# Universal properties of global equivariant Thom spectra 

Stefan Schwede

Mathematisches Institut, Universität Bonn
February 15, 2016 / Banff

## Introduction

Aim: $\quad$ describe morphisms out of the global Thom spectrum mO in terms of 'inverse Thom classes'

## Introduction

Aim: - describe morphisms out of the global Thom spectrum mO in terms of 'inverse Thom classes'

- explain how $\mathbf{m O}$ is globally built from $\mathbb{S}$ by 'killing the transfers' $\operatorname{Tr}{ }^{O(m)}$


## Introduction

Aim: - describe morphisms out of the global Thom spectrum mO in terms of 'inverse Thom classes'

- explain how $\mathbf{m O}$ is globally built from $\mathbb{S}$ by 'killing the transfers' $\operatorname{Tr}{ }^{O(m)}$
There are analogues for $\mathbf{m S O}, \mathbf{m U}, \ldots$


## Introduction

Aim: - describe morphisms out of the global Thom spectrum mO in terms of 'inverse Thom classes'

- explain how $\mathbf{m O}$ is globally built from $\mathbb{S}$ by 'killing the transfers' $\operatorname{Tr} O(m)$
There are analogues for $\mathbf{m S O}, \mathbf{m U}, \ldots$
I. Review of global stable homotopy theory


## Introduction

Aim: - describe morphisms out of the global Thom spectrum mO in terms of 'inverse Thom classes'

- explain how $\mathbf{m O}$ is globally built from $\mathbb{S}$ by 'killing the transfers' $\operatorname{Tr}{ }_{O}(m)$
There are analogues for $\mathbf{m S O}, \mathbf{m U}, \ldots$
I. Review of global stable homotopy theory
- Orthogonal spectra


## Introduction

Aim: - describe morphisms out of the global Thom spectrum mO in terms of 'inverse Thom classes'

- explain how $\mathbf{m O}$ is globally built from $\mathbb{S}$ by 'killing the transfers' $\operatorname{Tr} O(m)$

There are analogues for $\mathbf{m S O}, \mathbf{m U}, \ldots$
I. Review of global stable homotopy theory

- Orthogonal spectra
- Global equivalences


## Introduction

Aim: - describe morphisms out of the global Thom spectrum mO in terms of 'inverse Thom classes'

- explain how $\mathbf{m O}$ is globally built from $\mathbb{S}$ by 'killing the transfers' $\operatorname{Tr}_{O(m-1)}^{O(m)}$
There are analogues for $\mathbf{m S O}, \mathbf{m U}, \ldots$
I. Review of global stable homotopy theory
- Orthogonal spectra
- Global equivalences
- Examples


## Introduction

Aim: - describe morphisms out of the global Thom spectrum mO in terms of 'inverse Thom classes'

- explain how $\mathbf{m O}$ is globally built from $\mathbb{S}$ by 'killing the transfers' $\operatorname{Tr}_{O(m-1)}^{O(m)}$
There are analogues for $\mathbf{m S O}, \mathbf{m U}, \ldots$
I. Review of global stable homotopy theory
- Orthogonal spectra
- Global equivalences
- Examples
II. The global equivariant Thom spectrum mO


## Introduction

Aim: - describe morphisms out of the global Thom spectrum mO in terms of 'inverse Thom classes'

- explain how $\mathbf{m O}$ is globally built from $\mathbb{S}$ by 'killing the transfers' $\operatorname{Tr}_{O(m-1)}^{O(m)}$
There are analogues for $\mathbf{m S O}, \mathbf{m U}, \ldots$
I. Review of global stable homotopy theory
- Orthogonal spectra
- Global equivalences
- Examples
II. The global equivariant Thom spectrum mO
- Relation to equivariant bordism


## Introduction

Aim: - describe morphisms out of the global Thom spectrum mO in terms of 'inverse Thom classes'

- explain how $\mathbf{m O}$ is globally built from $\mathbb{S}$ by 'killing the transfers' $\operatorname{Tr}_{O(m-1)}^{O(m)}$
There are analogues for $\mathbf{m S O}, \mathbf{m U}, \ldots$
I. Review of global stable homotopy theory
- Orthogonal spectra
- Global equivalences
- Examples
II. The global equivariant Thom spectrum mO
- Relation to equivariant bordism
- Inverse Thom classes


## Introduction

Aim: - describe morphisms out of the global Thom spectrum mO in terms of 'inverse Thom classes'

- explain how $\mathbf{m O}$ is globally built from $\mathbb{S}$ by 'killing the transfers' $\operatorname{Tr}_{O(m-1)}^{O(m)}$
There are analogues for $\mathbf{m S O}, \mathbf{m U}, \ldots$
I. Review of global stable homotopy theory
- Orthogonal spectra
- Global equivalences
- Examples
II. The global equivariant Thom spectrum mO
- Relation to equivariant bordism
- Inverse Thom classes
- Global morphisms out of mO


## Introduction

Aim: - describe morphisms out of the global Thom spectrum mO in terms of 'inverse Thom classes'

- explain how $\mathbf{m O}$ is globally built from $\mathbb{S}$ by 'killing the transfers' $\operatorname{Tr}_{O(m-1)}^{O(m)}$
There are analogues for $\mathbf{m S O}, \mathbf{m U}, \ldots$
I. Review of global stable homotopy theory
- Orthogonal spectra
- Global equivalences
- Examples
II. The global equivariant Thom spectrum mO
- Relation to equivariant bordism
- Inverse Thom classes
- Global morphisms out of mO
- killing the transfers $\operatorname{Tr}_{O(m-1)}^{O(m)}$


## Orthogonal spectra

Definition
An orthogonal spectrum $X$ consists of

## Orthogonal spectra

Definition
An orthogonal spectrum $X$ consists of

- based $O(V)$-spaces $X(V)$, for every inner product space $V$


## Orthogonal spectra

## Definition

An orthogonal spectrum $X$ consists of

- based $O(V)$-spaces $X(V)$, for every inner product space $V$
- $O(V) \times O(W)$-equivariant structure maps

$$
\sigma_{V, W}: X(V) \wedge S^{W} \longrightarrow X(V \oplus W)
$$

## Orthogonal spectra

## Definition

An orthogonal spectrum $X$ consists of

- based $O(V)$-spaces $X(V)$, for every inner product space $V$
- $O(V) \times O(W)$-equivariant structure maps

$$
\sigma_{V, W}: X(V) \wedge S^{W} \longrightarrow X(V \oplus W)
$$

subject to associativity and identity conditions.

## Orthogonal spectra

## Definition

An orthogonal spectrum $X$ consists of

- based $O(V)$-spaces $X(V)$, for every inner product space $V$
- $O(V) \times O(W)$-equivariant structure maps

$$
\sigma_{V, W}: X(V) \wedge S^{W} \longrightarrow X(V \oplus W)
$$

subject to associativity and identity conditions.
Here: $S^{W}=W \cup\{\infty\}$ one-point compactification

## Orthogonal spectra

## Definition

An orthogonal spectrum $X$ consists of

- based $O(V)$-spaces $X(V)$, for every inner product space $V$
- $O(V) \times O(W)$-equivariant structure maps

$$
\sigma_{V, W}: X(V) \wedge S^{W} \longrightarrow X(V \oplus W)
$$

subject to associativity and identity conditions.
Here: $S^{W}=W \cup\{\infty\}$ one-point compactification
An orthogonal spectrum $X$ has an underlying non-equivariant spectrum:

## Orthogonal spectra

## Definition

An orthogonal spectrum $X$ consists of

- based $O(V)$-spaces $X(V)$, for every inner product space $V$
- $O(V) \times O(W)$-equivariant structure maps

$$
\sigma_{V, W}: X(V) \wedge S^{W} \longrightarrow X(V \oplus W)
$$

subject to associativity and identity conditions.
Here: $S^{W}=W \cup\{\infty\}$ one-point compactification
An orthogonal spectrum $X$ has an underlying non-equivariant spectrum:

$$
X_{n}=X\left(\mathbb{R}^{n}\right), \quad n \geq 0
$$

## Orthogonal spectra

## Definition

An orthogonal spectrum $X$ consists of

- based $O(V)$-spaces $X(V)$, for every inner product space $V$
- $O(V) \times O(W)$-equivariant structure maps

$$
\sigma_{V, W}: X(V) \wedge S^{W} \longrightarrow X(V \oplus W)
$$

subject to associativity and identity conditions.
Here: $S^{W}=W \cup\{\infty\}$ one-point compactification
An orthogonal spectrum $X$ has an underlying non-equivariant spectrum:

- $\quad X_{n}=X\left(\mathbb{R}^{n}\right), \quad n \geq 0$
- $\sigma_{\mathbb{R}^{n}, \mathbb{R}}: \Sigma X_{n}=X\left(\mathbb{R}^{n}\right) \wedge S^{1} \longrightarrow X\left(\mathbb{R}^{n+1}\right)=X_{n+1}$


## Orthogonal spectra

## Definition

An orthogonal spectrum $X$ consists of

- based $O(V)$-spaces $X(V)$, for every inner product space $V$
- $O(V) \times O(W)$-equivariant structure maps

$$
\sigma_{V, W}: X(V) \wedge S^{W} \longrightarrow X(V \oplus W)
$$

subject to associativity and identity conditions.
Here: $S^{W}=W \cup\{\infty\}$ one-point compactification
An orthogonal spectrum $X$ has an underlying non-equivariant spectrum:

- $\quad X_{n}=X\left(\mathbb{R}^{n}\right), \quad n \geq 0$
- $\sigma_{\mathbb{R}^{n}, \mathbb{R}}: \Sigma X_{n}=X\left(\mathbb{R}^{n}\right) \wedge S^{1} \longrightarrow X\left(\mathbb{R}^{n+1}\right)=X_{n+1}$
- forget the $O(n)$-actions


## Equivariant homotopy groups

Let $X$ be an orthogonal spectrum.

## Equivariant homotopy groups

Let $X$ be an orthogonal spectrum.

- G: compact Lie group


## Equivariant homotopy groups

Let $X$ be an orthogonal spectrum.

- G: compact Lie group
- V: orthogonal G-representation


## Equivariant homotopy groups

Let $X$ be an orthogonal spectrum.

- G: compact Lie group
- $V$ : orthogonal G-representation


## Equivariant homotopy groups

Let $X$ be an orthogonal spectrum.

- G: compact Lie group
- $V$ : orthogonal G-representation $\} \Longrightarrow G$ acts on $X(V)$
$\left[S^{V}, X(V)\right]^{G}$ : based G-homotopy classes of G-maps


## Equivariant homotopy groups

Let $X$ be an orthogonal spectrum.

- G: compact Lie group
- V: orthogonal G-representation $\Longrightarrow G$ acts on $X(V)$
$\left[S^{V}, X(V)\right]^{G}:$ based $G$-homotopy classes of $G$-maps

Definition
The G-equivariant stable homotopy group of $X$ is

$$
\pi_{0}^{G}(X)=\operatorname{colim}_{V}\left[S^{V}, X(V)\right]^{G}
$$

## Equivariant homotopy groups

Let $X$ be an orthogonal spectrum.

