Tight lower bounds for the complexity of multicoloring

Marthe Bonamy

October 18th, 2016

Joint work with
Łukasz Kowalik, Michał Pilipczuk, Arkadiusz Socała, Marcin Wrochna

Coloring

Coloring

$$
\underset{x}{\text { cc-(d) }} \Rightarrow c \neq d
$$

Coloring

χ : Minimum number of colors to ensure that:

$$
\underset{x}{\text { ç_- }} \quad \underset{y}{\text { d }} \Rightarrow c \neq d
$$

MultiColoring

χ : Minimum number of colors to ensure that:

$$
\underset{x}{\text { cc- (d) }} \Rightarrow c \neq d
$$

MultiColoring

χ : Minimum number of colors to ensure that:

$$
\begin{aligned}
& \begin{array}{c}
\text { cc-(d) } \\
x
\end{array} \quad \Rightarrow c \neq d \\
& \frac{y}{x} \frac{D}{y} \Rightarrow\left\{\begin{array}{l}
|C|=b \\
|D|=b \\
C \cap D=\emptyset
\end{array}\right.
\end{aligned}
$$

MultiColoring

χ : Minimum number of colors to ensure that:

$$
\underset{x}{c}-\quad \underset{y}{\text { (d) }} \Rightarrow c \neq d
$$

χ_{b} : Minimum number of colors to ensure that:

$$
\frac{C}{x}-\frac{D}{y} \Rightarrow\left\{\begin{array}{l}
|C|=b \\
|D|=b \\
C \cap D=\emptyset
\end{array}\right.
$$

MultiColoring

χ : Minimum number of colors to ensure that:

$$
\underset{x}{\text { c)- }} \underset{y}{\text { d) }} \Rightarrow c \neq d
$$

χ_{b} : Minimum number of colors to ensure that:

$$
\begin{gathered}
(C-D \\
x
\end{gathered} \Rightarrow\left\{\begin{array}{l}
|C|=b \\
|D|=b \\
C \cap D=\emptyset
\end{array}\right.
$$

Complexity

"Is G k-colorable?"

Complexity

"Is G k-colorable?"

- $k \leq 1$: Easy \checkmark

Complexity

"Is G k-colorable?"

- $k \leq 1$: Easy \checkmark
- $k=2$: Easy \checkmark

Complexity

"Is G k-colorable?"

- $k \leq 1$: Easy \checkmark
- $k=2$: Easy \checkmark
- $k \geq 3$: NP-hard

Complexity

"Is G k-colorable?"

- $k \leq 1$: Easy \checkmark
- $k=2$: Easy $\sqrt{ }$
- $k \geq 3$: NP-hard
"Is G a:b-colorable?"

Complexity

"Is G k-colorable?"

- $k \leq 1$: Easy \checkmark
- $k=2$: Easy \checkmark
- $k \geq 3$: NP-hard
"Is G a:b-colorable?"
- $a<2 b$: Easy \checkmark

Complexity

"Is G k-colorable?"

- $k \leq 1$: Easy \checkmark
- $k=2$: Easy $\sqrt{ }$
- $k \geq 3$: NP-hard
"Is G a:b-colorable?"
- $a<2 b$: Easy \checkmark
- $a=2 b$: Easy \checkmark

Complexity

"Is G k-colorable?"

- $k \leq 1$: Easy
- $k=2$: Easy \checkmark
- $k \geq 3$: NP-hard
"Is G a:b-colorable?"
- $a<2 b$: Easy $\sqrt{ }$
- $a=2 b$: Easy $\sqrt{ }$
- $a \geq 2 b+1$: NP-hard (Hell, Nešetril '90)

NP-hard? :

NP-hard? :(

Exponential Time Hypothesis (Impagliazzo, Paturi '99)

There is $\epsilon>0$ such that $3-S A T$ cannot be solved in $\mathcal{O}^{*}\left(2^{\epsilon \cdot h}\right)$ time.

NP-hard? :(

Exponential Time Hypothesis (Impagliazzo, Paturi '99)
 There is $\epsilon>0$ such that $3-S A T$ cannot be solved in $\mathcal{O}^{*}\left(2^{\epsilon \cdot h}\right)$ time.

Theorem (Dell, Husfeldt, Wahlén '10)

For any $k \geq 3$, there is $\alpha>0$ such that k-Coloring cannot be solved in $\mathcal{O}^{*}\left(2^{\alpha \cdot n}\right)$ time unless ETH fails.

NP-hard? :(

Exponential Time Hypothesis (Impagliazzo, Paturi '99)
 There is $\epsilon>0$ such that $3-S A T$ cannot be solved in $\mathcal{O}^{*}\left(2^{\epsilon \cdot n}\right)$ time.

