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Background
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History

Some (very) select historical results:

1. Experimental
I Benjamin & Feir (1967)
I Lake & Yuen (1977) and Lake et al. (1977)
I Segur et al. (2005)

2. Modeling
I Zakharov (1966)
I Benjamin & Feir (1967)
I Dysthe (1979)
I Segur et al. (2005)
I Dias et al. (2008)
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Basic Experimental Setup

Gauge 1 Gauge 2 Gauge 3 Gauge 12

Experiments conducted by Diane Henderson (Penn State University).
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Experimental Measurements

0 10 20 30
-0.3

-0.15

0

0.15

0.3
x = 0

0 10 20 30

-0.3

-0.15

0

0.15

0.3

x = 50

0 10 20 30
t (sec)

-0.3

-0.15

0

0.15

0.3
x = 250

0 2 4 6 8 10
0.0001

0.001

0.01

0.1

x = 0

0 2 4 6 8 10
0.0001

0.001

0.01

0.1

x = 50

0 2 4 6 8 10
frequency (Hz)

0.0001

0.001

0.01

0.1

x = 250

Frequency Downshift in a Viscous Fluid John D. Carter November 1, 2016



Quantities of Interest

I The “mass”

M(x) =
1

L

∫ L

0
|B|2dt

I The “linear momentum”

P(x) =
i

2L

∫ L

0

(
BB∗t − BtB

∗)dt
I The spectral mean, ωm, is defined by

ωm =
P(x)

M(x)

I The spectral peak, ωp, is defined as the frequency of the
Fourier mode with largest magnitude

A wave train is said to exhibit frequency downshifting (FD) if
ωm or ωp decreases monotonically as it travels down the tank.

Frequency Downshift in a Viscous Fluid John D. Carter November 1, 2016



Quantities of Interest
I The “mass”

M(x) =
1

L

∫ L

0
|B|2dt

I The “linear momentum”

P(x) =
i

2L

∫ L

0

(
BB∗t − BtB

∗)dt
I The spectral mean, ωm, is defined by

ωm =
P(x)

M(x)

I The spectral peak, ωp, is defined as the frequency of the
Fourier mode with largest magnitude

A wave train is said to exhibit frequency downshifting (FD) if
ωm or ωp decreases monotonically as it travels down the tank.

Frequency Downshift in a Viscous Fluid John D. Carter November 1, 2016



Quantities of Interest
I The “mass”

M(x) =
1

L

∫ L

0
|B|2dt

I The “linear momentum”

P(x) =
i

2L

∫ L

0

(
BB∗t − BtB

∗)dt

I The spectral mean, ωm, is defined by

ωm =
P(x)

M(x)

I The spectral peak, ωp, is defined as the frequency of the
Fourier mode with largest magnitude

A wave train is said to exhibit frequency downshifting (FD) if
ωm or ωp decreases monotonically as it travels down the tank.

Frequency Downshift in a Viscous Fluid John D. Carter November 1, 2016



Quantities of Interest
I The “mass”

M(x) =
1

L

∫ L

0
|B|2dt

I The “linear momentum”

P(x) =
i

2L

∫ L

0

(
BB∗t − BtB

∗)dt
I The spectral mean, ωm, is defined by

ωm =
P(x)

M(x)

I The spectral peak, ωp, is defined as the frequency of the
Fourier mode with largest magnitude

A wave train is said to exhibit frequency downshifting (FD) if
ωm or ωp decreases monotonically as it travels down the tank.

Frequency Downshift in a Viscous Fluid John D. Carter November 1, 2016



Quantities of Interest
I The “mass”

M(x) =
1

L

∫ L

0
|B|2dt

I The “linear momentum”

P(x) =
i

2L

∫ L

0

(
BB∗t − BtB

∗)dt
I The spectral mean, ωm, is defined by

ωm =
P(x)

M(x)

I The spectral peak, ωp, is defined as the frequency of the
Fourier mode with largest magnitude

A wave train is said to exhibit frequency downshifting (FD) if
ωm or ωp decreases monotonically as it travels down the tank.