- G: compact Lie group
- V: orthogonal G-representation $\Longrightarrow G$ acts on $X(V)$
$\left[S^{V}, X(V)\right]^{G}$ : based G-homotopy classes of G-maps

Definition
The G-equivariant stable homotopy group of $X$ is

$$
\pi_{0}^{G}(X)=\operatorname{colim}_{V}\left[S^{V}, X(V)\right]^{G}
$$

- colimit by stabilization via $-\wedge S^{W}$, using structure maps


## Equivariant homotopy groups

Let $X$ be an orthogonal spectrum.

- G: compact Lie group
- V: orthogonal G-representation $\Longrightarrow G$ acts on $X(V)$
$\left[S^{V}, X(V)\right]^{G}$ : based G-homotopy classes of G-maps

Definition
The G-equivariant stable homotopy group of $X$ is

$$
\pi_{0}^{G}(X)=\operatorname{colim}_{V}\left[S^{V}, X(V)\right]^{G}
$$

- colimit by stabilization via $-\wedge S^{W}$, using structure maps
- $\pi_{0}^{G}(X)$ is an abelian group, natural in $X$


## Equivariant homotopy groups

Let $X$ be an orthogonal spectrum.

- G: compact Lie group
- V: orthogonal G-representation $\Longrightarrow G$ acts on $X(V)$
$\left[S^{V}, X(V)\right]^{G}$ : based G-homotopy classes of G-maps

Definition
The G-equivariant stable homotopy group of $X$ is

$$
\pi_{0}^{G}(X)=\operatorname{colim}_{V}\left[S^{V}, X(V)\right]^{G}
$$

- colimit by stabilization via $-\wedge S^{W}$, using structure maps
- $\pi_{0}^{G}(X)$ is an abelian group, natural in $X$
- similarly: $\pi_{k}^{G}(X)$ for $k \in \mathbb{Z}$


## Global equivalences

Definition
A morphism $f: X \longrightarrow Y$ of orthogonal spectra is a global equivalence

## Global equivalences

Definition
A morphism $f: X \longrightarrow Y$ of orthogonal spectra is a global equivalence if the map

$$
\pi_{k}^{G}(f): \pi_{k}^{G}(X) \longrightarrow \pi_{k}^{G}(Y)
$$

is an isomorphism for all $k \in \mathbb{Z}$ and all $G$.

## Global equivalences

## Definition

A morphism $f: X \longrightarrow Y$ of orthogonal spectra is a global equivalence if the map

$$
\pi_{k}^{G}(f): \pi_{k}^{G}(X) \longrightarrow \pi_{k}^{G}(Y)
$$

is an isomorphism for all $k \in \mathbb{Z}$ and all $G$.

## Definition

The global stable homotopy category is

$$
\left.\mathcal{G H}=\mathrm{Sp}^{\mathrm{O}} \text { [global equivalences }{ }^{-1}\right],
$$

the localization of orthogonal spectra at the class of global equivalences.

## Global stable homotopy category

- Model category structures are available


## Global stable homotopy category

- Model category structures are available
- $\mathcal{G H}$ is a tensor triangulated category


## Global stable homotopy category

- Model category structures are available
- $\mathcal{G H}$ is a tensor triangulated category
- objects in $\mathcal{G H}$ represent cohomology theories on stacks (Gepner-Henriques, Gepner-Nikolaus)


## Global stable homotopy category

- Model category structures are available
- $\mathcal{G H}$ is a tensor triangulated category
- objects in $\mathcal{G H}$ represent cohomology theories on stacks (Gepner-Henriques, Gepner-Nikolaus)

Note: $\pi_{k}^{\{e\}}(X)=$ traditional (non-equivariant) homotopy group of the underlying spectrum of $X$, so

## Global stable homotopy category

- Model category structures are available
- $\mathcal{G H}$ is a tensor triangulated category
- objects in $\mathcal{G H}$ represent cohomology theories on stacks (Gepner-Henriques, Gepner-Nikolaus)

Note: $\pi_{k}^{\{e\}}(X)=$ traditional (non-equivariant) homotopy group of the underlying spectrum of $X$, so
global equivalence $\Longrightarrow$ stable equivalence

## Global stable homotopy category

- Model category structures are available
- $\mathcal{G H}$ is a tensor triangulated category
- objects in $\mathcal{G H}$ represent cohomology theories on stacks (Gepner-Henriques, Gepner-Nikolaus)

Note: $\pi_{k}^{\{e\}}(X)=$ traditional (non-equivariant) homotopy group of the underlying spectrum of $X$, so global equivalence $\Longrightarrow$ stable equivalence

The forgetful functor
$\mathcal{G H} \longrightarrow$ (stable homotopy category)

## Global stable homotopy category

- Model category structures are available
- $\mathcal{G H}$ is a tensor triangulated category
- objects in $\mathcal{G H}$ represent cohomology theories on stacks (Gepner-Henriques, Gepner-Nikolaus)

Note: $\pi_{k}^{\{e\}}(X)=$ traditional (non-equivariant) homotopy group of the underlying spectrum of $X$, so
global equivalence $\Longrightarrow$ stable equivalence
The forgetful functor

has fully faithful adjoints

## Global stable homotopy category

- Model category structures are available
- $\mathcal{G H}$ is a tensor triangulated category
- objects in $\mathcal{G H}$ represent cohomology theories on stacks (Gepner-Henriques, Gepner-Nikolaus)

Note: $\pi_{k}^{\{e\}}(X)=$ traditional (non-equivariant) homotopy group of the underlying spectrum of $X$, so
global equivalence $\Longrightarrow$ stable equivalence
The forgetful functor

has fully faithful adjoints providing a recollement.

## Restriction and transfers

A continuous homomorphism
$G \longleftarrow K: \alpha$

## Restriction and transfers

A continuous homomorphism induces a restriction homomorphism

$$
\begin{array}{r}
G \\
\alpha^{*}: \pi_{0}^{G}(X) \longrightarrow \pi_{0}^{K}(X)
\end{array}
$$

## Restriction and transfers

A continuous homomorphism

$$
\begin{array}{r}
G \\
\alpha^{*}: \pi_{0}^{G}(X) \longrightarrow \pi_{0}^{K}(X) \alpha
\end{array}
$$

$$
\left[f: S^{V} \longrightarrow X(V)\right] \longmapsto\left[\alpha^{*}(f): S^{\alpha^{*}(V)} \longrightarrow X\left(\alpha^{*}(V)\right)\right]
$$

## Restriction and transfers

A continuous homomorphism

$$
\begin{gathered}
G \longleftarrow \stackrel{K: \alpha}{K} \alpha^{*}: \pi_{0}^{G}(X) \longrightarrow \pi_{0}^{K}(X)
\end{gathered}
$$

$$
\left[f: S^{V} \longrightarrow X(V)\right] \longmapsto\left[\alpha^{*}(f): S^{\alpha^{*}(V)} \longrightarrow X\left(\alpha^{*}(V)\right)\right]
$$

A closed subgroup $H \leq G$ gives rise to a transfer homomorphism $\quad \operatorname{tr}_{H}^{G}: \pi_{0}^{H}(X) \longrightarrow \pi_{0}^{G}(X)$

## Restriction and transfers

A continuous homomorphism

$$
\begin{gathered}
G \longleftarrow \stackrel{K: \alpha}{K} \alpha^{*}: \pi_{0}^{G}(X) \longrightarrow \pi_{0}^{K}(X)
\end{gathered}
$$

$$
\left[f: S^{V} \longrightarrow X(V)\right] \longmapsto\left[\alpha^{*}(f): S^{\alpha^{*}(V)} \longrightarrow X\left(\alpha^{*}(V)\right)\right]
$$

A closed subgroup $H \leq G$ gives rise to a transfer homomorphism $\operatorname{tr}_{H}^{G}: \pi_{0}^{H}(X) \longrightarrow \pi_{0}^{G}(X)$ (equivariant Thom-Pontryagin construction)

## Restriction and transfers

A continuous homomorphism $G$
$\alpha^{*}: \pi_{0}^{G}(X) \longrightarrow \pi_{0}^{K}(X)$

$$
\left[f: S^{V} \longrightarrow X(V)\right] \longmapsto\left[\alpha^{*}(f): S^{\alpha^{*}(V)} \longrightarrow X\left(\alpha^{*}(V)\right)\right]
$$

A closed subgroup $H \leq G$ gives rise to a transfer homomorphism $\quad \operatorname{tr}_{H}^{G}: \pi_{0}^{H}(X) \longrightarrow \pi_{0}^{G}(X)$ (equivariant Thom-Pontryagin construction)

Relations:

## Restriction and transfers

A continuous homomorphism $G$
$\alpha^{*}: \pi_{0}^{G}(X) \longrightarrow \pi_{0}^{K}(X)$

$$
\left[f: S^{V} \longrightarrow X(V)\right] \longmapsto\left[\alpha^{*}(f): S^{\alpha^{*}(V)} \longrightarrow X\left(\alpha^{*}(V)\right)\right]
$$

A closed subgroup $H \leq G$ gives rise to a transfer homomorphism $\quad \operatorname{tr}_{H}^{G}: \pi_{0}^{H}(X) \longrightarrow \pi_{0}^{G}(X)$ (equivariant Thom-Pontryagin construction)

Relations:

- restrictions are contravariantly functorial


## Restriction and transfers

A continuous homomorphism $\begin{aligned} G & \alpha^{*}: \pi_{0}^{G}(X)\end{aligned} \pi_{0}^{K}: \alpha$

$$
\left[f: S^{V} \longrightarrow X(V)\right] \longmapsto\left[\alpha^{*}(f): S^{\alpha^{*}(V)} \longrightarrow X\left(\alpha^{*}(V)\right)\right]
$$

A closed subgroup $H \leq G$ gives rise to a transfer homomorphism $\quad \operatorname{tr}_{H}^{G}: \pi_{0}^{H}(X) \longrightarrow \pi_{0}^{G}(X)$ (equivariant Thom-Pontryagin construction)

Relations:

- restrictions are contravariantly functorial
- transfers are covariantly functorial


## Restriction and transfers

A continuous homomorphism $G$
$\alpha^{*}: \pi_{0}^{G}(X) \longrightarrow \pi_{0}^{K}(X)$

$$
\left[f: S^{V} \longrightarrow X(V)\right] \longmapsto\left[\alpha^{*}(f): S^{\alpha^{*}(V)} \longrightarrow X\left(\alpha^{*}(V)\right)\right]
$$

A closed subgroup $H \leq G$ gives rise to a transfer homomorphism $\quad \operatorname{tr}_{H}^{G}: \pi_{0}^{H}(X) \longrightarrow \pi_{0}^{G}(X)$ (equivariant Thom-Pontryagin construction)

Relations:

- restrictions are contravariantly functorial
- transfers are covariantly functorial
- inner automorphisms are identity


## Restriction and transfers

A continuous homomorphism $G$
$\alpha^{*}: \pi_{0}^{G}(X) \longrightarrow \pi_{0}^{K}(X)$

$$
\left[f: S^{V} \longrightarrow X(V)\right] \longmapsto\left[\alpha^{*}(f): S^{\alpha^{*}(V)} \longrightarrow X\left(\alpha^{*}(V)\right)\right]
$$

