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History

Some (very) select historical results:

1. Experimental
» Benjamin & Feir (1967)
» Lake & Yuen (1977) and Lake et al. (1977)
» Segur et al. (2005)
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History

Some (very) select historical results:

1. Experimental
» Benjamin & Feir (1967)
» Lake & Yuen (1977) and Lake et al. (1977)
» Segur et al. (2005)

2. Modeling

Zakharov (1966)
Benjamin & Feir (1967)
Dysthe (1979)

Segur et al. (2005)
Dias et al. (2008)
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Basic Experimental Setup

Experiments conducted by Diane Henderson (Penn State University)
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Experimental Measurements
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Quantities of Interest
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Quantities of Interest
» The “mass”

1 L
M(X):L/O |B|?dt
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Quantities of Interest
» The “mass”

1 L
M(X):L/O |B|?dt

» The “linear momentum”
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Quantities of Interest

» The “mass” .
1
M(X):/ |B|?dt
LJo
» The “linear momentum”
i

L
P(x) = 2L/o (BBf — B:B*)dt

> The spectral mean, wy,, is defined by
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Quantities of Interest

» The “mass”

1 L
M(X):L/O |B|?dt

» The “linear momentum”
- oL
P(x) = ’/ (BB — B;B*)dt
2L /o
> The spectral mean, wy,, is defined by
b — P
M(x)

» The spectral peak, wp, is defined as the frequency of the
Fourier mode with largest magnitude
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Quantities of Interest
» The “mass”
1t
M(x) =~ |B|~dt
L Jo
» The "“linear momentum”
©pL
P(x) = ’/ (BB — B;B*)dt
2L /o
> The spectral mean, wy,, is defined by
b — P
M(x)

» The spectral peak, wp, is defined as the frequency of the
Fourier mode with largest magnitude

A wave train is said to exhibit frequency downshifting (FD) if
wm or wp decreases monotonically as it travels down the tank.
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More Experimental Background

Segur et al. (2005) showed

» Frequency downshifting (FD) is not observed (in their tank) if
the waves have “small or moderate” amplitudes
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More Experimental Background

Segur et al. (2005) showed
» Frequency downshifting (FD) is not observed (in their tank) if
the waves have “small or moderate” amplitudes
» FD is observed if the amplitude of the carrier wave is “large”
or if the sideband perturbations are “large enough”
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More Experimental Background

Segur et al. (2005) showed
» Frequency downshifting (FD) is not observed (in their tank) if
the waves have “small or moderate” amplitudes
» FD is observed if the amplitude of the carrier wave is “large”
or if the sideband perturbations are “large enough”

» If FD occurred, then

> W, decreased monotonically
» FD occurred in the higher harmonics before in the fundamental
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More Experimental Background

Segur et al. (2005) showed
» Frequency downshifting (FD) is not observed (in their tank) if
the waves have “small or moderate” amplitudes
» FD is observed if the amplitude of the carrier wave is “large”
or if the sideband perturbations are “large enough”
» If FD occurred, then

> W, decreased monotonically
» FD occurred in the higher harmonics before in the fundamental

Our goal is to provide a mathematical justification for these
observations without relying on wind or wave breaking effects.
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Theoretical Background
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Physical System

z={, surface displacement

z=0 mean fluid Igvel

z=-h at the bottom

» ¢ = ((x,y,t) represents the surface displacement

» ¢ = ¢(x,y,z,t) represents the velocity potential
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Governing Equations

The equations for an infinitely deep, inviscid, irrotational,
incompressible fluid are

bsx + by + ¢z =0, for —oo<z<((x,y,t)
¢, —0, as z— —o0

Ct+¢x€x+¢y€y_¢z:0 for Z—C(Xy’ )

b +8C+ = (¢ + ¢+ ¢3) = for z={((x,y,t)
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Approximate Models

In 1966, Zakharov assumed
C(X7y7t):€Befk0x7fw0t+6232e2(ik0x7iw0t)+€3B3e3(ik0x7iw0t)+m+c_a

B(x,y,2,t)=eArekoztikox—iwgt 4 2 A, @2(koz+ikox—iwpt) 1 €3 Ag@3(koz+ikox—iwot) 4.y ¢ c.

