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Higher Order Dispersion From Phase Dynamics

Introduction

Motivation

(a) Solitary wave from 5th order KdV model
(Părău and Guyenne, 2015)

(b) Travelling solitary wave from 5th order KP
model (Hărăguş-Courcelle and Il’ichev, 1998)

Aim: Find out how fifth order dispersion arises from modulational arguments,
apply to water wave problems and other physically interesting systems.
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Introduction

Euler-Lagrange Equations and Conservation Laws I

Start from the Multisymplectic form of the Euler-Lagrange equations,

MZt + JZx + KZy = ∇S(Z), MT = −M, JT = −J, KT = −K.

Assume the existence of a single phase relative equilibrium (e.g. periodic
travelling wave) solution,

Z(x , y , t) = Ẑ(θ; k,m, ω), θ = kx + my + ωt + θ0 (1.1)

for wavenumbers k, m and frequency ω.
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Introduction

Euler-Lagrange Equations and Conservation Laws II

Define the linear operator about Ẑ as

L = D2S(Ẑ)− (ωM + kJ + mK)∂θ,

which leads to the results

LẐθ = 0, LẐk = JẐθ

Assuming the kernel is no larger, solvability of systems in this setting requires
that

LF = G is solvable when 〈〈Ẑθ,G〉〉 = 0,

for suitable inner product 〈〈·, ·〉〉.
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Euler-Lagrange Equations and Conservation Laws III

Define the quantities

A(Z) =
1

2
〈〈Z ,MZθ〉〉, B =

1

2
〈〈Z , JZθ〉〉, C =

1

2
〈〈Z ,KZθ〉〉

which form the conservation law

At + Bx + Cy = 0.

Evaluate these along Ẑ to give these as function of k m and ω:

A(Ẑ), B(Ẑ), C(Ẑ) ≡ A (k,m, ω), B(k,m, ω), C (k,m, ω).

The derivatives of these relate to solvability requirements and coefficients in
the final equation.
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Jordan Chain Theory I

The theory admits Jordan chains of the form

Lξ1 = 0, Lξi+1 = Jξi .

As has been seen, ξ1 = Ẑθ, ξ2 = Ẑk and a third element exists when

K2 = 〈〈Jξ1, ξ2〉〉 = −〈〈Ẑθ, JẐk〉〉 = −Bk = 0.

The chain is always even in length (since L’s zero eigenvalue is even) and so
fifth element exists when

K4 = 〈〈JẐθ, ξ4〉〉 = 0.

Consequence: No third order dispersion.
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Jordan Chain Theory II

There is also a mixed chain of the form

Lζ1 = JẐm + KẐk , Lζi+1 = Jζi + Kξi+2,

which will lead to mixed dispersion. The first element exists when

M0 = −〈〈Ẑθ, JẐm + KẐk〉〉 = Bm + Ck = 0.

This chain is also of even length, and in the analysis the relevant coefficient
that emerges is

M2 = −〈〈Ẑθ, Jζ2 + Kξ4〉〉,

which may or may not vanish, depending on the application considered.
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Modulation

Modulation Approach

Idea: Find relative equilibrium Ẑ , then consider an ansatz by perturbing the
independent variables (modulation) as

Z = Ẑ
(
θ + ε3φ(X ,Y ,T ), k + ε4q(X ,Y ,T ),m + ε6r(X ,Y ,T ),

ω + ε8Ω(X ,Y ,T )
)

+ ε5
∞∑
n=0

εnWn(θ,X ,Y ,T ) (2.2)

with X = εx , Y = ε3y , T = ε5t and ε� 1. Method is to substitute the ansatz
into the Euler-Lagrange equation, expand around ε = 0 and solve at each order.

Strengths of the approach:

Do asymptotics on general Euler-Lagrange equations once, then result
applies to all systems that can be put in that form (providing relevant
criterion met).

Coefficients are related to properties of the basic state - can be determined
a-priori and are simple to compute.
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Modulation

Summary of Key Step in Asymptotics

Everything is trivial until O(ε5) (by ansatz construction), at which stage
we must solve

LW0 = qXJẐk ,

which can be done when Bk = 0.

