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Orthogonal spectra

Definition
An orthogonal spectrum X consists of

I based O(V )-spaces X (V ), for every inner product space V
I O(V )×O(W )-equivariant structure maps

σV ,W : X (V ) ∧ SW −→ X (V ⊕W )

subject to associativity and identity conditions.

Here: SW = W ∪ {∞} one-point compactification

An orthogonal spectrum X has an underlying non-equivariant
spectrum:

I Xn = X (Rn), n ≥ 0
I σRn,R : ΣXn = X (Rn) ∧ S1 −→ X (Rn+1) = Xn+1

I forget the O(n)-actions
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Equivariant homotopy groups

Let X be an orthogonal spectrum.

I G: compact Lie group
I V : orthogonal G-representation

}
=⇒ G acts on X (V )

[SV ,X (V )]G : based G-homotopy classes of G-maps

Definition
The G-equivariant stable homotopy group of X is

πG
0 (X ) = colimV [SV ,X (V )]G .

I colimit by stabilization via − ∧ SW , using structure maps
I πG

0 (X ) is an abelian group, natural in X
I similarly: πG

k (X ) for k ∈ Z
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Global equivalences

Definition
A morphism f : X −→ Y of orthogonal spectra
is a global equivalence

if the map

πG
k (f ) : πG

k (X ) −→ πG
k (Y )

is an isomorphism for all k ∈ Z and all G.

Definition
The global stable homotopy category is

GH = SpO[global equivalences−1] ,

the localization of orthogonal spectra at the class
of global equivalences.
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Global stable homotopy category

I Model category structures are available

I GH is a tensor triangulated category
I objects in GH represent cohomology theories on stacks

(Gepner-Henriques, Gepner-Nikolaus)

Note: π
{e}
k (X ) = traditional (non-equivariant) homotopy group

of the underlying spectrum of X , so

global equivalence =⇒ stable equivalence

The forgetful functor

GH // (stable homotopy category)gg
ww

has fully faithful adjoints providing a recollement.
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Restriction and transfers

A continuous homomorphism G ←− K : α

induces a restriction homomorphism α∗ : πG
0 (X ) −→ πK

0 (X )

[f : SV −→ X (V )] 7−→ [α∗(f ) : Sα∗(V ) −→ X (α∗(V ))]

A closed subgroup H ≤ G gives rise to
a transfer homomorphism trG

H : πH
0 (X ) −→ πG

0 (X )
(equivariant Thom-Pontryagin construction)

Relations:
I restrictions are contravariantly functorial
I transfers are covariantly functorial
I inner automorphisms are identity
I transfers commute with inflation
I double coset formula

=⇒ ‘global functors’ (‘inflation functors’)
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Examples

Example
The global sphere spectrum S is given by

S(V ) = SV , σV ,W : SV ∧ SW ∼= SV⊕W

Example
The connective global K -theory spectrum ko:
ko(V ) = finite configurations of points in SV

labeled by finite dimensional
orthogonal subspaces of Sym(V )

Example
The Eilenberg-Mac Lane spectrum HZ:
(HZ)(V ) = Sp∞(SV )
infinite symmetric product

∞

V1

V2 V3

V4

∞

9

5 17
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Some global morphisms

For G finite:

S πG
0 (S) = A(G) Burnside ring (Segal)

ko πG
0 (ko) = RO(G) representation ring

HZ πG
0 (HZ) = Z constant global functor

Global versus non-equivariant equivalence:
The morphisms SQ −→ HQ and mO −→ MO are
non-equivariant equivalences, but not global equivalences.

Reference: S. Schwede, Global homotopy theory
www.math.uni-bonn.de/people/schwede/global.pdf



Some global morphisms

For G finite:

S

label by R·1

��

πG
0 (S) = A(G) Burnside ring (Segal)

ko

πG
0 (ko) = RO(G) representation ring

HZ πG
0 (HZ) = Z constant global functor

Global versus non-equivariant equivalence:
The morphisms SQ −→ HQ and mO −→ MO are
non-equivariant equivalences, but not global equivalences.

Reference: S. Schwede, Global homotopy theory
www.math.uni-bonn.de/people/schwede/global.pdf



Some global morphisms

For G finite:

S

label by R·1

��

πG
0 (S) = A(G)

permutation

��
representation

Burnside ring (Segal)

ko πG
0 (ko) = RO(G) representation ring

HZ πG
0 (HZ) = Z constant global functor

Global versus non-equivariant equivalence:
The morphisms SQ −→ HQ and mO −→ MO are
non-equivariant equivalences, but not global equivalences.