Frequency Downshift in a Viscous Fluid John D. Carter November 1, 2016



Quantities of Interest
I The “mass”

M(x) =
1

L

∫ L

0
|B|2dt

I The “linear momentum”

P(x) =
i

2L

∫ L

0

(
BB∗t − BtB

∗)dt
I The spectral mean, ωm, is defined by

ωm =
P(x)

M(x)

I The spectral peak, ωp, is defined as the frequency of the
Fourier mode with largest magnitude

A wave train is said to exhibit frequency downshifting (FD) if
ωm or ωp decreases monotonically as it travels down the tank.

Frequency Downshift in a Viscous Fluid John D. Carter November 1, 2016



More Experimental Background

Segur et al. (2005) showed

I Frequency downshifting (FD) is not observed (in their tank) if
the waves have “small or moderate” amplitudes

I FD is observed if the amplitude of the carrier wave is “large”
or if the sideband perturbations are “large enough”

I If FD occurred, then
I ωm decreased monotonically
I FD occurred in the higher harmonics before in the fundamental

Our goal is to provide a mathematical justification for these
observations without relying on wind or wave breaking effects.
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Theoretical Background
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Physical System

z=-h at the bottom

z=0 mean fluid level

h

λ

x

z

z=ζ, surface displacement

H

I ζ = ζ(x , y , t) represents the surface displacement

I φ = φ(x , y , z , t) represents the velocity potential
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Governing Equations

The equations for an infinitely deep, inviscid, irrotational,
incompressible fluid are

φxx + φyy + φzz = 0, for −∞ < z < ζ(x , y , t)

φz → 0, as z → −∞

ζt + φxζx + φyζy − φz = 0, for z = ζ(x , y , t)

φt + gζ +
1

2

(
φ2
x + φ2

y + φ2
z

)
= 0, for z = ζ(x , y , t)
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Approximate Models

In 1966, Zakharov assumed

ζ(x ,y ,t)=εBeik0x−iω0t+ε2B2e2(ik0x−iω0t)+ε3B3e3(ik0x−iω0t)+···+c.c.

φ(x ,y ,z,t)=εA1ek0z+ik0x−iω0t+ε2A2e2(k0z+ik0x−iω0t)+ε3A3e3(k0z+ik0x−iω0t)+···+c.c.

in order to study the evolution of modulated wave trains.

Here

I ε = 2|a0|k0 � 1 is the dimensionless wave steepness

I a0 represents a typical amplitude

I k0 > 0 represents the wave number of the carrier wave

I ω0 > 0 represents the frequency of the carrier wave

I The A’s depend on X = εx , Y = εY , Z = εz , and T = εt

I The B’s depend on X , Y , and T

I c .c . stands for complex conjugate
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NLS Equation

This led to the nonlinear Schrödinger (NLS) equation

2iω0

(
BT +

g

2ω0
BX

)
+ ε
( g

4k0
BXX −

g

2k0
BYY + 4gk3

0 |B|2B
)

= 0

where
ω2

0 = gk0

I NLS preserves mass, M
I NLS preserves linear momentum, P
I NLS preserves the spectral mean, ωm
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Dysthe System

In 1979, Dysthe carried out the perturbation analysis one order
higher and obtained what is now known as the Dysthe system

2iω0

(
BT + g

2ω0
BX

)
+ε

(
g

4k0
BXX− g

2k0
BYY +4gk3

0 |B|2B
)

+ε2

(
−i g

8k2
0
BXXX +i 3g

4k2
0
BXYY +2igk2

0B
2B∗

X +12igk2
0 |B|2BX +2k0ω0BΦX

)
=0, at Z=0

ΦZ=2ω0

(
|B|2
)

X

, at Z=0

ΦXX +ΦYY +ΦZZ=0, for −∞<Z<0

ΦZ→0, as Z→−∞
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Dysthe System

I The Dysthe system preserves M
I The Dysthe system does not preserve P
I The Dysthe system does not preserve ωm
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Derivation of the Viscous Dysthe System
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Governing Equations with Weak Viscosity

