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Contrast two ODEs
I Quadratic case

ż = z2 , z(0) = ε

z(t) =
ε

1− εt
, T =

1
ε

where T = T(ε) is the time of existence of a nonsingular solution

I Cubic case

ẇ = w3 , w(0) = ε

w(t) =

√
ε2

1− 2ε2t
, T =

1
2ε2

I The general time of existence does not change when these ODE
are replaced by

ż = iωz + z2 + h(3)(z) , ẇ = iωw + w3 + k(4)(w)



Free surface water waves
I Incompressible and irrotational flow

∇ · u = 0 , ∇∧ u = 0

which is a potential flow in the fluid domain S(η)

u = ∇ϕ , ∆ϕ = 0

Fluid domain S(η): −h < y < η(x, t), x ∈ Rd−1

Bottom boundary conditions ∂Nϕ = 0

I Free surface conditions on y = η(x, t)

∂tη = ∂yϕ− ∂xη · ∂xϕ kinetic BC

∂tϕ = −gη − 1
2 |∇ϕ|

2 Bernoulli condition



Free surface water waves with surface tension
I Incompressible and irrotational flow

∇ · u = 0 , ∇∧ u = 0

which is a potential flow in the fluid domain S(η)

u = ∇ϕ , ∆ϕ = 0

Fluid domain S(η): −h < y < η(x, t), x ∈ Rd−1

Bottom boundary conditions ∂Nϕ = 0

I Free surface conditions on y = η(x, t) with surface tension

∂tη = ∂yϕ− ∂xη · ∂xϕ kinetic BC

∂tϕ = −gη − 1
2 |∇ϕ|

2 + σκ(η) Bernoulli condition

where κ(η) is the mean curvature of the free surface



Figure : Great waves off the Oregon coast



Zakharov’s Hamiltonian
I The energy functional

H = K + P

=

∫
x

∫ η(x)

y=−h

1
2 |∇ϕ|

2 dydx +

∫
x

g
2η

2 dx

I Zakharov’s choice of variables

z := (η(x), ξ(x)) , where ξ(x) := ϕ(x, η(x))

That is ϕ = ϕ[η, ξ](x, y)

I Expressed in terms of the Dirichlet – Neumann operator G(η)

H(η, ξ) =

∫
1
2ξG(η)ξ + g

2η
2 dx



Dirichlet – Neumann operator
I Laplace’s equation on the fluid domain S(η)

ξ(x) 7→ ϕ(x, y) 7→ N · ∇ϕ (1 + |∇xη|2)1/2 := G(η)ξ(x)

I Equations take the form of a Hamiltonian PDE, in Darboux
coordinates

∂tη = gradξH = G(η)ξ

∂tξ = −gradηH = −gη − gradηK

That is

∂tz = JgradzH , J =

(
0 I
−I 0

)

Expression for gradηK related to the Hadamard variational
formula [lectures on Green’s functions, Collège de France
(1911)(1916)]



Dirichlet – Neumann operator

Lemma 1 (properties of the Dirichlet - Neumann operator)

1. G(η) ≥ 0 and G(η)1 = 0

2. G(η)∗ = G(η) Hermitian symmetry

3. G(η) : H1
ξ → L2

ξ is analytic in η for η ∈ C1

G(η)ξ = G(0)ξ + G(1)(η)ξ + G(2)(η)ξ + . . .

[Employs a theorem of Christ & Journé (1987)]

4. Setting Dx := −i∂x several terms of the Taylor series are:

G(0)ξ = |Dx| tanh(h|Dx|)ξ
G(1)ξ = (Dx · ηDx − G(0)ηG(0))ξ



I Simulations using the Dirichlet – Neumann formulation
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Figure : Head-on collision of two solitary waves, case S/h = 0.4
W. Craig, J. Hammack, D. Henderson, P. Guyenne & C. Sulem,
Phys. Fluids 18, (2006)



Poisson brackets and conservation laws
One way to express conservation uses the Poisson bracket

∂tK(η(t, ·), ξ(t, ·)) = {H,K} :=

∫
gradηK gradξH−gradξK gradηH dx

I Mass M(η) =
∫
η dx

{H,M} =

∫
gradηM gradξH − gradξM gradηH dx

=

∫
1 G(η)ξ dx

=

∫
G(η)1 ξ dx = 0

I Momentum I(η, ξ) =
∫
η∂xξ dx , ∂tI = {H, I} = 0

I Energy H(η, ξ) , ∂tH = {H,H} = 0



Taylor expansion of the Hamiltonian

I From the analyticity of G(η) (e.g. the case σ = 0)

H = H(2) + H(3) + H(4) + . . .

