Tight lower bounds for the complexity of multicoloring

Marthe Bonamy

October 18th, 2016

Joint work with

Łukasz Kowalik, Michał Pilipczuk, Arkadiusz Socała, Marcin Wrochna

Coloring

Coloring

$$\begin{array}{c} \textcircled{c} & \textcircled{d} \\ x & y \end{array} \Rightarrow c \neq d$$

Coloring

 χ : Minimum number of colors to ensure that:

$$\begin{array}{c} \textcircled{C} & \overrightarrow{d} \\ x & y \end{array} \Rightarrow c \neq d$$

 χ : Minimum number of colors to ensure that:

$$\begin{array}{c} \textcircled{C} & & & \\ x & & y \end{array} \Rightarrow c \neq d$$

 χ : Minimum number of colors to ensure that:

$$\begin{array}{c} \textcircled{C} & \overrightarrow{d} \\ x & y \end{array} \Rightarrow c \neq d$$

$$\underbrace{\mathbb{C}}_{x} - \underbrace{\mathbb{D}}_{y} \Rightarrow \begin{cases} |C| = b \\ |D| = b \\ C \cap D = \emptyset \end{cases}$$

 χ : Minimum number of colors to ensure that:

$$\begin{array}{c} \textcircled{C} & & \\ x & & y \end{array} \Rightarrow c \neq d$$

 χ_b : Minimum number of colors to ensure that:

$$\underbrace{\mathbb{C}}_{x} \xrightarrow{\mathbb{D}}_{y} \Rightarrow \begin{cases} |C| = b \\ |D| = b \\ C \cap D = \emptyset \end{cases}$$

 χ : Minimum number of colors to ensure that:

$$\begin{array}{c} \textcircled{C} & & \\ x & & y \end{array} \Rightarrow c \neq d$$

 χ_b : Minimum number of colors to ensure that:

$$\underbrace{\bigcirc}_{X} \underbrace{\bigcirc}_{y} \Rightarrow \begin{cases} |C| = b \\ |D| = b \\ C \cap D = \emptyset \end{cases}$$
$$\lim_{b \to \infty} \frac{\chi_b}{b} = \chi_f$$

- "Is G k-colorable?"
 - $k \leq 1$: Easy \checkmark

- "Is G k-colorable?"
 - $k \leq 1$: Easy \checkmark
 - k = 2: Easy \checkmark

- $k \leq 1$: Easy \checkmark
- *k* = 2: Easy √
- $k \ge 3$: NP-hard

- $k \leq 1$: Easy \checkmark
- k = 2: Easy \checkmark
- $k \ge 3$: NP-hard

"Is G a: b-colorable?"

- $k \leq 1$: Easy \checkmark
- k = 2: Easy \checkmark
- $k \ge 3$: NP-hard

"Is G a: b-colorable?"

• *a* < 2*b*: Easy √

- $k \leq 1$: Easy \checkmark
- k = 2: Easy \checkmark
- $k \ge 3$: NP-hard
- "Is G a:b-colorable?"
 - *a* < 2*b*: Easy √
 - *a* = 2*b*: Easy ✓

- $k \leq 1$: Easy \checkmark
- k = 2: Easy \checkmark
- $k \ge 3$: NP-hard

"Is G a: b-colorable?"

- *a* < 2*b*: Easy √
- *a* = 2*b*: Easy √
- $a \ge 2b + 1$: NP-hard (Hell, Nešetril '90)

NP-hard? :(

Exponential Time Hypothesis (Impagliazzo, Paturi '99)

There is $\epsilon > 0$ such that 3-SAT cannot be solved in $\mathcal{O}^*(2^{\epsilon \cdot n})$ time.

Exponential Time Hypothesis (Impagliazzo, Paturi '99)

There is $\epsilon > 0$ such that 3-SAT cannot be solved in $\mathcal{O}^*(2^{\epsilon \cdot n})$ time.

Theorem (Dell, Husfeldt, Wahlén '10)

For any $k \ge 3$, there is $\alpha > 0$ such that k-Coloring cannot be solved in $\mathcal{O}^*(2^{\alpha \cdot n})$ time unless ETH fails.