Dias et al. (2008) derived a weakly viscous generalization of the
Euler equations

φxx + φyy + φzz = 0, for −∞ < z < ζ(x , y , t)

φz → 0, as z → −∞

ζt + φxζx + φyζy − φz = 2ν̄
(
ζxx + ζyy

)
, for z = ζ(x , y , t)

φt + gζ +
1

2

(
φ2
x + φ2

y + φ2
z

)
= −2ν̄φzz , for z = ζ(x , y , t)

Where ν̄ is the kinematic viscosity.
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Solution Ansatz

Generalizing the work of Dysthe, assume

ζ(x ,y ,t)=ε3η̄+εBeiω0t−ik0x+ε2B2e2(iω0t−ik0x)+ε3B3e3(iω0t−ik0x)+···+c.c.

φ(x ,y ,z,t)=ε2φ̄+εA1ek0z+iω0t−ik0x+ε2A2e2(k0z+iω0t−ik0x)+ε3A3e3(k0z+iω0t−ik0x)+···+c.c.

Here

I ε = 2|a0|k0 � 1 is the dimensionless wave steepness

I a0 represents a typical amplitude

I ω0 > 0 represents the frequency of the carrier wave

I k0 > 0 represents the wave number of the carrier wave

I The Aj ’s and φ̄ depend on X = εx , Y = εY , Z = εx , T = εt

I The Bj ’s and η̄ depend on X , Y , and T
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Solution Ansatz

Further, assume

Aj = Aj0 + εAj1 + ε2Aj2 + ε3Aj3 + . . . , for j = 1, 2, 3, . . . ,

Bj = Bj0 + εBj1 + ε2Bj2 + ε3Bj3 + . . . , for j = 2, 3, 4, . . . ,

η̄ = η̄0 + εη̄1 + ε2η̄2 + . . . ,

φ̄ = φ̄0 + εφ̄1 + ε2φ̄2 + . . . .

ν̄ = ε2ν
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Dissipative NLS Equation

At O(ε3), this leads to the dissipative NLS (dNLS) equation

2iω0

(
BT+

g

2ω0
BX

)
+ε
(
− g

4k0
BXX+

g

2k0
BYY−4gk3

0 |B|2B+4ik2
0ω0νB

)
= 0
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Viscous Dysthe System

At O(ε4), this leads to the viscous Dysthe (vDysthe) system

2iω0

(
BT + g

2ω0
BX

)
+ε

(
g

4k0
BXX− g

2k0
BYY +4gk3

0 |B|2B+4ik2
0ω0νB

)
+ε2

(
−i g

8k2
0
BXXX +i 3g

4k2
0
BXYY +2igk2

0B
2B∗

X +12igk2
0 |B|2BX +2k0ω0BΦX−8k0ω0νBX

)
=0, at Z=0

ΦZ=2ω0

(
|B|2
)

X

, at Z=0

ΦXX +ΦYY +ΦZZ=0, for −∞<Z<0

ΦZ→0, as Z→−∞

Frequency Downshift in a Viscous Fluid John D. Carter November 1, 2016



Change Variables

k0B(X ,Y ,T ) = B̃(ξ, χ)

k2
0

ω0
A(X ,Y ,Z ,T ) = Ã(ξ, χ, ζ)

k2
0

4ω0
φ̄0(X ,Y ,Z ,T ) = Φ̃(ξ, χ, ζ)

4k2
0

ω0
ν = δ

χ = εk0X

ξ = ω0T − 2k0X

ζ = k0Z
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The Dimensionless Viscous Dysthe System

iBχ+Bξξ+4|B|2B+iδB+ε
(
−8iB2B∗

ξ−32i |B|2Bξ−16BΦξ+5δBξ

)
=0, at ζ=0

Φζ=−
(
|B|2
)
ξ

, at ζ=0

4Φξξ+Φζζ=0, for−∞<ζ<0

Φζ→0, as ζ→−∞

There is only one free parameter, δ, in this system.
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Properties of the Viscous Dysthe System

The vDysthe system does not preserve M nor P.