in order to study the evolution of modulated wave trains.
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Approximate Models
In 1966, Zakharov assumed
C(X7y7t):€Befkox7fw0t+6232e2(ik0x7iw0t)+€3B3e3(ik0x7iw0t)+m+c_a

B(x,y,2,t)=eArekoztikox—iwgt 4 2 A, @2(koz+ikox—iwpt) 1 €3 Ag@3(koz+ikox—iwot) 4.y ¢ c.

in order to study the evolution of modulated wave trains. Here

v

€ = 2|ag|ko < 1 is the dimensionless wave steepness

> ap represents a typical amplitude

v

ko > 0 represents the wave number of the carrier wave

» wp > 0 represents the frequency of the carrier wave

The A'sdependon X =ex, Y =¢€¢Y,Z=¢€cz,and T =€t
The B's depend on X, Y, and T

» c.c. stands for complex conjugate

v

v
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NLS Equation

This led to the nonlinear Schrodinger (NLS) equation

2lw0(BT + —Bx) + €<7BXX —

3 2
BI2B) =
i kOBW+4gk0|y ) 0

where
wi = gko
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NLS Equation

This led to the nonlinear Schrodinger (NLS) equation

2lw0(BT + —Bx) + €<7BXX —

3 2
BI2B) =
i kOBW+4gk0|y ) 0

where
wh = gko

» NLS preserves mass, M
» NLS preserves linear momentum, P

» NLS preserves the spectral mean, wp,
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Dysthe System

In 1979, Dysthe carried out the perturbation analysis one order
higher and obtained what is now known as the Dysthe system

Frequency Downshift in a Viscous Fluid John D. Carter November 1, 2016



Dysthe System
In 1979, Dysthe carried out the perturbation analysis one order
higher and obtained what is now known as the Dysthe system
2:w0(BT+2 Bx ) +e (4k Byx— Byy+4gk3|B|2B>

+e2( 8k2 BXXX+1 Bxyy+2lgk2B2B*+121gk2|B|QBX+2kowoBd5X) =0, at Z=0
0

& 7=2w0 <|B|2) , at Z=0
X
Pxx+Pyy+Pz7=0, for —oo<Z<0
b 7—0, as Z——oo

Frequency Downshift in a Viscous Fluid John D. Carter November 1, 2016



Dysthe System

» The Dysthe system preserves M
» The Dysthe system does not preserve P

» The Dysthe system does not preserve wp,
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Derivation of the Viscous Dysthe System
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Governing Equations with Weak Viscosity

Dias et al. (2008) derived a weakly viscous generalization of the
Euler equations

¢xx+¢yy+¢zz:05 fOf _OO<Z<C(X7y)t)

¢, —0, as z— —o0

Cot OxCx + DyCy — b2 = 20(Cox + Cpy)y for  z=C(x,y,1)

GetBCH (B4Rt B) = 2o, for 2= C(x1,1)

Where 7 is the kinematic viscosity.
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Solution Ansatz

Generalizing the work of Dysthe, assume
g y
C(x,y,t)=e3T+eBeiwot—ikox | 2 Bye2(iwgt—ikox) 4 3 Bye3(iwot—ikoX) ...y ¢ c.

¢(x,y,z,t):52q_5+eA1ekOZ““Ot_"kOX—i—eQAgeQ(kOZ*"WOt‘“‘OX)+53A3e3("02+"“’0t_ikOX)+-'~+c.c.
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Solution Ansatz

Generalizing the work of Dysthe, assume
C(x,y,t)=e3T+eBeiwot—ikox | 2 Bye2(iwgt—ikox) 4 3 Bye3(iwot—ikoX) ...y ¢ c.

¢(x,y,z,t):52q_5+eA1ekOZ““Ot"k0X+52A262(k01+’w0t‘“‘OX)+53A3e3("02+"“’0t_ikOX)+-'~+c.c.