A closed subgroup $H \leq G$ gives rise to a transfer homomorphism $\operatorname{tr}_{H}^{G}: \pi_{0}^{H}(X) \longrightarrow \pi_{0}^{G}(X)$ (equivariant Thom-Pontryagin construction)

Relations:

- restrictions are contravariantly functorial
- transfers are covariantly functorial
- inner automorphisms are identity
- transfers commute with inflation


## Restriction and transfers

A continuous homomorphism $G$
$\alpha^{*}: \pi_{0}^{G}(X) \longrightarrow \pi_{0}^{K}(X)$

$$
\left[f: S^{V} \longrightarrow X(V)\right] \longmapsto\left[\alpha^{*}(f): S^{\alpha^{*}(V)} \longrightarrow X\left(\alpha^{*}(V)\right)\right]
$$

A closed subgroup $H \leq G$ gives rise to a transfer homomorphism $\operatorname{tr}_{H}^{G}: \pi_{0}^{H}(X) \longrightarrow \pi_{0}^{G}(X)$ (equivariant Thom-Pontryagin construction)

Relations:

- restrictions are contravariantly functorial
- transfers are covariantly functorial
- inner automorphisms are identity
- transfers commute with inflation
- double coset formula


## Restriction and transfers

A continuous homomorphism $G$
$\alpha^{*}: \pi_{0}^{G}(X) \longrightarrow \pi_{0}^{K}(X)$

$$
\left[f: S^{V} \longrightarrow X(V)\right] \longmapsto\left[\alpha^{*}(f): S^{\alpha^{*}(V)} \longrightarrow X\left(\alpha^{*}(V)\right)\right]
$$

A closed subgroup $H \leq G$ gives rise to a transfer homomorphism $\operatorname{tr}_{H}^{G}: \pi_{0}^{H}(X) \longrightarrow \pi_{0}^{G}(X)$ (equivariant Thom-Pontryagin construction)

Relations:

- restrictions are contravariantly functorial
- transfers are covariantly functorial
- inner automorphisms are identity
- transfers commute with inflation
- double coset formula
$\Longrightarrow$ 'global functors' ('inflation functors')


## Examples

## Example

The global sphere spectrum $\mathbb{S}$ is given by

## Examples

## Example

The global sphere spectrum $\mathbb{S}$ is given by

$$
\mathbb{S}(V)=S^{V}, \quad \sigma_{V, W}: S^{V} \wedge S^{W} \cong S^{V \oplus W}
$$

## Examples

## Example

The global sphere spectrum $\mathbb{S}$ is given by

$$
\mathbb{S}(V)=S^{V}, \quad \sigma_{V, W}: S^{V} \wedge S^{W} \cong S^{V \oplus W}
$$

## Example

The connective global $K$-theory spectrum ko:

## Examples

## Example

The global sphere spectrum $\mathbb{S}$ is given by

$$
\mathbb{S}(V)=S^{V}, \quad \sigma_{V, W}: S^{V} \wedge S^{W} \cong S^{V \oplus W}
$$

## Example

The connective global $K$-theory spectrum ko:
$\mathbf{k o}(V)=$ finite configurations of points in $S^{V}$ labeled by finite dimensional orthogonal subspaces of $\operatorname{Sym}(V)$


## Examples

## Example

The global sphere spectrum $\mathbb{S}$ is given by

$$
\mathbb{S}(V)=S^{V}, \quad \sigma_{V, W}: S^{V} \wedge S^{W} \cong S^{V \oplus W}
$$

## Example

The connective global $K$-theory spectrum ko:

$$
\begin{aligned}
\text { ko }(V)= & \text { finite configurations of points in } S^{V} \\
& \text { labeled by finite dimensional } \\
& \text { orthogonal subspaces of } \operatorname{Sym}(V)
\end{aligned}
$$



## Example

The Eilenberg-Mac Lane spectrum $H \mathbb{Z}$ :

## Examples

## Example

The global sphere spectrum $\mathbb{S}$ is given by

$$
\mathbb{S}(V)=S^{V}, \quad \sigma_{V, W}: S^{V} \wedge S^{W} \cong S^{V \oplus W}
$$

## Example

The connective global $K$-theory spectrum ko:
$\mathbf{k o}(V)=$ finite configurations of points in $S^{V}$ labeled by finite dimensional orthogonal subspaces of $\operatorname{Sym}(V)$


## Example

The Eilenberg-Mac Lane spectrum $H \mathbb{Z}$ :
$(H \mathbb{Z})(V)=S p^{\infty}\left(S^{V}\right)$
infinite symmetric product


## Some global morphisms

For $G$ finite:

$$
\mathbb{S} \quad \pi_{0}^{G}(\mathbb{S})=A(G)
$$

Burnside ring (Segal)

## Some global morphisms

For $G$ finite:


## Some global morphisms

For $G$ finite:


## Burnside ring (Segal)

representation ring

## Some global morphisms

For $G$ finite:


## Some global morphisms

For $G$ finite:


## Some global morphisms

For $G$ finite:


Global versus non-equivariant equivalence:

## Some global morphisms

For $G$ finite:


Global versus non-equivariant equivalence:
The morphisms $\mathbb{S}_{\mathbb{Q}} \longrightarrow \mathrm{HQ}$ and $\mathbf{m O} \longrightarrow \mathbf{M O}$ are non-equivariant equivalences, but not global equivalences.

## Some global morphisms

For $G$ finite:


Global versus non-equivariant equivalence:
The morphisms $\mathbb{S}_{\mathbb{Q}} \longrightarrow \mathrm{HQ}$ and $\mathbf{m O} \longrightarrow \mathbf{M O}$ are non-equivariant equivalences, but not global equivalences.

Reference: S. Schwede, Global homotopy theory

```
www.math.uni-bonn.de/people/schwede/global.pdf
```


## Global Thom spectra

$V$ : inner product space of dimension $n$
$\gamma_{V}$ : tautological $n$-plane bundle
over the Grassmannian $\operatorname{Gr}_{n}\left(V \oplus \mathbb{R}^{\infty}\right)$

## Global Thom spectra

$V$ : inner product space of dimension $n$
$\gamma_{V}$ : tautological $n$-plane bundle
over the Grassmannian $\operatorname{Gr}_{n}\left(V \oplus \mathbb{R}^{\infty}\right)$
Definition
The global Thom spectrum $\mathbf{m O}$ is the orthogonal spectrum with $\mathbf{m O}(V)=$ Thom space of $\gamma_{V}$.

## Global Thom spectra

$V$ : inner product space of dimension $n$
$\gamma_{V}$ : tautological $n$-plane bundle over the Grassmannian $\operatorname{Gr}_{n}\left(V \oplus \mathbb{R}^{\infty}\right)$
Definition
The global Thom spectrum $\mathbf{m O}$ is the orthogonal spectrum with $\mathbf{m O}(V)=$ Thom space of $\gamma_{V}$.
The action of $O(V)$ and structure maps only affect $V$, not $\mathbb{R}^{\infty}$.

## Global Thom spectra

$V$ : inner product space of dimension $n$
$\gamma_{V}$ : tautological $n$-plane bundle over the Grassmannian $\operatorname{Gr}_{n}\left(V \oplus \mathbb{R}^{\infty}\right)$
Definition
The global Thom spectrum $\mathbf{m O}$ is the orthogonal spectrum with

$$
\mathbf{m O}(V)=\text { Thom space of } \gamma_{V}
$$

The action of $O(V)$ and structure maps only affect $V$, not $\mathbb{R}^{\infty}$.
Small changes can make a big difference:

## Global Thom spectra

$V$ : inner product space of dimension $n$
$\gamma_{V}$ : tautological $n$-plane bundle over the Grassmannian $\operatorname{Gr}_{n}\left(V \oplus \mathbb{R}^{\infty}\right)$

## Definition

The global Thom spectrum $\mathbf{m O}$ is the orthogonal spectrum with

$$
\mathbf{m O}(V)=\text { Thom space of } \gamma_{V} .
$$

The action of $O(V)$ and structure maps only affect $V$, not $\mathbb{R}^{\infty}$.
Small changes can make a big difference:

- replacing $\operatorname{Gr}_{n}\left(V \oplus \mathbb{R}^{\infty}\right)$ by $\operatorname{Gr}_{n}(V \oplus V)$ yields an orthogonal Thom spectrum MO with different equivariant homotopy types.


## Global Thom spectra

$V$ : inner product space of dimension $n$
$\gamma_{V}$ : tautological $n$-plane bundle over the Grassmannian $\operatorname{Gr}_{n}\left(V \oplus \mathbb{R}^{\infty}\right)$

## Definition

The global Thom spectrum $\mathbf{m O}$ is the orthogonal spectrum with

$$
\mathbf{m O}(V)=\text { Thom space of } \gamma_{V} .
$$

The action of $O(V)$ and structure maps only affect $V$, not $\mathbb{R}^{\infty}$.
Small changes can make a big difference:

- replacing $\operatorname{Gr}_{n}\left(V \oplus \mathbb{R}^{\infty}\right)$ by $\operatorname{Gr}_{n}(V \oplus V)$ yields an orthogonal Thom spectrum MO with different equivariant homotopy types.
- mO is equivariantly connective; MO is equivariantly oriented


## Why we may care about m0

$\mathcal{N}_{n}^{G}(X)=$ bordism group of $n$-dim'l smooth $G$-manifolds over $X$

## Why we may care about m0

$\mathcal{N}_{n}^{G}(X)=$ bordism group of $n$-dim'l smooth $G$-manifolds over $X$ Smooth compact G-manifolds embed into G-representations,

## Why we may care about m0

$\mathcal{N}_{n}^{G}(X)=$ bordism group of $n$-dim'l smooth $G$-manifolds over $X$ Smooth compact G-manifolds embed into G-representations, so the equivariant Thom-Pontryagin construction makes sense:

$$
\mathcal{N}_{n}^{G}(X) \longrightarrow \operatorname{colim}_{V}\left[S^{V \oplus \mathbb{R}^{n}}, \mathbf{m O}(V) \wedge X_{+}\right]=\mathbf{m O}_{n}^{G}(X)
$$

## Why we may care about m0

$\mathcal{N}_{n}^{G}(X)=$ bordism group of $n$-dim'l smooth $G$-manifolds over $X$ Smooth compact G-manifolds embed into G-representations, so the equivariant Thom-Pontryagin construction makes sense:

$$
\mathcal{N}_{n}^{G}(X) \longrightarrow \operatorname{colim}_{V}\left[S^{V \oplus \mathbb{R}^{n}}, \mathbf{m O}(V) \wedge X_{+}\right]=\mathbf{m O}_{n}^{G}(X)
$$

## Theorem (Wasserman '69)

Let $G$ be isomorphic to the product of a finite group and a torus.
Then the equivariant Thom-Pontryagin construction is an isomorphism of equivariant homology theories.

## Why we may care about mo

$\mathcal{N}_{n}^{G}(X)=$ bordism group of $n$-dim'l smooth $G$-manifolds over $X$
Smooth compact G-manifolds embed into G-representations, so the equivariant Thom-Pontryagin construction makes sense:

$$
\mathcal{N}_{n}^{G}(X) \longrightarrow \operatorname{colim}_{V}\left[S^{V \oplus \mathbb{R}^{n}}, \mathbf{m O}(V) \wedge X_{+}\right]=\mathbf{m O}_{n}^{G}(X)
$$

## Theorem (Wasserman '69)

Let $G$ be isomorphic to the product of a finite group and a torus.
Then the equivariant Thom-Pontryagin construction is an isomorphism of equivariant homology theories.