The mixed chain emerges at O(ε6):

L(W1 − qXX ξ4) = qY (JẐm + KẐk),

which is solvable when Bm + Ck = 0.

At O(ε7) the third order dispersive term in X emerges, which vanish when

〈〈Ẑθ, Jξ4〉〉 = −K4 = 0. If it doesn’t then regular KP is most suitable
model.1

Solvability at O(ε9) leads to the fifth order KP(
(Ak + Bω)qT + BkkqqX + M2qXXY + K6qXXXXX

)
X

+ CmqYY = 0

1T. J. Bridges. “Emergence of dispersion in shallow water hydrodynamics via modulation of
uniform flow”. In: J. Fluid Mech. 761 (2014), R1.
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Modulation

Summary of Result

The key result is that the fifth order KP equation is a suitable model when

K2 = K4 = 0, Bm + Ck = 0,

and therefore three conditions need to be met. If the system has the symmetry
y 7→ −y , then the last is automatic (by choosing m = 0), but a consequence is
that M2 = 0 also.
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Example 1 - Biharmonic Elastic Sheet

Consider the potential shallow water system with linear (biharmonic) elastic
plate on the surface

ηt +∇ · (η∇φ) = 0,

φt +
1

2
|∇φ|2 + gη +

D

ρ
∇4η = R,

(3.3)

for velocity potential φ, free surface height η, rigidity constant D and Bernoulli
constant R.

Basic solution is constant velocity, thus

φ = θ, η = η0 = g−1

(
R − ω − k2 + m2

2

)
.
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Criticality and Emergence of KP-5

The conservation law components are

A = η0, B = kη0, C = mη0

Criticality in B occurs when

η0 −
k2

g
= 0 (Froude number criticality).

Fifth order dispersion then happens automatically. Transverse symmetry
imposes m = 0.
The modulation theory gives the resulting fifth order KP as(

qT +
3

2
qqX −

Dk

2ρg
qXXXXX

)
X

+
k

2
qYY = 0, k = ±√gη0.
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Example II: Higher Order NLS

Consider the model

iψt +∇2ψ +
1

2
λ∇4ψ + ψ − |ψ|2ψ = 0,

which has been proposed to model higher order dispersive effects in Maxwell’s
equations2.
Relative equilibrium associated with the SO(2) symmetry group gives the
solution ψ = ψ0e

iθ with

|ψ0|2 = 1− (k2 + m2) +
1

2
λ(k2 + m2)2.

2V.I. Karpman. “Influence of high-order dispersion on self-focusing. I. Qualitative
investigation”. In: Phys. Lett. A 160.6 (1991), pp. 531–537.
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Criticality and Emergence

The conservation laws along the relative equilibrium are given by

A =
1

2
|ψ0|2, B = k

(
1− λ(k2 + m2)

)
|ψ0|2, C = m

(
1− λ(k2 + m2)

)
|ψ0|2.

The first and third order dispersion terms vanish when
k ≈ −0.533, m = 0, λ ≈ −1.796 (solving numerically). In which case we the
resulting fifth order KP is(

qT + aqqX + bqXXXXX
)
X

+ cqYY = 0

with
a ≈ 4.569, b ≈ −1.483, c ≈ 0.139
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Next Steps

If Bkk = 0, one expects terms like

. . .+

[
1

2
Bkkkq

2qX + ∂kK4(qqXXX + 2qXqXX )

]
X

+ . . . ,

which appear in Craig and Groves3 and Parau and Guyenne4.

Find examples where M2 6= 0!

Undertake a similar analysis for multiple conservation laws (which have
more parameters and so fifth order models are more attainable) - can
potentially lead to coupled 5th order models.

3W. Craig and M. D. Groves. “Hamiltonian long-wave approximations to the water-wave
problem”. In: Wave motion 19.4 (1994), pp. 367–389.

4P. Guyenne, E. I. Părău, et al. “Asymptotic Modeling and Numerical Simulation of Solitary
Waves in a Floating Ice Sheet”. In: The Twenty-fifth International Offshore and Polar
Engineering Conference. International Society of Offshore and Polar Engineers. 2015.
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Thanks for listening!
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