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Higher Order Dispersion From Phase Dynamics
Llntroduction

Motivation

Fig. 6. - Soliary wave of clevation for g, = 0.75, = = ~0.0L.

(b) Traveliing solitary wave from 5th order KP

(a) Solitary wave from 5th order KdV model model (H3rdgus-Courcelle and Il'ichev, 1998)

(P3riu and Guyenne, 2015)

Aim: Find out how fifth order dispersion arises from modulational arguments,
apply to water wave problems and other physically interesting systems.

s}



Higher Order Dispersion From Phase Dynamics
|—Im:roducv:ion

Outline

Abstract Setup
m Multisymplectic formulation and relative equilibria
m Linear operator and solvability
m Conservation laws in multisymplectic settings
n

Jordan chain theory

Modulation and Summary of Asymptotics

Examples
m Shallow water plate problem
m Higher Order NLS equation

Future Work/ Next Steps
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Euler-Lagrange Equations and Conservation Laws |

Start from the Multisymplectic form of the Euler-Lagrange equations,
MZ; +1Z, +KZ, = VS(2), M =-M J =-J K =—K.

Assume the existence of a single phase relative equilibrium (e.g. periodic
travelling wave) solution,

-~

Z(x,y,t) = Z(0; k,mw), 0=kx+ my+wt+ b (1.1)

for wavenumbers k, m and frequency w.
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Euler-Lagrange Equations and Conservation Laws Il

Define the linear operator about Z as
L =D?S(Z) — (wM + kJ + mK)dp,
which leads to the results
LZ, =0, LZ, =12,

Assuming the kernel is no larger, solvability of systems in this setting requires

that N
LF = G s solvable when ((Zy,G)) =0,

for suitable inner product ((-,-)).
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Euler-Lagrange Equations and Conservation Laws IlI

Define the quantities

(2,325), C=3(2,KZ)

NI —
NI —

AZ) = (ZMZy), B=
which form the conservation law
A+ B+ C, =0.
Evaluate these along Z to give these as function of k m and w:
A(Z), B(Z), C(Z) = o(k, m,w), Bk, m,w), €(k, m,w).

The derivatives of these relate to solvability requirements and coefficients in
the final equation.
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Jordan Chain Theory |

The theory admits Jordan chains of the form
L& =0, L& = Jé.
As has been seen, & = 29, &= Zi and a third element exists when
M = (J61, &) = ~(20,9Zk) = ~B = 0.

The chain is always even in length (since L's zero eigenvalue is even) and so
fifth element exists when

JHy = (IZy, &) = 0.

Consequence: No third order dispersion.
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Jordan Chain Theory Il

There is also a mixed chain of the form
L = 3Zn + KZe, Liiyr = G + K,
which will lead to mixed dispersion. The first element exists when
Mo =—(Z9,3Zm + KZ)) = Brm + € = 0.

This chain is also of even length, and in the analysis the relevant coefficient
that emerges is N
My = —(Zo,I02 + K&a)),

which may or may not vanish, depending on the application considered.
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Modulation Approach

Idea: Find relative equilibrium Z, then consider an ansatz by perturbing the
independent variables (modulation) as

Z=Z0+6(X,Y,T),k+e*q(X, Y, T),m+r(X,Y,T),

wH QX Y, T)) +°) "Wi(0,X,Y, T) (22)

n=0

with X =ex, Y =%y, T =<t and € < 1. Method is to substitute the ansatz
into the Euler-Lagrange equation, expand around € = 0 and solve at each order.

Strengths of the approach:

m Do asymptotics on general Euler-Lagrange equations once, then result
applies to all systems that can be put in that form (providing relevant
criterion met).

m Coefficients are related to properties of the basic state - can be determined
a-priori and are simple to compute.
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Summary of Key Step in Asymptotics

m Everything is trivial until O(¢®) (by ansatz construction), at which stage
we must solve R
LW() = quZk,
which can be done when % = 0.

m The mixed chain emerges at O(e°):

L(Wi — gxxé&a) = gy (JZm + KZy),

which is solvable when %, + ¢« = 0.

m At O(”) the third order dispersive term in X emerges, which vanish when
{(Zo,I&a)) = —2#4 = 0. If it doesn’t then regular KP is most suitable
model .

m Solvability at O(e®) leads to the fifth order KP

((!ka + Bo)ar + Buqax + Aa2qxxy + %Clxxxxx> + Cmqyy =0
X

1T, J. Bridges. “Emergence of dispersion in shallow water hydrodynamics via modulation of
uniform flow”. In: J. Fluid Mech. 761 (2014), R1.
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Summary of Result

The key result is that the fifth order KP equation is a suitable model when

Mo = Ha=0, Bm+ =0,

and therefore three conditions need to be met. If the system has the symmetry
y — —y, then the last is automatic (by choosing m = 0), but a consequence is
that .#> = 0 also.
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Example 1 - Biharmonic Elastic Sheet

Consider the potential shallow water system with linear (biharmonic) elastic
plate on the surface

ne+V-(nVe) =0,

1 D 33
¢>r+§\V¢>\2+gn+ ;V“n:R, (33)

for velocity potential ¢, free surface height 7, rigidity constant D and Bernoulli
constant R.

Basic solution is constant velocity, thus

k2+m2>

¢ =9, n:no:g*(waf 5
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Criticality and Emergence of KP-5

The conservation law components are
A =n, B=kn, E=mn

Criticality in % occurs when
k2
no — — =0 (Froude number criticality).
g

Fifth order dispersion then happens automatically. Transverse symmetry
imposes m = 0.
The modulation theory gives the resulting fifth order KP as

3 Dk k
= - _ + — = k = £/ .
(QT + 5 qqx 2 CIxxxxx) N 5 qvy =0, 8o
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Example Il: Higher Order NLS

Consider the model
. 1
e+ V3 + AV Y+ — [Py =0,

which has been proposed to model higher order dispersive effects in Maxwell's
equations?.

Relative equilibrium associated with the SO(2) symmetry group gives the
solution 9 = e’ with

1
o> =1 — (K> + m®) + 5>\(k2 + m?).

2v.1. Karpman. “Influence of high-order dispersion on self-focusing. |. Qualitative
investigation”. In: Phys. Lett. A 160.6 (1991), pp. 531-537.
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Criticality and Emergence

The conservation laws along the relative equilibrium are given by

1
o =S’ B =k(1= XK +m)) ol € =m(1— MK +m"))[to]”
The first and third order dispersion terms vanish when
k ~ —0.533, m =0, A = —1.796 (solving numerically). In which case we the
resulting fifth order KP is

(g7 + agax + bgxxxxx) , + cqvy =0

with
a=x 4569, b~ —1483, c=0.139
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Next Steps

m If Bix = 0, one expects terms like

1
ot EﬂkkkaX + Ok Ha(qgxxx +2gxqxx)| + ...,
X

which appear in CRAIG AND GROVES® and PARAU AND GUYENNE".
m Find examples where .#> # 0!

m Undertake a similar analysis for multiple conservation laws (which have
more parameters and so fifth order models are more attainable) - can
potentially lead to coupled 5th order models.

3W. Craig and M. D. Groves. “Hamiltonian long-wave approximations to the water-wave
problem”. In: Wave motion 19.4 (1994), pp. 367-389.
*P. Guyenne, E. |. P3r3u, et al. “Asymptotic Modeling and Numerical Simulation of Solitary
Waves in a Floating Ice Sheet”. In: The Twenty-fifth International Offshore and Polar
Engineering Conference. International Society of Offshore and Polar Engineers. 2015.
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Thanks for listening!
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