The equivariant Thom-Pontryagin construction

$$
\mathcal{N}_{0}^{S U(2)} \longrightarrow \mathbf{m O}_{0}^{S U(2)} \quad \text { is not surjective. }
$$

## Why we may care about mo

$\mathcal{N}_{n}^{G}(X)=$ bordism group of $n$-dim'l smooth $G$-manifolds over $X$
Smooth compact G-manifolds embed into G-representations, so the equivariant Thom-Pontryagin construction makes sense:

$$
\mathcal{N}_{n}^{G}(X) \longrightarrow \operatorname{colim}_{V}\left[S^{V \oplus \mathbb{R}^{n}}, \mathbf{m O}(V) \wedge X_{+}\right]=\mathbf{m O}_{n}^{G}(X)
$$

## Theorem (Wasserman '69)

Let $G$ be isomorphic to the product of a finite group and a torus.
Then the equivariant Thom-Pontryagin construction is an isomorphism of equivariant homology theories.

The equivariant Thom-Pontryagin construction

$$
\mathcal{N}_{0}^{S U(2)} \longrightarrow \mathbf{m O}_{0}^{S U(2)} \quad \text { is not surjective. }
$$

Why finite $\times$ torus?

## Why we may care about mo

$\mathcal{N}_{n}^{G}(X)=$ bordism group of $n$-dim'l smooth $G$-manifolds over $X$
Smooth compact G-manifolds embed into G-representations, so the equivariant Thom-Pontryagin construction makes sense:

$$
\mathcal{N}_{n}^{G}(X) \longrightarrow \operatorname{colim}_{V}\left[S^{V \oplus \mathbb{R}^{n}}, \mathbf{m O}(V) \wedge X_{+}\right]=\mathbf{m O}_{n}^{G}(X)
$$

## Theorem (Wasserman '69)

Let $G$ be isomorphic to the product of a finite group and a torus.
Then the equivariant Thom-Pontryagin construction is an isomorphism of equivariant homology theories.

The equivariant Thom-Pontryagin construction

$$
\mathcal{N}_{0}^{S U(2)} \longrightarrow \mathbf{m O}_{0}^{S U(2)} \quad \text { is not surjective. }
$$

Why finite $\times$ torus? That would make another talk ...

## Inverse Thom classes

Let $V$ be an $n$-dimensional $G$-representation.

## Inverse Thom classes

Let $V$ be an $n$-dimensional G-representation.
The inverse Thom class

$$
\tau_{G, V} \in \mathbf{m O}_{n}^{G}\left(S^{V}\right)=\pi_{n-V}^{G}(\mathbf{m O})
$$

## Inverse Thom classes

Let $V$ be an $n$-dimensional $G$-representation.
The inverse Thom class

$$
\tau_{G, V} \in \mathbf{m O}_{n}^{G}\left(S^{V}\right)=\pi_{n-V}^{G}(\mathbf{m O})
$$

is the class of the G-map

$$
\begin{aligned}
S^{n} & \longrightarrow T h\left(\gamma v \downarrow G r_{n}\left(V \oplus \mathbb{R}^{\infty}\right)\right)=\mathbf{m O}(V) \\
x & \longmapsto \quad\left(0 \oplus \mathbb{R}^{n},(0, x)\right) .
\end{aligned}
$$

## Inverse Thom classes

Let $V$ be an $n$-dimensional G-representation.
The inverse Thom class

$$
\tau_{G, V} \in \mathbf{m O}_{n}^{G}\left(S^{V}\right)=\pi_{n-V}^{G}(\mathbf{m O})
$$

is the class of the G-map

$$
\begin{aligned}
S^{n} & \longrightarrow T h\left(\gamma v \downarrow G r_{n}\left(V \oplus \mathbb{R}^{\infty}\right)\right)=\mathbf{m O}(V) \\
x & \longmapsto \quad\left(0 \oplus \mathbb{R}^{n},(0, x)\right) .
\end{aligned}
$$

## Remarks

- The classes $\tau_{G, V}$ are not invertible in $\pi_{\star}^{G}(\mathbf{m O})$.


## Inverse Thom classes

Let $V$ be an $n$-dimensional $G$-representation.
The inverse Thom class

$$
\tau_{G, V} \in \mathbf{m O}_{n}^{G}\left(S^{V}\right)=\pi_{n-V}^{G}(\mathbf{m O})
$$

is the class of the G-map

$$
\begin{aligned}
S^{n} & \longrightarrow T h\left(\gamma v \downarrow G r_{n}\left(V \oplus \mathbb{R}^{\infty}\right)\right)=\mathbf{m O}(V) \\
x & \longmapsto \quad\left(0 \oplus \mathbb{R}^{n},(0, x)\right) .
\end{aligned}
$$

## Remarks

- The classes $\tau_{G, V}$ are not invertible in $\pi_{\star}^{G}(\mathbf{m O})$.
- The morphism $\mathbf{m O} \longrightarrow \mathbf{M O}$ sends $\tau_{G, V}$ to the inverse of the Thom class.


## Inverse Thom classes

Let $V$ be an $n$-dimensional $G$-representation.
The inverse Thom class

$$
\tau_{G, V} \in \mathbf{m O}_{n}^{G}\left(S^{V}\right)=\pi_{n-V}^{G}(\mathbf{m O})
$$

is the class of the G-map

$$
\begin{aligned}
S^{n} & \longrightarrow T h\left(\gamma v \downarrow G r_{n}\left(V \oplus \mathbb{R}^{\infty}\right)\right)=\mathbf{m O}(V) \\
x & \longmapsto \quad\left(0 \oplus \mathbb{R}^{n},(0, x)\right) .
\end{aligned}
$$

## Remarks

- The classes $\tau_{G, V}$ are not invertible in $\pi_{\star}^{G}(\mathbf{m O})$.
- The morphism $\mathbf{m O} \longrightarrow \mathbf{M O}$ sends $\tau_{G, V}$ to the inverse of the Thom class.
- The morphism $\mathbf{m O} \longrightarrow \mathbf{M O}$ is localization at $\left\{\tau_{G, V}\right\}_{G, V}$


## Inverse Thom classes

Let $V$ be an $n$-dimensional $G$-representation.
The inverse Thom class

$$
\tau_{G, V} \in \mathbf{m O}_{n}^{G}\left(S^{V}\right)=\pi_{n-V}^{G}(\mathbf{m O})
$$

is the class of the G-map

$$
\begin{aligned}
S^{n} & \longrightarrow T h\left(\gamma v \downarrow G r_{n}\left(V \oplus \mathbb{R}^{\infty}\right)\right)=\mathbf{m O}(V) \\
x & \longmapsto \quad\left(0 \oplus \mathbb{R}^{n},(0, x)\right) .
\end{aligned}
$$

## Remarks

- The classes $\tau_{G, V}$ are not invertible in $\pi_{\star}^{G}(\mathbf{m O})$.
- The morphism $\mathbf{m O} \longrightarrow \mathbf{M O}$ sends $\tau_{G, V}$ to the inverse of the Thom class.
- The morphism $\mathbf{m O} \longrightarrow \mathbf{M O}$ is localization at $\left\{\tau_{G, V}\right\}_{G, V}$ in the category of $E_{\infty}$-global ring spectra.


## Inverse Thom classes

Let $V$ be an $n$-dimensional $G$-representation.
The inverse Thom class

$$
\tau_{G, V} \in \mathbf{m O}_{n}^{G}\left(S^{V}\right)=\pi_{n-V}^{G}(\mathbf{m O})
$$

is the class of the G-map

$$
\begin{aligned}
S^{n} & \longrightarrow \operatorname{Th}\left(\gamma v \downarrow G r_{n}\left(V \oplus \mathbb{R}^{\infty}\right)\right)=\mathbf{m O}(V) \\
x & \longmapsto \quad\left(0 \oplus \mathbb{R}^{n},(0, x)\right) .
\end{aligned}
$$

## Remarks

- The classes $\tau_{G, V}$ are not invertible in $\pi_{\star}^{G}(\mathbf{m O})$.
- The morphism $\mathbf{m O} \longrightarrow \mathbf{M O}$ sends $\tau_{G, V}$ to the inverse of the Thom class.
- The morphism $\mathbf{m O} \longrightarrow \mathbf{M O}$ is localization at $\left\{\tau_{G, V}\right\}_{G, V}$ in the category of $E_{\infty}$-global ring spectra.
- MO is ultra-commutative, $\mathbf{m O}$ is not.


## The rank filtration of mO

$\mathbf{m O}_{(m)}$ is the orthogonal subspectrum of $\mathbf{m O}$ with

$$
\mathbf{m O}_{(m)}(V)=\operatorname{Th}\left(\gamma_{V} \downarrow G r_{n}\left(V \oplus \mathbb{R}^{m}\right)\right) \subset \mathbf{m O}(V)
$$

## The rank filtration of mO

$\mathbf{m O}_{(m)}$ is the orthogonal subspectrum of $\mathbf{m O}$ with

$$
\mathbf{m O}_{(m)}(V)=\operatorname{Th}\left(\gamma_{V} \downarrow G r_{n}\left(V \oplus \mathbb{R}^{m}\right)\right) \subset \mathbf{m O}(V)
$$

Then $\mathbf{m O}$ is a global homotopy colimit
$\mathbf{m O}=\operatorname{hocolim}_{m} \mathbf{m O}_{(m)}$.

## The rank filtration of mO

$\mathbf{m O}_{(m)}$ is the orthogonal subspectrum of $\mathbf{m O}$ with

$$
\mathbf{m O}_{(m)}(V)=\operatorname{Th}\left(\gamma_{V} \downarrow G r_{n}\left(V \oplus \mathbb{R}^{m}\right)\right) \subset \mathbf{m O}(V)
$$

Then $\mathbf{m O}$ is a global homotopy colimit

$$
\mathbf{m O}=\operatorname{hocolim}_{m} \mathbf{m O}_{(m)}
$$

## Definition

Let $M_{\mathrm{gl}} T(m)$ be the free orthogonal spectrum that represents the functor

$$
\mathrm{Sp}^{O} \longrightarrow \text { (sets) }, \quad X \longmapsto X\left(\nu_{m}\right)^{O(m)}
$$

where $\nu_{m}$ is the tautological $O(m)$-representation on $\mathbb{R}^{m}$.

## The rank filtration of mO

$\mathbf{m O}_{(m)}$ is the orthogonal subspectrum of $\mathbf{m O}$ with

$$
\mathbf{m O}_{(m)}(V)=\operatorname{Th}\left(\gamma_{V} \downarrow G r_{n}\left(V \oplus \mathbb{R}^{m}\right)\right) \subset \mathbf{m O}(V)
$$

Then $\mathbf{m O}$ is a global homotopy colimit

$$
\mathbf{m O}=\operatorname{hocolim}_{m} \mathbf{m O}_{(m)}
$$

## Definition

Let $M_{\mathrm{gl}} T(m)$ be the free orthogonal spectrum that represents the functor

$$
\mathrm{Sp}^{O} \longrightarrow \text { (sets) }, \quad X \longmapsto X\left(\nu_{m}\right)^{O(m)}
$$

where $\nu_{m}$ is the tautological $O(m)$-representation on $\mathbb{R}^{m}$.