Here

v

e = 2|ag|ko < 1 is the dimensionless wave steepness
> ag represents a typical amplitude

> wo > 0 represents the frequency of the carrier wave

> ko > 0 represents the wave number of the carrier wave
» The Aj’s and 45 dependon X =ex, Y =¢Y,Z =ex, T =€t
» The B;'s and 7) depend on X, Y, and T
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Solution Ansatz

Generalizing the work of Dysthe, assume
C(X7y’t):€3ﬁ+€Beiwot—/'k0x+€2B2e2(iwot—ikox)+€3B3e3(im0t—ik0x)+._._‘_C.C.

(j)(X,y,Z,t):EQQ_S—‘,-eAlek02+iw0t7ikox+62A2e2(k02+iw0t7ikox)+63A3e3(koz+iw0t7ikOX)—F'"-‘rC.C.

Here

v

e = 2|ag|ko < 1 is the dimensionless wave steepness
> ap represents a typical amplitude

> wp > 0 represents the frequency of the carrier wave

> ko > 0 represents the wave number of the carrier wave
» The A;’s and 45 dependon X =ex, Y =¢Y,Z =€x, T =€t
» The B;'s and 7) depend on X, Y, and T
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Solution Ansatz

Further, assume
A=A+ eAn+ EAp + A+ ..., for j=1,2,3
Bj=Bjo+eBj1 +?Bp+€Bz+ ..., for j=2,3,4

=10+ em+€eip+...,
<Z>=¢_>o+€¢_51+62<52+----
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Solution Ansatz
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Dissipative NLS Equation

At O(€3), this leads to the dissipative NLS (dNLS) equation

2iwg (BT—G——BX) +e€ <—7 BXX‘F

i ok Byy—4gk3|B\2B+4ik§woyB) =0
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Viscous Dysthe System

At O(e*), this leads to the viscous Dysthe (vDysthe) system

2iwo(BT—|—ﬁBX)+ ( Bxx— Byy+4gk3|B|2B+4Ik2vuol/B)

+e2< BXXX+1 Bny+21ngBQB*+12igk§\B|2BX+2kowoB¢X78kgwouBX) =0, at Z=0

®7=2wy (|B|2) , at Z=0
X
DPxx+Pyy+Pz7=0, for —co<Z<0

D7—0, as Z——o0
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Change Variables

kOB(X7 Y, T) = é(&aX)

LgA(X7 Y,Z, T) = A~(£7X7C)

wo

kZ - -
470¢0(X7 Y7Z7 T) = ¢(€7X, C)
wo

42
Ry,
wo
X = €k0X

5 = WOT — 2/(0X

¢ =koZ

)
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The Dimensionless Viscous Dysthe System

iBX+B§§+4|B|QB+iéB+e(78IB2B€*732i|B|QB§716B¢§+56B§):0, at (=0

So=— <|B|2) , at (=0
13
A+ =0, for—oo<(<0
b —0, as (——o0

There is only one free parameter, 4, in this system.
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Properties of the Viscous Dysthe System

The vDysthe system does not preserve M nor P.

Frequency Downshift in a Viscous Fluid John D. Carter November 1, 2016



Properties of the Viscous Dysthe System

The vDysthe system does not preserve M nor P.
The x dependency of M is given by

My, = —25M — 102

wo

At leading order in ¢, this relationship determines 0.
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Determining o
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Properties of the Viscous Dysthe System

The viscous Dysthe system does not preserve the spectral mean

P 106 5 16 R
(m)y = (5g), = oo MQ=P) = o
where
64008 1 ewplL
= Be|?d
0= 2 [
640.}2 1 ewgpL
R=-—2L | B|>B*Beed
kg ewpol m (/0 Bl €€ 5)
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Properties of the Viscous Dysthe System

The viscous Dysthe system does not preserve the spectral mean

P 106 5 16 R
(m)y = (5g), = oo MQ=P) = o
where
64008 1 ewplL
= Be|?d
0B L [
640.}(2) 1 ewgpL
=0 | B|?B*Beed
R k3 ewol m (/0 Bl ¢ 5)

The Cauchy-Schwarz inequality establishes that
(MQ—P?) >0.
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Plane-Wave Solutions of the Viscous Dysthe System
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Plane-Wave Solutions of the Viscous Dysthe System