Theorem (Dell, Husfeldt, Wahlén '10)

For any $k \geq 3$, there is $\alpha>0$ such that k-Coloring cannot be solved in $\mathcal{O}^{*}\left(2^{\alpha \cdot n}\right)$ time unless ETH fails.

Theorem (Björklund, Husfeldt '06) k-Coloring can be solved in $\mathcal{O}^{*}\left(2^{n}\right)$ time.

Our result

Theorem (Nederlof '08)
 a:b-Coloring can be solved in $\mathcal{O}^{*}\left((b+1)^{n}\right)$ time.

Our result

Theorem (Nederlof '08)

a:b-Coloring can be solved in $\mathcal{O}^{*}\left((b+1)^{n}\right)$ time.

Theorem (B., Kowalik, Pilipczuk, Socała, Wrochna '16)
 There is $\alpha>0$ such that, for appropriate ranges of values, a:b-Coloring cannot be solved in $\mathcal{O}^{*}\left((b+1)^{\alpha \cdot n}\right)$ time unless ETH fails.

The reduction

Fix a, b.

The reduction

Fix a, b. Main idea: compress an instance ϕ of 3-SAT on n variables and m clauses into the a:b-coloring of a graph G on $O\left(\frac{m+n}{\log b}\right)$ vertices.

The reduction

Fix a, b. Main idea: compress an instance ϕ of 3-SAT on n variables and m clauses into the a:b-coloring of a graph G on $O\left(\frac{m+n}{\log b}\right)$ vertices.

Sparsification Lemma (Tovey '84)

We can assume that in ϕ, every variable belongs to at most 4 clauses.

The reduction

Fix a, b. Main idea: compress an instance ϕ of 3-SAT on n variables and m clauses into the a:b-coloring of a graph G on $O\left(\frac{m+n}{\log b}\right)$ vertices.

Sparsification Lemma (Tovey '84)

We can assume that in ϕ, every variable belongs to at most 4 clauses.

We can also relax $a: b$-coloring: every vertex is assigned

- an integer $\in\{1, \ldots, b\}$ (number of colors to receive) and
- a subset of $\{1, \ldots, a\}$ (colors it's allowed to take).

The reduction (2)

v_{1}, \ldots, v_{n} : variables of ϕ.
c_{1}, \ldots, c_{m} : clauses of ϕ.

The reduction (2)

v_{1}, \ldots, v_{n} : variables of ϕ.
c_{1}, \ldots, c_{m} : clauses of ϕ.

- Groups of variables of size $\log b: V_{1}, \ldots, V_{\frac{n}{\log b}}$
- Groups of clauses of size $b: C_{1}, \ldots, C_{\frac{m}{b}}$

The reduction (2)

v_{1}, \ldots, v_{n} : variables of ϕ.
c_{1}, \ldots, c_{m} : clauses of ϕ.

- Groups of variables of size $\log b: V_{1}, \ldots, V_{\frac{n}{\log b}}$
- Groups of clauses of size $b: C_{1}, \ldots, C_{\frac{m}{b}}$

To each group of variables, associate b colors corresponding to all possible assignments.

The reduction (2)

v_{1}, \ldots, v_{n} : variables of ϕ.
c_{1}, \ldots, c_{m} : clauses of ϕ.

- Groups of variables of size $\log b: V_{1}, \ldots, V_{\frac{n}{\log b}}$
- Groups of clauses of size $b: C_{1}, \ldots, C_{\frac{m}{b}}$

To each group of variables, associate b colors corresponding to all possible assignments.

The reduction (2)

v_{1}, \ldots, v_{n} : variables of ϕ.
c_{1}, \ldots, c_{m} : clauses of ϕ.

- Groups of variables of size $\log b: V_{1}, \ldots, V_{\frac{n}{\log b}}$
- Groups of clauses of size $b: C_{1}, \ldots, C_{\frac{m}{b}}$

To each group of variables, associate b colors corresponding to all possible assignments.

The reduction (2)

v_{1}, \ldots, v_{n} : variables of ϕ.
c_{1}, \ldots, c_{m} : clauses of ϕ.

- Groups of variables of size $\log b: V_{1}, \ldots, V_{\frac{n}{\log b}}$
- Groups of clauses of size $b: C_{1}, \ldots, C_{\frac{m}{b}}$

To each group of variables, associate b colors corresponding to all possible assignments.

The reduction (2)

v_{1}, \ldots, v_{n} : variables of ϕ.
c_{1}, \ldots, c_{m} : clauses of ϕ.