- $M_{\mathrm{gl}} T(m)$ is a global Thom spectrum of the virtual global vector bundle $-\gamma_{m}$ over $B_{\mathrm{gl}} O(m)$; it refines $M T(m)=B O(m)^{-\gamma_{m}}$.


## The rank filtration of mO

$\mathbf{m O}_{(m)}$ is the orthogonal subspectrum of $\mathbf{m O}$ with

$$
\mathbf{m O}_{(m)}(V)=\operatorname{Th}\left(\gamma_{V} \downarrow G r_{n}\left(V \oplus \mathbb{R}^{m}\right)\right) \subset \mathbf{m O}(V)
$$

Then $\mathbf{m O}$ is a global homotopy colimit

$$
\mathbf{m O}=\operatorname{hocolim}_{m} \mathbf{m O}_{(m)} .
$$

## Definition

Let $M_{\mathrm{gl}} T(m)$ be the free orthogonal spectrum that represents the functor

$$
\mathrm{Sp}^{O} \longrightarrow \text { (sets) }, \quad X \longmapsto X\left(\nu_{m}\right)^{O(m)}
$$

where $\nu_{m}$ is the tautological $O(m)$-representation on $\mathbb{R}^{m}$.

- $M_{\mathrm{gl}} T(m)$ is a global Thom spectrum of the virtual global vector bundle $-\gamma_{m}$ over $B_{\mathrm{gl}} O(m)$; it refines $M T(m)=B O(m)^{-\gamma_{m}}$.
- in $\mathcal{G H}$, the spectrum $M_{\mathrm{gl}} T(m)$ represents the functor

$$
E \longmapsto E_{0}^{O(m)}\left(S^{\nu_{m}}\right)
$$

## Global homotopy type of $\mathbf{m O}_{(m)}$

Theorem
There is a global equivalence

$$
\mathbf{m O}_{(m)} \simeq_{\mathrm{gl}} \Sigma^{m} M_{\mathrm{gl}} T(m)
$$

## Global homotopy type of $\mathrm{mO}_{(m)}$

Theorem
There is a global equivalence

$$
\mathbf{m O}_{(m)} \simeq_{\mathrm{gl}} \Sigma^{m} M_{\mathrm{gl}} T(m)
$$

Proof.

$$
\mathbf{m O}_{(m)}(V)=\operatorname{Th}\left(G r_{|V|}\left(V \oplus \mathbb{R}^{m}\right)\right)
$$

## Global homotopy type of $\mathrm{mO}_{(m)}$

Theorem
There is a global equivalence

$$
\mathbf{m O}_{(m)} \simeq_{\mathrm{gl}} \quad \Sigma^{m} M_{\mathrm{gl}} T(m)
$$

Proof.

$$
\begin{aligned}
\mathbf{m O}_{(m)}(V) & =\operatorname{Th}\left(\operatorname{Gr}_{|V|}\left(V \oplus \mathbb{R}^{m}\right)\right) \\
\text { orth. complement } & =\operatorname{Th}^{\perp}\left(\operatorname{Gr}_{m}\left(V \oplus \mathbb{R}^{m}\right)\right)
\end{aligned}
$$

## Global homotopy type of $\mathrm{mO}_{(m)}$

Theorem
There is a global equivalence

$$
\mathbf{m O}_{(m)} \simeq_{\mathrm{gl}} \Sigma^{m} M_{\mathrm{gl}} T(m)
$$

Proof.

$$
\begin{aligned}
\mathbf{m O}_{(m)}(V) & =\operatorname{Th}\left(\operatorname{Gr}_{|V|}\left(V \oplus \mathbb{R}^{m}\right)\right) \\
\text { orth. complement } & =\operatorname{Th}^{\perp}\left(\operatorname{Gr}_{m}\left(V \oplus \mathbb{R}^{m}\right)\right) \\
& =\left(M_{\mathbf{g l}} T(m)\right)\left(V \oplus \mathbb{R}^{m}\right)
\end{aligned}
$$

## Global homotopy type of $\mathrm{mO}_{(m)}$

Theorem
There is a global equivalence

$$
\mathbf{m O}_{(m)} \simeq_{\mathrm{gl}} \Sigma^{m} M_{\mathrm{gl}} T(m)
$$

Proof.

$$
\begin{aligned}
\mathbf{m O}_{(m)}(V) & =\operatorname{Th}\left(\operatorname{Gr}_{|V|}\left(V \oplus \mathbb{R}^{m}\right)\right) \\
\text { orth. complement } & =\operatorname{Th}^{\perp}\left(\operatorname{Gr}_{m}\left(V \oplus \mathbb{R}^{m}\right)\right) \\
& =\left(M_{\mathrm{gl}} T(m)\right)\left(V \oplus \mathbb{R}^{m}\right) \\
& =\left(\operatorname{sh}^{m} M_{\mathrm{gl}} T(m)\right)(V) .
\end{aligned}
$$

## Global homotopy type of $\mathrm{mO}_{(m)}$

Theorem
There is a global equivalence

$$
\mathbf{m O}_{(m)} \simeq_{\mathrm{gl}} \Sigma^{m} M_{\mathrm{gl}} T(m)
$$

Proof.

$$
\begin{aligned}
\mathbf{m O}_{(m)}(V) & =\operatorname{Th}\left(\operatorname{Gr}_{|V|}\left(V \oplus \mathbb{R}^{m}\right)\right) \\
\text { orth. complement } & =\operatorname{Th}^{\perp}\left(\operatorname{Gr}_{m}\left(V \oplus \mathbb{R}^{m}\right)\right) \\
& =\left(M_{\mathrm{g} \mid} T(m)\right)\left(V \oplus \mathbb{R}^{m}\right) \\
& =\left(\operatorname{sh}^{m} M_{\mathrm{gl}} T(m)\right)(V) .
\end{aligned}
$$

So

$$
\mathbf{m O}_{(m)} \cong \operatorname{sh}^{m} M_{\mathrm{gl}} T(m) \quad \simeq_{\mathrm{gl}} \quad \Sigma^{m} M_{\mathrm{gl}} T(m)
$$

## Global morphisms out of $\mathbf{m O}$

## Corollary

The orthogonal spectrum $\mathbf{m O}_{(m)}$ represents the functor

$$
\mathcal{G H} \longrightarrow \text { (sets) }, \quad E \longmapsto E_{m}^{O(m)}\left(S^{\nu_{m}}\right)=\pi_{m-\nu_{m}}^{O(m)}(E) .
$$

## Global morphisms out of mO

## Corollary

The orthogonal spectrum $\mathbf{m O}_{(m)}$ represents the functor

$$
\mathcal{G H} \longrightarrow \text { (sets) }, \quad E \longmapsto E_{m}^{O(m)}\left(S^{\nu_{m}}\right)=\pi_{m-\nu_{m}}^{O(m)}(E) .
$$

The following sequence is short exact:
$0 \longrightarrow \lim _{m}^{1} E_{m-1}^{O(m)}\left(S^{\nu_{m}}\right) \longrightarrow \llbracket \mathbf{m O}, E \rrbracket \xrightarrow{\mathrm{ev}} \lim _{m} E_{m}^{O(m)}\left(S^{\nu_{m}}\right) \longrightarrow 0$

## Global morphisms out of mO

## Corollary

The orthogonal spectrum $\mathbf{m O}_{(m)}$ represents the functor

$$
\mathcal{G H} \longrightarrow \text { (sets) }, \quad E \longmapsto E_{m}^{O(m)}\left(\mathcal{S}^{\nu_{m}}\right)=\pi_{m-\nu_{m}}^{O(m)}(E) .
$$

The following sequence is short exact:

$$
0 \longrightarrow \lim _{m}^{1} E_{m-1}^{O(m)}\left(S^{\nu_{m}}\right) \longrightarrow \llbracket \mathbf{m O}, E \rrbracket \xrightarrow{\mathrm{eV}} \lim _{m} E_{m}^{O(m)}\left(S^{\nu_{m}}\right) \longrightarrow 0
$$

The inverse limit and derived limit are formed along

$$
E_{m}^{O(m)}\left(S^{\nu_{m}}\right) \xrightarrow{\operatorname{res}_{O(m-1)}^{O(m)}} E_{m}^{O(m-1)}\left(S^{\nu_{m-1}} \wedge S^{1}\right) \cong E_{m-1}^{O(m-1)}\left(S^{\nu_{m-1}}\right)
$$

and ' ev ' is evaluation at the inverse Thom classes $\tau_{O(m), \nu_{m}}$.

## Multiplicative inverse Thom classes

Let $E$ be a global ring spectrum, i.e., a commutative monoid in $\mathcal{G H}$ under globally derived smash product.

## Multiplicative inverse Thom classes

Let $E$ be a global ring spectrum, i.e., a commutative monoid in $\mathcal{G H}$ under globally derived smash product. Subject to vanishing lim ${ }^{1}$-terms, ring spectrum morphisms $\mathbf{m O} \longrightarrow E$ correspond to collections of inverse Thom classes

$$
t_{m} \in E_{m}^{O(m)}\left(S^{\nu_{m}}\right), \quad m \geq 0
$$

## Multiplicative inverse Thom classes

Let $E$ be a global ring spectrum, i.e., a commutative monoid in $\mathcal{G H}$ under globally derived smash product. Subject to vanishing lim ${ }^{1}$-terms, ring spectrum morphisms $\mathbf{m O} \longrightarrow E$ correspond to collections of inverse Thom classes

$$
t_{m} \in E_{m}^{O(m)}\left(S^{\nu_{m}}\right), \quad m \geq 0
$$

that are multiplicative, i.e., such that

$$
t_{0}=1 \quad \text { and } \quad \operatorname{res}_{O(k) \times O(m)}^{O(k+m)}\left(t_{k+m}\right)=t_{k} \times t_{m}
$$

## Multiplicative inverse Thom classes

Let $E$ be a global ring spectrum, i.e., a commutative monoid in $\mathcal{G H}$ under globally derived smash product. Subject to vanishing lim ${ }^{1}$-terms, ring spectrum morphisms $\mathbf{m O} \longrightarrow E$ correspond to collections of inverse Thom classes

$$
t_{m} \in E_{m}^{O(m)}\left(S^{\nu_{m}}\right), \quad m \geq 0
$$

that are multiplicative, i.e., such that

$$
t_{0}=1 \quad \text { and } \quad \operatorname{res}_{O(k) \times O(m)}^{O(k+m)}\left(t_{k+m}\right)=t_{k} \times t_{m}
$$

## Example

The classes

$$
t_{m}=\beta_{U(m), \mathbb{C}^{m}} / \beta_{U(m), \nu_{m}^{\mathrm{C}}} \quad \text { in } \mathbf{K U}_{2 m}^{U(m)}\left(S^{\nu_{m}^{\mathrm{C}}}\right)
$$

correspond to a global ring spectrum morphism $\mathbf{m U} \longrightarrow \mathbf{K U}$.