= 1
2

∫
ξG(0)ξ + gη2 dx +

∑
m≥3

1
2

∫
ξG(m−2)(η)ξ dx

I The water wave equations linearized about (η, ξ) = 0 are

∂t

(
η
ξ

)
= J gradη,ξH

(2)(η, ξ)

namely

∂tη = |Dx| tanh(h|Dx|)ξ
∂tξ = −gη

A harmonic oscillator with frequencies ω(k) =
√

g|k| tanh(h|k|)



Birkhoff normal form

I Normal form - transform the equations to retain only essential
nonlinearities

τ : z =

(
η
ξ

)
7→ w

in a neighborhood BR(0) ⊆ Hr

I Conditions:
1. The transformation τ is canonical, so the new equations are

∂tw = J gradH(w) , H(w) = H(τ−1(w))

2. The new Hamiltonian is

H(w) = H(2)(w) +
(
Z(3) + · · ·+ Z(M)

)
+ TR

(M+1)

where each Z(m) retains only resonant terms {H(2),Z(m)} = 0

I The transformed Hamiltonian H(w) is conserved by the flow



Significance of the normal form
I This transformation procedure and reduction to Birkhoff normal

form is part of the theory of averaging for dynamical systems
I Fourier transform variables and complex symplectic coordinates

(ηk, ξk) :=
1√
2π

∫ 2π

0
e−ikx(η(x), ξ(x)) dx

zk :=
1√
2

(
Qkηk + iQ−1

k ξk
)
, Qk = 4

√
g
|k|

Action angle variables zk =
√

IkeiΘk Ik = |zk|2
I A Hamiltonian h(I) in action variables alone is integrable

∂tΘ = ∂Ih(I) , Θ(t) = Θ(0) + t∂Ih(I)

∂tI = −∂Θh(I) = 0 , I(t) = I(0)

Such flows conserve each Ik, hence every Sobolev norm

‖z(t)‖2
r =

∑
k

〈k〉2r|zk(t)|2 = ‖z(0)‖2
r



Further reasons to study the normal form

I Zakharov’s theory of wave turbulence. The reduction of a
Hamiltonian PDE to its resonant manifold is a normal forms
transformation. In Zakharov’s notation, Q(Dx) := 4

√
g/ω(Dx)

a(x) :=
1√
2

(
Q(Dx)η(x) + iQ−1(Dx)ξ(x)

)
7→ b(x)

I In KAM theory the Arnold condition depends upon the normal
form

I special solutions. Resonant terms Z(3) + . . . Z(M) describe an
averaged system, which often has particular solutions of interest.
Example: Wilton ripples and three wave resonances



Resonant terms

I Cubic resonances: It is well known in the folklore of fluid
dynamics that with surface tension σ = 0 there are no three wave
interactions. Namely

ωk1 ± ωk2 ± ωk3 = 0 ,

k1 + k2 + k3 = 0

implies that at least one of k1, k2, k3 = 0

In particular this means that Z(3) = 0, and the new equations
have no quadratic nonlinear terms; the lowest order nonlinear
terms will be cubic.

I The question in PDEs: mapping properties of τ := τ (3): is the
transformation well defined, and on which Banach spaces



Third order Birkhoff normal form

I Theorem 2 (C. Sulem & WC (2016))
Let d = 2 and h = +∞ and fix r > 3/2. There exists R0 > 0 such
that for any R < R0, on every neighborhood BR(0) ⊆ Hr

η ⊕ Hr
ξ the

canonical Birkhoff normal forms transformation τ (3) is defined.

τ (3) : BR(0)→ B2R(0) (τ (3))−1 : BR/2(0)→ BR(0)

The result is that w = τ (3)(z) transforms H(z) to normal form

H(w) = H(2)(w) + 0 + TR(4)
(w)

I Clearly H(w) = H(2)(w) + 0 + TR(4)
(w) takes the form

H = H(2)(I) +O(‖w‖4)



Fourth order Birkhoff normal form - formal calculation
Theorem 3 (Dyachenko, Lvov & Zakharov (1994), WC &
Worfolk (1995))
In the case d = 2 and h = +∞, set I1(k) = 1

2(zkz̄k + z−kz̄−k) and
I2(k) = 1

2(zkz̄k − z−kz̄−k). The formal second Birkhoff normal form is

H+
=
∑

k

ωkI1(k)− 1
2π

∑
k

|k|3
(
I1(k)2 − 3I2(k)2)

+
4
π

∑
|k4|<|k1|

I2(k1)I2(k4) + TR(5)

=H(2)(I) + H(4)
(I) + TR(5)

In particular there are no nonzero Benjamin - Feir resonant
interactions. Specifically ck1k2k3k4 = 0 when

k1 : k2 : k3 : k4 = n2 : (n + 1)2 : n2(n + 1)2 : −(n2 + n + 1)2)