- Groups of variables of size $\log b: V_{1}, \ldots, V_{\frac{n}{\log b}}$
- Groups of clauses of size $b: C_{1}, \ldots, C_{\frac{m}{b}}$

To each group of variables, associate b colors corresponding to all possible assignments.

d-detecting sets

Given a set X and a (mysterious) weight function $\omega: X \rightarrow\{-d,-d+1, \ldots, d-1, d\}$,

$$
\text { Minimum size of a collection }\left(S_{1}, \ldots, S_{p}\right) \text { s.t. }
$$

$$
\text { if } \sum_{a \in S_{i}} \omega(a)=0 \text { for every } i \text { then } \omega \equiv 0 \text { ? }
$$

d-detecting sets

Given a set X and a (mysterious) weight function $\omega: X \rightarrow\{-d,-d+1, \ldots, d-1, d\}$,

$$
\begin{aligned}
& \text { Minimum size of a collection }\left(S_{1}, \ldots, S_{p}\right) \text { s.t. } \\
& \text { if } \sum_{a \in S_{i}} \omega(a)=0 \text { for every } i \text { then } \omega \equiv 0 \text { ? }
\end{aligned}
$$

\rightsquigarrow encodes all subsets of X

d-detecting sets

Given a set X and a (mysterious) weight function $\omega: X \rightarrow\{-d,-d+1, \ldots, d-1, d\}$,

$$
\begin{aligned}
& \text { Minimum size of a collection }\left(S_{1}, \ldots, S_{p}\right) \text { s.t. } \\
& \text { if } \sum_{a \in S_{i}} \omega(a)=0 \text { for every } i \text { then } \omega \equiv 0 \text { ? }
\end{aligned}
$$

\rightsquigarrow encodes all subsets of $X \Rightarrow p \geq \frac{|X|}{\log |X|}$.

d-detecting sets

Given a set X and a (mysterious) weight function $\omega: X \rightarrow\{-d,-d+1, \ldots, d-1, d\}$,

$$
\begin{aligned}
& \text { Minimum size of a collection }\left(S_{1}, \ldots, S_{p}\right) \text { s.t. } \\
& \text { if } \sum_{a \in S_{i}} \omega(a)=0 \text { for every } i \text { then } \omega \equiv 0 \text { ? }
\end{aligned}
$$

\rightsquigarrow encodes all subsets of $X \Rightarrow p \geq \frac{|X|}{\log |X|}$.

$$
O\left(\frac{|X|}{\log |X|}\right) \text { is enough! (Lindström '65) }
$$

Conclusion

Conclusion

Thanks!

Homomorphism

Definition

A graph G is homomorphic to a graph H if there is a function $f: V(G) \rightarrow V(H)$ that preserves adjacency.

Homomorphism

Definition

A graph G is homomorphic to a graph H if there is a function $f: V(G) \rightarrow V(H)$ that preserves adjacency.
k-coloring: homomorphism to K_{k}.

Homomorphism

Definition

A graph G is homomorphic to a graph H if there is a function $f: V(G) \rightarrow V(H)$ that preserves adjacency.
k-coloring: homomorphism to K_{k}.
a:b-coloring: homomorphism to $K G_{a, b}$.
(graph on vertex set $(\underset{b}{\{1, \ldots, a\}})$ with edges between disjoint sets).

Homomorphism

Definition

A graph G is homomorphic to a graph H if there is a function $f: V(G) \rightarrow V(H)$ that preserves adjacency.
k-coloring: homomorphism to K_{k}.
$a: b$-coloring: homomorphism to $K G_{a, b}$.
(graph on vertex set $(\underset{b}{\{1, \ldots, a\}})$ with edges between disjoint sets).

Theorem (Hell, Nešetril '90)

For fixed H, "is G homomorphic to H ?": NP-hard unless H is bipartite.

Homomorphism

Definition

A graph G is homomorphic to a graph H if there is a function $f: V(G) \rightarrow V(H)$ that preserves adjacency.
k-coloring: homomorphism to K_{k}.
a:b-coloring: homomorphism to $K G_{a, b}$.
(graph on vertex set $(\underset{b}{\{1, \ldots, a\}})$ with edges between disjoint sets).

Theorem (Hell, Nešetril '90)

For fixed H, "is G homomorphic to H ?": NP-hard unless H is bipartite.

Theorem (Cygan et al '16)

"is G homomorphic to H ?" cannot be solved in
$\mathcal{O}^{*}\left(|V(H)|^{\alpha \cdot|V(G)|}\right)$ time unless ETH fails.