## Multiplicative inverse Thom classes

Let $E$ be a global ring spectrum, i.e., a commutative monoid in $\mathcal{G H}$ under globally derived smash product. Subject to vanishing lim ${ }^{1}$-terms, ring spectrum morphisms $\mathbf{m O} \longrightarrow E$ correspond to collections of inverse Thom classes

$$
t_{m} \in E_{m}^{O(m)}\left(S^{\nu_{m}}\right), \quad m \geq 0
$$

that are multiplicative, i.e., such that

$$
t_{0}=1 \quad \text { and } \quad \operatorname{res}_{O(k) \times O(m)}^{O(k+m)}\left(t_{k+m}\right)=t_{k} \times t_{m}
$$

## Example

The classes

$$
t_{m}=\beta_{U(m), \mathbb{C}^{m}} / \beta_{U(m), \nu_{m}^{\mathrm{C}}} \quad \text { in } \mathbf{K U}_{2 m}^{U(m)}\left(S^{\nu_{m}^{\mathrm{C}}}\right)
$$

correspond to a global ring spectrum morphism $\mathbf{m U} \longrightarrow \mathbf{K U}$. Since $\mathbf{m U}$ is connective, this lifts to a morphism $\mathbf{m U} \longrightarrow \mathbf{k u}^{c}$ to global connective K-theory.

## Examples

Example
Since $\mathbf{m O}$ is globally connective and $\pi_{0}^{e}(\mathbf{m O})=\mathbb{F}_{2}$,

## Examples

## Example

Since $\mathbf{m O}$ is globally connective and $\pi_{0}^{e}(\mathbf{m O})=\mathbb{F}_{2}$, there is a unique morphism of global ring spectra $\mathbf{m O} \longrightarrow H \mathbb{F}_{2}$ to the Eilenberg-MacLane ring spectrum of the constant global Green functor.

## Examples

## Example

Since $\mathbf{m O}$ is globally connective and $\pi_{0}^{e}(\mathbf{m O})=\mathbb{F}_{2}$, there is a unique morphism of global ring spectra $\mathbf{m O} \longrightarrow H \mathbb{F}_{2}$ to the Eilenberg-MacLane ring spectrum of the constant global Green functor. Similarly for $\mathbf{m S O} \longrightarrow H \underline{\mathbb{Z}}$.

## Examples

## Example

Since $\mathbf{m O}$ is globally connective and $\pi_{0}^{e}(\mathbf{m O})=\mathbb{F}_{2}$, there is a unique morphism of global ring spectra $\mathrm{mO} \longrightarrow H \mathbb{F}_{2}$ to the Eilenberg-MacLane ring spectrum of the constant global Green functor. Similarly for $\mathbf{m S O} \longrightarrow H \mathbb{Z}$.

## Example

Let $R$ be a non-equivariant ring spectrum and let $b R$ be the associated global Borel theory.

## Examples

## Example

Since $\mathbf{m O}$ is globally connective and $\pi_{0}^{e}(\mathbf{m O})=\mathbb{F}_{2}$, there is a unique morphism of global ring spectra $\mathbf{m O} \longrightarrow H \mathbb{F}_{2}$ to the Eilenberg-MacLane ring spectrum of the constant global Green functor. Similarly for $\mathbf{m S O} \longrightarrow H \underline{\mathbb{Z}}$.

## Example

Let $R$ be a non-equivariant ring spectrum and let $b R$ be the associated global Borel theory. Any (non-equivariant) ring spectrum morphism $M O \longrightarrow R$ is adjoint to a morphism of global ring spectra $\mathbf{m O} \longrightarrow b R$.

## Examples

## Example

Since $\mathbf{m O}$ is globally connective and $\pi_{0}^{e}(\mathbf{m O})=\mathbb{F}_{2}$, there is a unique morphism of global ring spectra $\mathrm{mO} \longrightarrow H \mathbb{F}_{2}$ to the Eilenberg-MacLane ring spectrum of the constant global Green functor. Similarly for $\mathbf{m S O} \longrightarrow H \mathbb{Z}$.

## Example

Let $R$ be a non-equivariant ring spectrum and let $b R$ be the associated global Borel theory. Any (non-equivariant) ring spectrum morphism $M O \longrightarrow R$ is adjoint to a morphism of global ring spectra $\mathrm{mO} \longrightarrow b R$. Under the isomorphism

$$
\begin{aligned}
(b R)_{m}^{O(m)}\left(S^{\nu m}\right) & \cong \llbracket \mathbf{m O}_{(m)}, b R \rrbracket \\
& \cong\left[S^{m} \wedge B O^{-\gamma_{m}}, R\right] \cong R^{-m}\left(B O^{-\gamma_{m}}\right)
\end{aligned}
$$

the inverse Thom class $t_{m}$ corresponds to the Thom class of the virtual bundle $-\gamma_{m}$ over $B O(m)$.

## Subqotients of the rank filtration

Theorem
There is a global equivalence

$$
\mathbf{m O}_{(m)} / \mathbf{m O}_{(m-1)} \simeq_{g l} S^{m} \wedge \Sigma_{+}^{\infty} B_{g l} O(m)
$$

## Subqotients of the rank filtration

Theorem
There is a global equivalence

$$
\mathbf{m O}_{(m)} / \mathbf{m O}_{(m-1)} \simeq_{g l} S^{m} \wedge \Sigma_{+}^{\infty} B_{g l} O(m)
$$

Proof.
Applying Free ${ }_{O(m), \nu_{m}}$ to the cofiber sequence of $O(m)$-spaces

$$
O(m) / O(m-1)_{+} \longrightarrow S^{0} \longrightarrow S^{\nu_{m}} \longrightarrow S^{1} \wedge O(m) / O(m-1)_{+}
$$

## Subqotients of the rank filtration

Theorem
There is a global equivalence

$$
\mathbf{m O}_{(m)} / \mathbf{m O}_{(m-1)} \simeq_{g l} S^{m} \wedge \Sigma_{+}^{\infty} B_{g l} O(m)
$$

Proof.
Applying Free ${ }_{O(m), \nu_{m}}$ to the cofiber sequence of $O(m)$-spaces

$$
O(m) / O(m-1)_{+} \longrightarrow S^{0} \longrightarrow S^{\nu m} \longrightarrow S^{1} \wedge O(m) / O(m-1)_{+}
$$

yields a distinguished triangle in $\mathcal{G H}$
Free $_{O(m-1), \nu_{m-1} \oplus \mathbb{R}} \longrightarrow$ Free $_{O(m), \nu_{m}} \longrightarrow$ Free $_{O(m), \nu_{m}} S^{\nu_{m}} \longrightarrow$

## Subqotients of the rank filtration

Theorem
There is a global equivalence

$$
\mathbf{m O}_{(m)} / \mathbf{m O}_{(m-1)} \simeq_{g l} S^{m} \wedge \Sigma_{+}^{\infty} B_{g l} O(m)
$$

Proof.
Applying Free ${ }_{O(m), \nu_{m}}$ to the cofiber sequence of $O(m)$-spaces

$$
O(m) / O(m-1)_{+} \longrightarrow S^{0} \longrightarrow S^{\nu_{m}} \longrightarrow S^{1} \wedge O(m) / O(m-1)_{+}
$$

yields a distinguished triangle in $\mathcal{G H}$
Free $_{O(m-1), \nu_{m-1} \oplus \mathbb{R}} \longrightarrow$ Free $_{O(m), \nu_{m}} \longrightarrow$ Free $_{O(m), \nu_{m}} S^{\nu_{m}} \longrightarrow$
which is isomorphic to

$$
S^{-1} \wedge M_{\mathrm{gl}} O(m-1) \longrightarrow M_{\mathrm{g} \mid} O(m) \longrightarrow \Sigma_{+}^{\infty} B_{\mathrm{g} \mid} O(m) \longrightarrow
$$

## Subqotients of the rank filtration

Theorem
There is a global equivalence

$$
\mathbf{m O}_{(m)} / \mathbf{m O}_{(m-1)} \simeq_{g l} S^{m} \wedge \Sigma_{+}^{\infty} B_{g l} O(m)
$$

Proof.
Applying Free ${ }_{O(m), \nu_{m}}$ to the cofiber sequence of $O(m)$-spaces

$$
O(m) / O(m-1)_{+} \longrightarrow S^{0} \longrightarrow S^{\nu m} \longrightarrow S^{1} \wedge O(m) / O(m-1)_{+}
$$

yields a distinguished triangle in $\mathcal{G H}$
Free $_{O(m-1), \nu_{m-1} \oplus \mathbb{R}} \longrightarrow$ Free $_{O(m), \nu_{m}} \longrightarrow$ Free $_{O(m), \nu_{m}} S^{\nu_{m}} \longrightarrow$
which is isomorphic to

$$
S^{-1} \wedge M_{\mathrm{gl}} O(m-1) \longrightarrow M_{\mathrm{gl}} O(m) \longrightarrow \Sigma_{+}^{\infty} B_{\mathrm{gl}} O(m) \longrightarrow
$$

Applying $S^{m} \wedge$ - gives the distinguished triangle

$$
\mathbf{m O}_{(m-1)} \xrightarrow{\text { incl }} \mathbf{m O}_{(m)} \longrightarrow S^{m} \wedge \Sigma_{+}^{\infty} B_{\mathrm{gl}} O(m) \longrightarrow
$$



## Building mO by killing transfers

Corollary
mO is built from $\mathbb{S}$ by killing $\operatorname{Tr}_{O(m-1)}^{O(m)}$ for $m \geq 1$.

## Building mO by killing transfers

Corollary
mO is built from $\mathbb{S}$ by killing $\operatorname{Tr}_{O(m-1)}^{O(m)}$ for $m \geq 1$.

- The rank filtration starts with $\mathbb{S}=\mathbf{m O}_{(0)} \longrightarrow \mathbf{m O}$, the unit map.


## Building mO by killing transfers

## Corollary

mO is built from $\mathbb{S}$ by killing $\operatorname{Tr}_{O(m-1)}^{O(m)}$ for $m \geq 1$.

- The rank filtration starts with $\mathbb{S}=\mathbf{m O}_{(0)} \longrightarrow \mathbf{m O}$, the unit map.
- For $m \geq 1$ there is a distinguished triangle in the global stable homotopy category:

$$
S^{m-1} \wedge B_{\mathrm{gl}} O(m)_{+} \xrightarrow{\partial} \mathbf{m O}_{(m-1)} \xrightarrow{\mathrm{incl}} \mathbf{m O}_{(m)} \longrightarrow S^{m} \wedge B_{\mathrm{gl}} O(m)_{+}
$$

## Building mO by killing transfers

## Corollary

mO is built from $\mathbb{S}$ by killing $\operatorname{Tr}_{O(m-1)}^{O(m)}$ for $m \geq 1$.