ω1 : ω2 : ω3 : ω4 = n : −(n + 1) : −n(n + 1) : (n2 + n + 1)



Fourth order Birkhoff normal form

Define the energy space Er := Hr
η ⊕ Hr+1/2

ξ

Quartet interactions are indexed by

{(k1, k2, k3, k4) ∈ Z4 : Σ4
j=1kj = 0}

The resonant set is

R = {k1k4, k2k3 > 0 : k1 +k2 = 0 = k3 +k4 or k1 +k3 = 0 = k2 +k4}

A quasihomogeneous neighborhood of R is a set of near-resonant
modes

C+
R :={(k1, k2, k3, k4) ∈ Z4 : Σ4

j=1kj = 0 satisfying

|k1 + k2| < (|k1|+ |k2|)1/4 and |k3 + k4| < (|k3|+ |k4|)1/4}

The neighborhood C−R ⊆ Z4 is similar with k2 ↔ k3



Fourth order Birkhoff normal form

Theorem 4 (WC & Sulem (2016))
Let Q ⊆ Z4 be a set of quartet interactions, such that

Q\Bρ(0) ∩ C±R = ∅ ρ < +∞

is symmetric under (k↔ −k), (k2 ↔ k3) and (k1 ↔ k4).
Then for r > 3/2 there exists a canonical transformation τ (4)

Q on
BR(0) ⊆ Er such that

τ
(4)
Q : H(2) + H(4)

+ R(5) → H̃ = H(2) + Z̃(4) + R̃(5) .

such that supp Z̃(4) ⊆ C±R . For (k1, k2, k3, k4) ∈ R then

Z̃(4)
k1,k2,k3,k4

= Z(4)
k1,k2,k3,k4

(I)



Surface tension σ > 0

Theorem 5 (C. Sulem & WC (2015))
In the case of positive surface tension, with 0 < h ≤ +∞, a similar
statement holds for r > 1, namely
∂zτ

(3) : BR(0) ⊆ Hr+1
η ⊕ Hr+1/2

ξ → Hr+1
η ⊕ Hr+1/2

ξ . However it is
possible that Z(3) is nonzero (Wilton ripples).

NB Furthermore τ (3) is smooth on a scale of Hilbert spaces. That is,
in the case with surface tension the Jacobian maps energy spaces

∂zτ
(3) : Hr+1/2

η ⊕ Hr
ξ → Hr+1/2

η ⊕ Hr
ξ

In the case w/o surface tension the Jacobian maps

∂zτ
(3) : Hr−1

η ⊕ Hr−1
ξ → Hr−1

η ⊕ Hr−1
ξ

NB: The transformation mixes the domain η and the potential ξ.



Almost global existence theory
Consider d = 2, σ > 0, finite or infinite depth h, and x ∈ [0, 2π] with
periodic boundary conditions.

Theorem 6 (M. Berti & J.-M. Delort (2016))
There is a set of parameters M0 ⊆ M of full measure, such that for
(g, h, σ) ∈ M0 and for any m ≥ 3 there are s0 > 0 and ε0 > 0 such
that for 0 < ε < ε0 and s ≥ s0 there is a transformation

τ = τ (m) : z(t, x) ∈ Bε(0) ⊆ Hs 7→ w(t, x) ∈ B2ε(0)

(1) such that z(t, x) satisfies the water waves equations and
(2) the energy estimate in the w coordinates is satisfied

∂t‖w(t)‖s ≤ Csε
m−2‖w(t)‖s

This recent result is a time Tε > cε−(m−2) existence theorem for water
waves in the spatially periodic case, for nonresonant parameter values.
It depends upon nonresonance conditions but is not a normal form



Hamiltonian in general coordinates
I Fluid domain Ω(t) ⊆ R2 with free surface γ(t, s).

Evolution determined by free surface conditions

Ttxy · Ntxy = 0 , p(t, γ(t, s)) = 0

I Energy = kinetic + potential

H = K + P , K = 1
2

∫∫
Ω
|∇ϕ(x, y)|2 dydx

Potential energy

P =

∫∫
Ω
∇ · V dydx , V = (0,

gy2

2
)

I Dirichlet – Neumann operator, with ϕ(γ(s)) = ξ(s)