The χ dependency of M is given by

Mχ = −2δM− 10
δ

ω0
P

At leading order in ε, this relationship determines δ.
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Determining δ
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x (cm)
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Properties of the Viscous Dysthe System

The viscous Dysthe system does not preserve the spectral mean

(
ωm

)
χ

=
( P
M

)
χ

= − 10δ

ω0M2

(
MQ−P2

)
− 16

ω0

R
M

where

Q =
ε4ω2

0

k2
0

1

εω0L

∫ εω0L

0
|Bξ|2dξ

R =
ε4ω2

0

k2
0

1

εω0L
Im
(∫ εω0L

0
|B|2B∗Bξξdξ

)

The Cauchy-Schwarz inequality establishes that
(MQ−P2) ≥ 0.
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Plane-Wave Solutions of the Viscous Dysthe System

The viscous Dysthe system admits plane-wave solutions given by

B(ξ, χ) = B0 exp
(
wr (χ) + iwi (χ)

)
Φ(ξ, χ) = 0

where
wr (χ) = −δχ

wi (χ) =
2B2

0k
2
0

δ

(
e−2δχ − 1

)
and B0 is a real parameter.
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Stability of Plane-Wave Solutions

Consider perturbed solutions of the form

Bpert(ξ, χ) =
(
B0+µu(ξ, χ)+iµv(ξ, χ)+O(µ2)

)
exp

(
wr (χ)+iwi (χ)

)
Φpert(ξ, χ, ζ) = 0 + µp(ξ, χ, ζ) +O(µ2)

where

I µ is a small real parameter

I u, v , and p are real-valued functions
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Plane-Wave Stability Observations
The non-transient linear stability problem gives (in physical
coordinates)

η(x , t) = d0 exp
(
iω0t + if0(x)− 4ν̄

k3
0

ω0
x
)

+ d1 exp
(
iω0(1− εq)t + if1(x)− 4ν̄

k3
0

ω0
(1− 5εq)x

)
+ d2 exp

(
iω0(1 + εq)t + if2(x)− 4ν̄

k3
0

ω0
(1 + 5εq)x

)
+ c .c.

where dj are complex constants and fj are real-valued functions.

I The amplitude of the carrier wave (the mode with wave
number k0 > 0) decays exponentially.

I The amplitude of the upper sideband (the mode with wave
number k0 + ε|q|) decays more rapidly than the amplitude of
the carrier wave.

I The amplitude of the lower sideband (k0 − ε|q|) decays more
slowly than does the amplitude of the carrier wave.

This further suggests FD.
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)
+ c .c.

where dj are complex constants and fj are real-valued functions.

I The amplitude of the carrier wave (the mode with wave
number k0 > 0) decays exponentially.

I The amplitude of the upper sideband (the mode with wave
number k0 + ε|q|) decays more rapidly than the amplitude of
the carrier wave.

I The amplitude of the lower sideband (k0 − ε|q|) decays more
slowly than does the amplitude of the carrier wave.

This further suggests FD.
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Plane-Wave Stability Observations

I The instability growth rate is 5εδ|q|.

I The amplitudes of the second and third harmonics are

B2 = k0B
2

B3 =
3

2
k2

0B
3

I This suggests that FD will be observed in the higher
harmonics before it is observed in the fundamental.
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Comparisons with Experiments
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Moderate Amplitude Experiment
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Large Amplitude Experiment
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Feb 11 Experiment Fourier Amplitudes
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Feb 11 Experiment Quantities
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Summary

The viscous Dysthe system

I Accurately models experiments of “moderate” amplitude

I Accurately models experiments of “large” amplitude

I Admits plane-wave instabilities that yield FD

I ωm, ωp and P usually decrease
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