- The rank filtration starts with $\mathbb{S}=\mathbf{m O}_{(0)} \longrightarrow \mathbf{m O}$, the unit map.
- For $m \geq 1$ there is a distinguished triangle in the global stable homotopy category:
$S^{m-1} \wedge B_{\mathrm{gl}} O(m)_{+} \xrightarrow{\partial} \mathbf{m O}_{(m-1)} \xrightarrow{\mathrm{incl}} \mathbf{m O}_{(m)} \longrightarrow S^{m} \wedge B_{\mathrm{gl}} O(m)_{+}$
- The morphism $\partial$ is classified by

$$
\operatorname{Tr}_{O(m-1)}^{O(m)}\left(\tau_{O(m-1), \nu_{m-1}}^{O}\right) \quad \text { in } \pi_{m-1}^{O(m)}\left(\mathbf{m O}_{(m-1)}\right),
$$

the 'dimension shifting' transfer.

## Global description of $\underline{\pi}_{0}(\mathrm{mO})$

Since $B_{\mathrm{gl}} G$ represents $\pi_{0}^{G}(-)$, the composite

$$
\Sigma_{+}^{\infty} B_{\mathrm{gl}} O(m+1) \xrightarrow{\partial} S^{-m} \wedge \mathbf{m O}_{(m)} \xrightarrow{q} \Sigma_{+}^{\infty} B_{\mathrm{gl}} O(m)
$$

represents a natural operation of equivariant homotopy groups,

## Global description of $\underline{\pi}_{0}(\mathrm{mO})$

Since $B_{\mathrm{gl}} G$ represents $\pi_{0}^{G}(-)$, the composite

$$
\Sigma_{+}^{\infty} B_{\mathrm{gl}} O(m+1) \xrightarrow{\partial} S^{-m} \wedge \mathbf{m O}_{(m)} \xrightarrow{q} \Sigma_{+}^{\infty} B_{\mathrm{gl}} O(m)
$$

represents a natural operation of equivariant homotopy groups, namely the 'degree zero' transfer

$$
\operatorname{tr}_{O(m-1)}^{O(m)}: \pi_{0}^{O(m)}(X) \longrightarrow \pi_{0}^{O(m+1)}(X)
$$

## Global description of $\underline{\pi}_{0}(\mathrm{mO})$

Since $B_{\mathrm{gl}} G$ represents $\pi_{0}^{G}(-)$, the composite

$$
\Sigma_{+}^{\infty} B_{\mathrm{g} \mid} O(m+1) \xrightarrow{\partial} S^{-m} \wedge \mathbf{m O}_{(m)} \xrightarrow{q} \Sigma_{+}^{\infty} B_{\mathrm{g} \mid} O(m)
$$

represents a natural operation of equivariant homotopy groups, namely the 'degree zero' transfer

$$
\operatorname{tr}_{O(m-1)}^{O(m)}: \pi_{0}^{O(m)}(X) \longrightarrow \pi_{0}^{O(m+1)}(X)
$$

Since all $\mathbf{m O}_{(m)} / \mathbf{m O _ { ( m - 1 ) }}$ are globally connective, so is $\mathbf{m O}$.

## Global description of $\underline{\pi}_{0}(\mathbf{m O})$

Since $B_{\mathrm{gl}} G$ represents $\pi_{0}^{G}(-)$, the composite

$$
\Sigma_{+}^{\infty} B_{\mathrm{gl}} O(m+1) \xrightarrow{\partial} S^{-m} \wedge \mathbf{m O}_{(m)} \xrightarrow{q} \Sigma_{+}^{\infty} B_{\mathrm{g} \mid} O(m)
$$

represents a natural operation of equivariant homotopy groups, namely the 'degree zero' transfer

$$
\operatorname{tr}_{O(m-1)}^{O(m)}: \pi_{0}^{O(m)}(X) \longrightarrow \pi_{0}^{O(m+1)}(X) .
$$

Since all $\mathbf{m O}_{(m)} / \mathbf{m O}_{(m-1)}$ are globally connective, so is $\mathbf{m O}$. Moreover, there is a short exact sequence of global functors

$$
\underline{\pi}_{0}\left(\sum_{+}^{\infty} B_{\mathrm{g} 1} O(1)\right) \xrightarrow{\underline{\pi}_{0}(\partial)} \underline{\pi}_{0}(\mathbb{S}) \longrightarrow \underline{\pi}_{0}(\mathbf{m O}) \longrightarrow 0
$$

## Global description of $\underline{\pi}_{0}(\mathrm{mO})$

Since $B_{\mathrm{gl}} G$ represents $\pi_{0}^{G}(-)$, the composite

$$
\Sigma_{+}^{\infty} B_{\mathrm{g} \mid} O(m+1) \xrightarrow{\partial} S^{-m} \wedge \mathbf{m O}_{(m)} \xrightarrow{q} \Sigma_{+}^{\infty} B_{\mathrm{g} \mid} O(m)
$$

represents a natural operation of equivariant homotopy groups, namely the 'degree zero' transfer

$$
\operatorname{tr}_{O(m-1)}^{O(m)}: \pi_{0}^{O(m)}(X) \longrightarrow \pi_{0}^{O(m+1)}(X) .
$$

Since all $\mathbf{m O}_{(m)} / \mathbf{m O}_{(m-1)}$ are globally connective, so is $\mathbf{m O}$. Moreover, there is a short exact sequence of global functors

$$
\underline{\pi}_{0}\left(\sum_{+}^{\infty} B_{\mathrm{g} \mid} O(1)\right) \xrightarrow{\underline{\pi}_{0}(\partial)} \underline{\pi}_{0}(\mathbb{S}) \longrightarrow \underline{\pi}_{0}(\mathbf{m O}) \longrightarrow 0
$$

## Corollary

The action of the Burnside ring global functor on the unit element $1 \in \pi_{0}^{e}(\mathbf{m O})$ induces an isomorphism of global functors

$$
\mathbb{A} /\left\langle\operatorname{tr}_{e}^{O(1)}\right\rangle \cong \underline{\pi}_{0}(\mathbf{m O}) .
$$

## Summary

The fundamental relation $\operatorname{tr}_{e}^{O(1)}(1)=0$ implies the more familiar

$$
2=\operatorname{res}_{e}^{O(1)}\left(\operatorname{tr}_{e}^{O(1)}(1)\right)=0 \quad \text { in } \pi_{0}^{e}(\mathbf{m O})
$$

## Summary

The fundamental relation $\operatorname{tr}_{e}^{O(1)}(1)=0$ implies the more familiar

$$
2=\operatorname{res}_{e}^{O(1)}\left(\operatorname{tr}_{e}^{O(1)}(1)\right)=0 \text { in } \pi_{0}^{e}(\mathbf{m O})
$$

## Corollary

Let $G$ be a compact Lie group. An $\mathbb{F}_{2}$-basis of $\pi_{0}^{G}(\mathrm{mO})$ is given by the classes $\operatorname{tr}_{H}^{G}(1)$, indexed by conjugacy classes of closed subgroups $H$ of $G$ whose Weyl group is finite and of odd order.

## Summary

The fundamental relation $\operatorname{tr}_{e}^{O(1)}(1)=0$ implies the more familiar

$$
2=\operatorname{res}_{e}^{O(1)}\left(\operatorname{tr}_{e}^{O(1)}(1)\right)=0 \text { in } \pi_{0}^{e}(\mathbf{m O})
$$

## Corollary

Let $G$ be a compact Lie group. An $\mathbb{F}_{2}$-basis of $\pi_{0}^{G}(\mathbf{m O})$ is given by the classes $\operatorname{tr}_{H}^{G}(1)$, indexed by conjugacy classes of closed subgroups $H$ of $G$ whose Weyl group is finite and of odd order.

Summary:

## Summary

The fundamental relation $\operatorname{tr}_{e}^{O(1)}(1)=0$ implies the more familiar

$$
2=\operatorname{res}_{e}^{O(1)}\left(\operatorname{tr}_{e}^{O(1)}(1)\right)=0 \quad \text { in } \pi_{0}^{e}(\mathbf{m O})
$$

## Corollary

Let $G$ be a compact Lie group. An $\mathbb{F}_{2}$-basis of $\pi_{0}^{G}(\mathbf{m O})$ is given by the classes $\operatorname{tr}_{H}^{G}(1)$, indexed by conjugacy classes of closed subgroups H of G whose Weyl group is finite and of odd order.

## Summary:

- The global stable homotopy category is the home of all equivariant phenomena with 'maximal symmetry'


## Summary

The fundamental relation $\operatorname{tr}_{e}^{O(1)}(1)=0$ implies the more familiar

$$
2=\operatorname{res}_{e}^{O(1)}\left(\operatorname{tr}_{e}^{O(1)}(1)\right)=0 \text { in } \pi_{0}^{e}(\mathbf{m O})
$$

Corollary
Let $G$ be a compact Lie group. An $\mathbb{F}_{2}$-basis of $\pi_{0}^{G}(\mathbf{m O})$ is given by the classes $\operatorname{tr}_{H}^{G}(1)$, indexed by conjugacy classes of closed subgroups $H$ of $G$ whose Weyl group is finite and of odd order.

## Summary:

- The global stable homotopy category is the home of all equivariant phenomena with 'maximal symmetry'
- Orthogonal spectra and global equivalences provide a convenient model


## Summary

The fundamental relation $\operatorname{tr}_{e}^{O(1)}(1)=0$ implies the more familiar

$$
2=\operatorname{res}_{e}^{O(1)}\left(\operatorname{tr}_{e}^{O(1)}(1)\right)=0 \text { in } \pi_{0}^{e}(\mathbf{m O})
$$

Corollary
Let $G$ be a compact Lie group. An $\mathbb{F}_{2}$-basis of $\pi_{0}^{G}(\mathbf{m O})$ is given by the classes $\operatorname{tr}_{H}^{G}(1)$, indexed by conjugacy classes of closed subgroups $H$ of $G$ whose Weyl group is finite and of odd order.

## Summary:

- The global stable homotopy category is the home of all equivariant phenomena with 'maximal symmetry'
- Orthogonal spectra and global equivalences provide a convenient model
- The global perspective reveals universal properties of equivariant Thom spectra


## Induction versus transfer

Question:
Why is the TP-construction bijective only for $G \cong$ finite $\times$ torus?