Exponential Time Hypothesis (Impagliazzo, Paturi '99)

There is $\epsilon > 0$ such that 3-SAT cannot be solved in $\mathcal{O}^*(2^{\epsilon \cdot n})$ time.

Theorem (Dell, Husfeldt, Wahlén '10)

For any $k \ge 3$, there is $\alpha > 0$ such that k-Coloring cannot be solved in $\mathcal{O}^*(2^{\alpha \cdot n})$ time unless ETH fails.

Theorem (Björklund, Husfeldt '06)

k-Coloring can be solved in $\mathcal{O}^*(2^n)$ time.

Theorem (Nederlof '08)

a:b-Coloring can be solved in $\mathcal{O}^*((b+1)^n)$ time.

Theorem (Nederlof '08)

a:b-Coloring can be solved in $\mathcal{O}^*((b+1)^n)$ time.

Theorem (B., Kowalik, Pilipczuk, Socała, Wrochna '16)

There is $\alpha > 0$ such that, for appropriate ranges of values, a:b-Coloring cannot be solved in $\mathcal{O}^*((b+1)^{\alpha \cdot n})$ time unless ETH fails. Fix a, b.

Fix *a*, *b*. Main idea: compress an instance ϕ of 3-SAT on *n* variables and *m* clauses into the *a*:*b*-coloring of a graph *G* on $O(\frac{m+n}{\log b})$ vertices.

Fix *a*, *b*. Main idea: compress an instance ϕ of 3-SAT on *n* variables and *m* clauses into the *a*:*b*-coloring of a graph *G* on $O(\frac{m+n}{\log b})$ vertices.

Sparsification Lemma (Tovey '84)

We can assume that in ϕ , every variable belongs to at most 4 clauses.

Fix *a*, *b*. Main idea: compress an instance ϕ of 3-SAT on *n* variables and *m* clauses into the *a*:*b*-coloring of a graph *G* on $O(\frac{m+n}{\log b})$ vertices.

Sparsification Lemma (Tovey '84)

We can assume that in ϕ , every variable belongs to at most 4 clauses.

We can also relax a:b-coloring: every vertex is assigned

- an integer $\in \{1, \dots, b\}$ (number of colors to receive) and
- a subset of $\{1, \ldots, a\}$ (colors it's allowed to take).

 v_1, \ldots, v_n : variables of ϕ . c_1, \ldots, c_m : clauses of ϕ .

 v_1, \ldots, v_n : variables of ϕ .

- c_1, \ldots, c_m : clauses of ϕ .
 - Groups of variables of size log b: $V_1, \ldots, V_{\frac{n}{\log b}}$
 - Groups of clauses of size **b**: $C_1, \ldots, C_{\frac{m}{b}}$

 v_1, \ldots, v_n : variables of ϕ .

- c_1, \ldots, c_m : clauses of ϕ .
 - Groups of variables of size log *b*: $V_1, \ldots, V_{\frac{n}{\log b}}$
 - Groups of clauses of size **b**: $C_1, \ldots, C_{\frac{m}{b}}$

 v_1, \ldots, v_n : variables of ϕ .

 c_1, \ldots, c_m : clauses of ϕ .

- Groups of variables of size $\log b$: $V_1, \ldots, V_{\frac{n}{\log b}}$
- Groups of clauses of size **b**: $C_1, \ldots, C_{\frac{m}{b}}$

$$\begin{array}{cccc} V_1 & V_i & V_{\frac{n}{\log b}} \\ \circ & \circ & \circ \\ & & & \circ \\ C_1 & & C_j & C_{\frac{m}{b}} \end{array}$$

 v_1, \ldots, v_n : variables of ϕ .

 c_1, \ldots, c_m : clauses of ϕ .

- Groups of variables of size log b: $V_1, \ldots, V_{\frac{n}{\log b}}$
- Groups of clauses of size **b**: $C_1, \ldots, C_{\frac{m}{b}}$

 v_1, \ldots, v_n : variables of ϕ .