G(γ)ξ(s) := N · ∇ϕ(γ(s)) , K = 1
2

∫
γ
ξ(s)G(γ)ξ(s) ds



Legendre transform
I Lagrangian

L = K − P

The kinematic boundary condition states that

N · γ̇ = N · ∇ϕ(γ) = G(γ)ξ

Decmpose the vector field γ̇(s) along the curve
γ = (γ1(s), γ2(s)) in terms of its Frenet frame (T(s),N(s))

n(t, s) = N · γ̇(t, s) , τ(t, s) = T · γ̇(t, s)

then the Lagrangian is

L = 1
2

∫
γ

n(t, s)G−1(γ)n(t, s) dSγ −
∫
γ

V · N dSγ

I The Legendre transform

δγ̇L = G−1(γ)n(t, s) = ξ(s) ,

H = 1
2

∫
γ
ξ(s)G(γ)ξ(s) dSγ +

∫
γ

g
2
γ2

2(s)∂sγ1(s) ds



Hamilton’s canonical equations
I variations δγ and δξ of the Hamiltonian

N · γ̇ = n = δξK = G(γ)ξ

the kinematic boundary conditions
I Decomposing boundary variations δγ = N · δγ + T · δγ

variations of the potential energy

δγP · δγ =

∫
γ

gγ2(s)N · δγ dSγ

I Finally δγK has normal and tangential components. The normal
component gives the result that

∂tξ = −gγ2 − 1
2

( 1
|∂sγ|2

(∂sξ)
2 − (G(γ)ξ)2 − 1

|∂sγ|
∂sξτ

)
The tangential component T · γ̇ depends upon the manner in
which the surface is parametrized



Critique
I This talk in on work in progress for several reasons

Existence theorems depend upon solving the initial value
problem in special variables.
Nalimov (1971) shows that this is possible in Lagrangian
coordinates
In Eulerian coordinates such proofs depend upon Alinhac’s
‘good variables’.
Question: is there a systematic symmetrization for the water
wave equations, that is independent of coordinates

I Normal forms in the case σ = 0 and 0 < h < +∞ are not
included

I In the case of a variable bathymetry h(x), periodic for example,
the dispersion relation is replaced by the Bragg frequencies ωh(k)

I Properties of the normal forms transformations τ (M) on energy
spaces Hs

η ⊕ Hs+1/2
ξ



Thank you



proof of Theorem 2
Proposition 7

I One can choose initial data η0(x) = η(x, 0) such that
M = 2πη̂(0) = 0

I Unless 〈k, p− q〉 = 0 the coefficients satisfy

c(p, q) = 0

(conservation of momentum)
I There are no nonzero m = 3 resonances. Indeed

ω(k1)± ω(k2)± ω(k3) = 0 and k1 ± k2 ± k3 = 0

implies k` = 0 for some ` = 1, 2, 3

The auxiliary Hamiltonian is determined by a cohomological equation

{K(3),H(2)}+ H(3) = 0

to be solved for K(3). This is a linear equation



I The transformation τ (3) is constructed as the time s = 1 flow of
the Hamiltonian vector field of K(3)

d
ds

z = JgradzK
(3) := XK(3)

(z)

I In case h = +∞ the auxiliary Hamiltonian K(3) is remarkably
simple

K(3)(η, ξ) = 1
2

∫ (
isgn(D)η

)2|D|ξ dx = 1
2

∫
η̃2∂xξ̃ dx (1)

where (η̃, ξ̃) := −isgn(D)(η, ξ) the Hilbert transform
I The auxiliary flow giving τ (3) is the solution map of

∂sη̃ = −η̃∂xη̃ = gradξ̃K
(3)

∂sξ̃ = −η̃∂xξ̃ = −gradη̃K(3)

NB This is Burgers flow for η̃, and its linearization for ξ̃
(WC & C. Sulem (2012), also Hunter & Ifrim (2012))



end of proof
I Check the expression (1)

{H(2),K(3)}

= 1
2

∫
η|D|

(
isgn(D)η

)2
+ |D|ξ

(
isgn(D)(isgn(D)η|D|ξ)

)
dx

=

∫
1
6
∂x
(
isgn(D)η

)3 dx−
∫

(isgn(D)η)∂xξ|D|ξ dx

I With an identity for Hardy space functions f + ig

isgn(D)
(
fg
)

= 1
2

(
f 2 − g2)

where g = −isgn(D)f is the Hilbert transform, this expression
gives

{H(2),K(3)} = 1
2

∫
η
(
(∂xξ)

2 − (|D|ξ)2) dx = H(3)



proof of Theorem 5

I With surface tension the dispersion relation is

ω2(k) = (g + σk2)k tanh(hk)

There can be resonant triples (ω(k1), ω(k2), ω(k3))
If h < +∞ these lie in a compact set in k-space.

I Aside from these resonances, solve the cohomological equation
for K(3)

{H(2),K(3)} = H(3) − [H(3)]

I The Hamiltonian vector field XK(3)
(η, ξ) satisfies energy

estimates on neighborhoods BR(0) in the function space
Hr+1
η ⊕ Hr+1/2

ξ for r > 1
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