## Induction versus transfer

Question:
Why is the TP-construction bijective only for $G \cong$ finite $\times$ torus?
A closer look at the functoriality for closed subgroups $H \leq G$ :

## Induction versus transfer

## Question:

Why is the TP-construction bijective only for $G \cong$ finite $\times$ torus?
A closer look at the functoriality for closed subgroups $H \leq G$ :

## Geometry:

induction isomorphism:

$$
\begin{aligned}
\mathcal{N}_{n-d}^{H}(X) & \xrightarrow{\operatorname{lnd}_{H}^{G}} \mathcal{N}_{n}^{G}\left(G \times_{H} X\right) \\
\quad[M, h] & \longmapsto\left[G \times_{H} M, G \times_{H} h\right]
\end{aligned}
$$

where $d=\operatorname{dim}(G / H)$

## Induction versus transfer

## Question:

Why is the TP-construction bijective only for $G \cong$ finite $\times$ torus?
A closer look at the functoriality for closed subgroups $H \leq G$ :

## Geometry:

induction isomorphism:
$\mathcal{N}_{n-d}^{H}(X) \xrightarrow{\operatorname{lnd}{ }^{G}} \mathcal{N}_{n}^{G}\left(G \times_{H} X\right)$
$[M, h] \longmapsto\left[G \times_{H} M, G \times_{H} h\right]$
where $d=\operatorname{dim}(G / H)$

Homotopy theory:
'Wirthmüller isomorphism':
$\mathbf{m O}_{n}^{H}\left(S^{L} \wedge X_{+}\right) \xrightarrow{\mathrm{Tr}_{H}^{G}} \mathbf{m O}_{n}^{G}\left(G \times_{H} X_{+}\right)$
where $L=T_{H}(G / H)$

## Induction versus transfer

## Question:

Why is the TP-construction bijective only for $G \cong$ finite $\times$ torus?
A closer look at the functoriality for closed subgroups $H \leq G$ :

## Geometry:

induction isomorphism:
$\mathcal{N}_{n-d}^{H}(X) \xrightarrow{\operatorname{lnd}_{H}^{G}} \mathcal{N}_{n}^{G}\left(G \times_{H} X\right)$
$[M, h] \longmapsto\left[G \times_{H} M, G \times_{H} h\right]$
where $d=\operatorname{dim}(G / H)$
$\rightarrow$ shift by dimension

Homotopy theory:
'Wirthmüller isomorphism':
$\mathbf{m O}_{n}^{H}\left(S^{L} \wedge X_{+}\right) \xrightarrow{\mathrm{Tr}_{H}^{G}} \mathbf{m O}_{n}^{G}\left(G \times{ }_{H} X_{+}\right)$
where $L=T_{H}(G / H)$
$\rightarrow$ twist by an H -representation

## Induction versus transfer

## Question:

Why is the TP-construction bijective only for $G \cong$ finite $\times$ torus?
A closer look at the functoriality for closed subgroups $H \leq G$ :

## Geometry:

induction isomorphism:
$\mathcal{N}_{n-d}^{H}(X) \xrightarrow{\operatorname{lnd}_{H}^{G}} \mathcal{N}_{n}^{G}\left(G \times_{H} X\right)$
$[M, h] \longmapsto\left[G \times_{H} M, G \times_{H} h\right]$
where $d=\operatorname{dim}(G / H)$
$\rightarrow$ shift by dimension

Homotopy theory:
'Wirthmüller isomorphism':
$\mathbf{m O}_{n}^{H}\left(S^{\llcorner } \wedge X_{+}\right) \xrightarrow{\mathrm{Tr}_{H}^{G}} \mathbf{m O}_{n}^{G}\left(G \times_{H} X_{+}\right)$
where $L=T_{H}(G / H)$
$\rightarrow$ twist by an H -representation

Answer:
Different formal behaviour of induction / transfer.
So no chance for an isomorphism in general.

## Why 'finite $\times$ torus' !

However:
$G$ is isomorphic to the product of a finite group and a torus

## Why 'finite $\times$ torus' !

However:
$G$ is isomorphic to the product of a finite group and a torus $\Longleftrightarrow$ for every closed subgroup $H$ of $G$ the tangent $H$-representation $T_{H}(G / H)$ is trivial

## Why 'finite $\times$ torus' !

However:
$G$ is isomorphic to the product of a finite group and a torus $\Longleftrightarrow$ for every closed subgroup $H$ of $G$ the tangent $H$-representation $T_{H}(G / H)$ is trivial all transfers 'up to $G$ ' are untwisted

## Why 'finite $\times$ torus' !

However:
$G$ is isomorphic to the product of a finite group and a torus $\Longleftrightarrow \quad$ for every closed subgroup $H$ of $G$ the tangent $H$-representation $T_{H}(G / H)$ is trivial $\Longleftrightarrow \quad$ all transfers 'up to $G$ ' are untwisted

In fact, this suggests a homotopy theoretic proof (induction over the size of $G$, isotropy separation)

## Why 'finite $\times$ torus' !

However:
$G$ is isomorphic to the product of a finite group and a torus $\Longleftrightarrow$ for every closed subgroup $H$ of $G$ the tangent $H$-representation $T_{H}(G / H)$ is trivial $\Longleftrightarrow$ all transfers 'up to $G$ ' are untwisted
In fact, this suggests a homotopy theoretic proof (induction over the size of $G$, isotropy separation)

More refined statement: let $V$ be a $G$-representation

## Why 'finite $\times$ torus' !

However:
$G$ is isomorphic to the product of a finite group and a torus $\Longleftrightarrow$ for every closed subgroup $H$ of $G$ the tangent $H$-representation $T_{H}(G / H)$ is trivial $\Longleftrightarrow$ all transfers 'up to $G$ ' are untwisted
In fact, this suggests a homotopy theoretic proof (induction over the size of $G$, isotropy separation)

More refined statement: let $V$ be a $G$-representation $p: S(V \oplus \mathbb{R}) \longrightarrow S^{V}$ stereographic projection

## Why 'finite $\times$ torus' !

However:
$G$ is isomorphic to the product of a finite group and a torus $\Longleftrightarrow$ for every closed subgroup $H$ of $G$ the tangent $H$-representation $T_{H}(G / H)$ is trivial $\Longleftrightarrow \quad$ all transfers 'up to $G$ ' are untwisted
In fact, this suggests a homotopy theoretic proof (induction over the size of $G$, isotropy separation)

More refined statement: let $V$ be a $G$-representation $p: S(V \oplus \mathbb{R}) \longrightarrow S^{V}$ stereographic projection represents a tautological equivariant bordism class

$$
d_{G, V} \in \tilde{\mathcal{N}}_{|V|}^{G}\left(S^{V}\right)
$$

## Correction by tautological class

Recall: $L=\begin{gathered}T_{H}(G / H) \text { tangent } H \text {-representation, } \\ \text { of dimension } d=\operatorname{dim}(G / H)\end{gathered}$

## Correction by tautological class

Recall: $L=T_{H}(G / H)$ tangent $H$-representation, of dimension $d=\operatorname{dim}(G / H)$
Proposition
For every closed subgroup H of a compact Lie group $G$ and every $H$-space $X$ the following diagram commutes:

$$
\begin{aligned}
& \mathcal{N}_{n-d}^{H}(X) \longrightarrow \mathbf{m O}_{n-d}^{H}\left(X_{+}\right) \\
& \downarrow d_{H, L \times-} \\
& \mathbf{m O}_{n}^{H}\left(S^{L} \wedge X_{+}\right) \\
& \cong \downarrow \operatorname{Tr}_{H}^{G} \\
& \mathcal{N}_{n}^{G}\left(G \times_{H} X\right) \longrightarrow \quad \mathbf{m O}_{n}^{G}\left(\left(G \times_{H} X\right)_{+}\right)
\end{aligned}
$$

## Correction by tautological class

Recall: $L=T_{H}(G / H)$ tangent $H$-representation, of dimension $d=\operatorname{dim}(G / H)$

## Proposition

For every closed subgroup $H$ of a compact Lie group $G$ and every $H$-space $X$ the following diagram commutes:


- the tautological class $d_{H, L}$ measures the failure of Thom-Pontryagin map to commute with induction/transfer.


## Stable equivariant bordism and MO

- The classes $d_{G, V}$ are not invertible in $\mathcal{N}_{*}^{G}(-)$ nor $\mathbf{m O}_{*}^{G}(-)$.


## Stable equivariant bordism and MO

- The classes $d_{G, V}$ are not invertible in $\mathcal{N}_{*}^{G}(-)$ nor $\mathbf{m O}_{*}^{G}(-)$.
- Formally inverting them forces
'geometric induction = homotopical transfer'.


## Stable equivariant bordism and MO

- The classes $d_{G, V}$ are not invertible in $\mathcal{N}_{*}^{G}(-)$ nor $\mathbf{m O}_{*}^{G}(-)$.
- Formally inverting them forces
'geometric induction = homotopical transfer'.
Corollary (Bröcker-Hook '72)
After formally inverting all tautological classes in $\mathcal{N}_{*}^{G}(-)$ and in $\mathbf{m O}_{*}^{G}(-)$, the Thom-Pontryagin construction becomes an isomorphism for all compact Lie groups $G$ and all $G$-spaces X.


## Stable equivariant bordism and MO

- The classes $d_{G, V}$ are not invertible in $\mathcal{N}_{*}^{G}(-)$ nor $\mathbf{m O}_{*}^{G}(-)$.
- Formally inverting them forces
'geometric induction = homotopical transfer'.
Corollary (Bröcker-Hook '72)
After formally inverting all tautological classes in $\mathcal{N}_{*}^{G}(-)$ and in $\mathbf{m O}_{*}^{G}(-)$, the Thom-Pontryagin construction becomes an isomorphism for all compact Lie groups $G$ and all $G$-spaces $X$.

Formally inverting the classes $d_{G, V}$ yields:

## Stable equivariant bordism and MO

- The classes $d_{G, V}$ are not invertible in $\mathcal{N}_{*}^{G}(-)$ nor $\mathbf{m O}_{*}^{G}(-)$.
- Formally inverting them forces
'geometric induction = homotopical transfer'.
Corollary (Bröcker-Hook '72)
After formally inverting all tautological classes in $\mathcal{N}_{*}^{G}(-)$ and in $\mathbf{m O}_{*}^{G}(-)$, the Thom-Pontryagin construction becomes an isomorphism for all compact Lie groups $G$ and all $G$-spaces $X$.

Formally inverting the classes $d_{G, v}$ yields:

- stable equivariant bordism:

$$
\mathfrak{N}_{n}^{G: S}(X)=\operatorname{colim}_{V} \tilde{\mathcal{N}}_{n+|V|}^{G}\left(S^{V} \wedge X_{+}\right)
$$

## Stable equivariant bordism and MO

- The classes $d_{G, V}$ are not invertible in $\mathcal{N}_{*}^{G}(-)$ nor $\mathbf{m O}_{*}^{G}(-)$.
- Formally inverting them forces
'geometric induction = homotopical transfer'.


## Corollary (Bröcker-Hook '72)

After formally inverting all tautological classes in $\mathcal{N}_{*}^{G}(-)$ and in $\mathbf{m O}_{*}^{G}(-)$, the Thom-Pontryagin construction becomes an isomorphism for all compact Lie groups $G$ and all $G$-spaces $X$.

Formally inverting the classes $d_{G, V}$ yields:

- stable equivariant bordism:

$$
\mathfrak{N}_{n}^{G: S}(X)=\operatorname{colim}_{V} \tilde{\mathcal{N}}_{n+|V|}^{G}\left(S^{V} \wedge X_{+}\right)
$$

- tom Dieck's homotopical equivariant bordism:

$$
\mathbf{M O}_{n}^{G}(X)=\operatorname{colim}_{V} \mathbf{m O}_{n+|V|}^{G}\left(S^{\vee} \wedge X_{+}\right)
$$

## Summary

Open questions:

## Summary

Open questions:

- Does $\mathbf{m O}_{*}^{G}(-)$ describe any geometric $G$-bordism theory? We need to twist induction by the tangent representation...


## Summary

Open questions:

- Does $\mathbf{m O}_{*}^{G}(-)$ describe any geometric $G$-bordism theory? We need to twist induction by the tangent representation...
- Are there generalizations to equivariant bordism theories with more structure $\left(\mathbf{m S O}_{*}^{G}, \mathbf{m S p i n}_{*}^{G}, \mathbf{m u}_{*}^{G}, \ldots\right)$ ? Induction needs extra structure on $G / H$...
[back to main story]