- c_1, \ldots, c_m : clauses of ϕ .
 - Groups of variables of size log b: $V_1, \ldots, V_{\frac{n}{\log b}}$
 - Groups of clauses of size **b**: $C_1, \ldots, C_{\frac{m}{b}}$

 v_1, \ldots, v_n : variables of ϕ .

- c_1, \ldots, c_m : clauses of ϕ .
 - Groups of variables of size log b: $V_1, \ldots, V_{\frac{n}{\log b}}$
 - Groups of clauses of size **b**: $C_1, \ldots, C_{\frac{m}{b}}$

b colours out of all that satisfy one of the clauses

Given a set X and a (mysterious) weight function $\omega: X \rightarrow \{-d, -d+1, \dots, d-1, d\},\$

> Minimum size of a collection (S_1, \ldots, S_p) s.t. if $\sum_{a \in S_i} \omega(a) = 0$ for every *i* then $\omega \equiv 0$?

Given a set X and a (mysterious) weight function $\omega: X \rightarrow \{-d, -d+1, \dots, d-1, d\},\$

Minimum size of a collection (S_1, \ldots, S_p) s.t. if $\sum_{a \in S_i} \omega(a) = 0$ for every *i* then $\omega \equiv 0$?

 \rightsquigarrow encodes all subsets of X

Given a set X and a (mysterious) weight function $\omega: X \rightarrow \{-d, -d+1, \dots, d-1, d\},\$

> Minimum size of a collection (S_1, \ldots, S_p) s.t. if $\sum_{a \in S_i} \omega(a) = 0$ for every *i* then $\omega \equiv 0$?

 \rightsquigarrow encodes all subsets of $X \Rightarrow p \ge \frac{|X|}{\log |X|}$.

Given a set X and a (mysterious) weight function $\omega: X \rightarrow \{-d, -d+1, \dots, d-1, d\},\$

Minimum size of a collection (S_1, \ldots, S_p) s.t. if $\sum_{a \in S_i} \omega(a) = 0$ for every *i* then $\omega \equiv 0$?

 \rightsquigarrow encodes all subsets of $X \Rightarrow p \ge \frac{|X|}{\log |X|}$.

$$O(\frac{|X|}{\log|X|})$$
 is enough! (Lindström '65)

Conclusion

Thanks!

A graph G is homomorphic to a graph H if there is a function $f: V(G) \rightarrow V(H)$ that preserves adjacency.

A graph G is homomorphic to a graph H if there is a function $f: V(G) \rightarrow V(H)$ that preserves adjacency.

k-coloring: homomorphism to K_k .

A graph G is homomorphic to a graph H if there is a function $f: V(G) \rightarrow V(H)$ that preserves adjacency.

k-coloring: homomorphism to K_k . *a:b*-coloring: homomorphism to $KG_{a,b}$. (graph on vertex set $\binom{\{1,...,a\}}{b}$ with edges between disjoint sets).

A graph G is homomorphic to a graph H if there is a function $f: V(G) \rightarrow V(H)$ that preserves adjacency.

k-coloring: homomorphism to K_k . *a:b*-coloring: homomorphism to $KG_{a,b}$. (graph on vertex set $\binom{\{1,...,a\}}{b}$ with edges between disjoint sets).

Theorem (Hell, Nešetril '90)

For fixed H, "is G homomorphic to H?": NP-hard unless H is bipartite.

A graph G is homomorphic to a graph H if there is a function $f: V(G) \rightarrow V(H)$ that preserves adjacency.

k-coloring: homomorphism to K_k . *a:b*-coloring: homomorphism to $KG_{a,b}$. (graph on vertex set $\binom{\{1,...,a\}}{b}$ with edges between disjoint sets).

Theorem (Hell, Nešetril '90)

For fixed H, "is G homomorphic to H?": NP-hard unless H is bipartite.

Theorem (Cygan et al '16)

"is G homomorphic to H?" cannot be solved in $\mathcal{O}^*(|V(H)|^{\alpha \cdot |V(G)|})$ time unless ETH fails.