The viscous Dysthe system admits plane-wave solutions given by
B(&,x) = Boexp (w,(x) + iwi(x))

(& x) =0

where
wr(X) = —0x

2B2k?
wix) = 2888 (e2n 1)

and By is a real parameter.
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Stability of Plane-Wave Solutions

Consider perturbed solutions of the form
Bpert(€:%) = (Botnu(€, x)+imv(€, ) +O(12) ) exp (w (x)+iwi(x) )

Poert(€, %, ¢) = 0+ up(€, x, ¢) + O(?)

where
> 1 is a small real parameter

» u, v, and p are real-valued functions
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Plane-Wave Stability Observations
The non-transient linear stability problem gives (in physical
coordinates)

ks
77(X, t) = dp exp (iwot + ifo(x) — 4;070)()
k3
+ di exp (in(l —€eq)t + ifi(x) — 41770(1 _ 56q)x>
wo

k3
+ dr exp (iwo(l + €q)t + ifa(x) — 402 (1 + 56q)x> +c.c.
wo

where d; are complex constants and f; are real-valued functions.
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Plane-Wave Stability Observations
The non-transient linear stability problem gives (in physical
coordinates)

k3
n(x, t) = doexp (iwot + ifg(x) — 417—0x>
wo

k3
+ dy exp (iwo(l —eq)t +ifi(x) — 47 2 (1~ 56q)x>

k3
+ dr exp (iwo(l + €q)t + ifa(x) — 402 (1 + 56q)x> +c.c.
wo

where d; are complex constants and f; are real-valued functions.

» The amplitude of the carrier wave (the mode with wave
number ky > 0) decays exponentially.
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Plane-Wave Stability Observations
The non-transient linear stability problem gives (in physical
coordinates)

3

k
n(x, t) = doexp (iwot + ifg(x) — 417—0x>
wo

k3
+ dy exp (iwo(l —eq)t +ifi(x) — 47 2 (1~ 56q)x>

k3
+ dr exp (iwo(l + €q)t + ifa(x) — 402 (1 + 5€q)x> +c.c.
wo

where d; are complex constants and f; are real-valued functions.
» The amplitude of the carrier wave (the mode with wave
number ky > 0) decays exponentially.
» The amplitude of the upper sideband (the mode with wave

number ko + €|q|) decays more rapidly than the amplitude of
the carrier wave.
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Plane-Wave Stability Observations
The non-transient linear stability problem gives (in physical
coordinates)

3

k
n(x, t) = doexp (iwot + ifg(x) — 417—0x>
wo

k3
+ dy exp (iwo(l —eq)t +ifi(x) — 47 2 (1~ 56q)x>

k3
+ dr exp (iwo(l + €q)t + ifa(x) — 402 (1 + 5€q)x> +c.c.
wo

where d; are complex constants and f; are real-valued functions.

» The amplitude of the carrier wave (the mode with wave
number ky > 0) decays exponentially.

» The amplitude of the upper sideband (the mode with wave
number ko + €|q|) decays more rapidly than the amplitude of
the carrier wave.

» The amplitude of the lower sideband (ko — €|q|) decays more
slowly than does the amplitude of the carrier wave.
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Plane-Wave Stability Observations

» The instability growth rate is 5¢d|q]|.
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Plane-Wave Stability Observations

» The instability growth rate is 5¢d|q]|.

» The amplitudes of the second and third harmonics are

B, = kyB?
B; = gk§B3
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Plane-Wave Stability Observations

» The instability growth rate is 5¢d|q]|.

» The amplitudes of the second and third harmonics are

B, = kyB?
B; = gk§B3

> This suggests that FD will be observed in the higher
harmonics before it is observed in the fundamental.
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Comparisons with Experiments
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Moderate Amplitude Experiment
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Large Amplitude Experiment
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Feb 11 Experiment Fourier Amplitudes
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Feb 11 Experiment Quantities
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Summary

The viscous Dysthe system

» Accurately models experiments of “moderate” amplitude
» Accurately models experiments of “large” amplitude
» Admits plane-wave instabilities that yield FD

> Wm, wp and P usually decrease
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