

The degree of the wi’s on π∗,∗(wBP ) are |wi| = (2i+1 − 3, 2i − 1)

, so

|w0| = (1, 1)

|w1| = (5, 3)

nothing in (9, 5)

|w2| = (13, 7)

etc,

which is the same pattern as the vi’s of BP∗ between the xi’s of MU∗.

Corollary

There is a (almost certainly E∞) ring spectrum wMU with homotopy

π∗,∗(wMU) ∼= F2[y1, y2, . . .],

where |yi| = (4i+ 1, 2i+ 1), and which splits as a wedge of wBP ’s.
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What’s next ?

Question

Is there an interpretation of wMU ?

Do motivic BP and wBP capture all the chromatic phenomena ?

The K(w0)-local sphere was computed by Andrews-Miller with
Guillou-Isaksen

π∗,∗
(
LK(w0)S

0,0
) ∼= F2[η±1][σ, µ9]

/
(ησ)2 .

What is the LK(w1)S
0,0 ?
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Bonus

1 Bonus 1: S/2 ∧ Cτ admits a v11-self map (instead of v41 on S/2)

2 Bonus 2: kO ∧ Cτ admits a v21-self map (instead of v41 on kO)
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Bonus 1: S/2 ∧ Cτ admits a v1
1-map

There is no map Σ2,1S/2
v1

GGA S/2. Indeed

Σ2,1S/2 S2,1 S2,1

S/2 S1,0 S1,0

2

2

η

∃ η̄
@ v1
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Bonus 1: S/2 ∧ Cτ admits a v1
1-map

There is no map Σ2,1S/2
v1

GGA S/2. Indeed

Σ2,1S/2 S2,1 S2,1

S/2 S1,0 S1,0

2

2

η
∃ η̄

@ v1

since 2 · η̄ is not zero in π2,1S/2 ∼= Z/4.
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Bonus 1: S/2 ∧ Cτ admits a v1
1-map

After smashing with Cτ , there is a map Σ2,1Cτ/2
v1

GGA Cτ/2. Indeed

Σ2,1Cτ/2 Σ2,1Cτ Σ2,1Cτ

Cτ/2 Σ1,0Cτ Σ1,0Cτ

2

2

η

∃ η̄
∃ v1



Motivic Homotopy Theory The cofiber Cτ Applications to Motivic Chromatic Homotopy theory Bonus

Bonus 1: S/2 ∧ Cτ admits a v1
1-map

After smashing with Cτ , there is a map Σ2,1Cτ/2
v1

GGA Cτ/2. Indeed

Σ2,1Cτ/2 Σ2,1Cτ Σ2,1Cτ

Cτ/2 Σ1,0Cτ Σ1,0Cτ

2

2

η
∃ η̄

∃ v1



Motivic Homotopy Theory The cofiber Cτ Applications to Motivic Chromatic Homotopy theory Bonus

Bonus 1: S/2 ∧ Cτ admits a v1
1-map

After smashing with Cτ , there is a map Σ2,1Cτ/2
v1

GGA Cτ/2. Indeed

Σ2,1Cτ/2 Σ2,1Cτ Σ2,1Cτ

Cτ/2 Σ1,0Cτ Σ1,0Cτ

2

2

η
∃ η̄

∃ v1

since 2 · η̄ is zero in
[
Σ2,1Cτ,Cτ/2

] ∼= Z/2.



Motivic Homotopy Theory The cofiber Cτ Applications to Motivic Chromatic Homotopy theory Bonus

Bonus 1: S/2 ∧ Cτ admits a v1
1-map

After smashing with Cτ , there is a map Σ2,1Cτ/2
v1

GGA Cτ/2. Indeed

Σ2,1Cτ/2 Σ2,1Cτ Σ2,1Cτ

Cτ/2 Σ1,0Cτ Σ1,0Cτ

2

2

η
∃ η̄

∃ v1

since 2 · η̄ is zero in
[
Σ2,1Cτ,Cτ/2

] ∼= Z/2. More concisely, the
obstruction to having a v11-map is the bracket 〈2, η, 2〉 = τη2, and thus
Cτ/2 enjoys it.
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Thank you for your attention !

w

s5 10

5

α1

α3

α5

α7

α4/4

α6/3

α2/2

zero

zero

Figure: The homotopy groups πs,w(Cτ), with lots of non-nilpotent elements
2, α1, α3, α5, α7, . . ..
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