Reference: S. Schwede, Global homotopy theory
www.math.uni-bonn.de/people/schwede/global.pdf



Some global morphisms

For G finite:

S

label by R·1

��

πG
0 (S) = A(G)

permutation

��
representation

Burnside ring (Segal)

ko

dimension

��

πG
0 (ko) = RO(G) representation ring

HZ

πG
0 (HZ) = Z constant global functor

Global versus non-equivariant equivalence:
The morphisms SQ −→ HQ and mO −→ MO are
non-equivariant equivalences, but not global equivalences.

Reference: S. Schwede, Global homotopy theory
www.math.uni-bonn.de/people/schwede/global.pdf



Some global morphisms

For G finite:

S

label by R·1

��

πG
0 (S) = A(G)

permutation

��
representation

Burnside ring (Segal)

ko

dimension

��

πG
0 (ko) = RO(G)

rank
��

representation ring

HZ πG
0 (HZ) = Z constant global functor

Global versus non-equivariant equivalence:
The morphisms SQ −→ HQ and mO −→ MO are
non-equivariant equivalences, but not global equivalences.

Reference: S. Schwede, Global homotopy theory
www.math.uni-bonn.de/people/schwede/global.pdf



Some global morphisms

For G finite:

S

label by R·1

��

πG
0 (S) = A(G)

permutation

��
representation

Burnside ring (Segal)

ko

dimension

��

πG
0 (ko) = RO(G)

rank
��

representation ring

HZ πG
0 (HZ) = Z constant global functor

Global versus non-equivariant equivalence:

The morphisms SQ −→ HQ and mO −→ MO are
non-equivariant equivalences, but not global equivalences.

Reference: S. Schwede, Global homotopy theory
www.math.uni-bonn.de/people/schwede/global.pdf



Some global morphisms

For G finite:

S

label by R·1

��

πG
0 (S) = A(G)

permutation

��
representation

Burnside ring (Segal)

ko

dimension

��

πG
0 (ko) = RO(G)

rank
��

representation ring

HZ πG
0 (HZ) = Z constant global functor

Global versus non-equivariant equivalence:
The morphisms SQ −→ HQ and mO −→ MO are
non-equivariant equivalences, but not global equivalences.

Reference: S. Schwede, Global homotopy theory
www.math.uni-bonn.de/people/schwede/global.pdf



Some global morphisms

For G finite:

S

label by R·1

��

πG
0 (S) = A(G)

permutation

��
representation

Burnside ring (Segal)

ko

dimension

��

πG
0 (ko) = RO(G)

rank
��

representation ring

HZ πG
0 (HZ) = Z constant global functor

Global versus non-equivariant equivalence:
The morphisms SQ −→ HQ and mO −→ MO are
non-equivariant equivalences, but not global equivalences.

Reference: S. Schwede, Global homotopy theory
www.math.uni-bonn.de/people/schwede/global.pdf



Global Thom spectra

V : inner product space of dimension n
γV : tautological n-plane bundle

over the Grassmannian Grn(V ⊕ R∞)

Definition
The global Thom spectrum mO is the orthogonal spectrum with

mO(V ) = Thom space of γV .

The action of O(V ) and structure maps only affect V , not R∞.

Small changes can make a big difference:
I replacing Grn(V ⊕ R∞) by Grn(V ⊕ V ) yields

an orthogonal Thom spectrum MO
with different equivariant homotopy types.

I mO is equivariantly connective; MO is equivariantly
oriented
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Why we may care about mO

NG
n (X ) = bordism group of n-dim’l smooth G-manifolds over X

Smooth compact G-manifolds embed into G-representations,
so the equivariant Thom-Pontryagin construction makes sense:

NG
n (X ) −→ colimV [SV⊕Rn

,mO(V ) ∧ X+] = mOG
n (X )

Theorem (Wasserman ‘69)
Let G be isomorphic to the product of a finite group and a torus.
Then the equivariant Thom-Pontryagin construction is an
isomorphism of equivariant homology theories.

The equivariant Thom-Pontryagin construction

N SU(2)
0 −→ mOSU(2)

0 is not surjective.

Why finite×torus? That would make another talk . . .
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Inverse Thom classes

Let V be an n-dimensional G-representation.

The inverse Thom class

τG,V ∈ mOG
n (SV ) = πG

n−V (mO)

is the class of the G-map

Sn −→ Th(γV ↓ Grn(V ⊕ R∞)) = mO(V )

x 7−→ (0⊕ Rn, (0, x)) .

Remarks
I The classes τG,V are not invertible in πG

? (mO).
I The morphism mO −→ MO sends τG,V to the inverse of

the Thom class.
I The morphism mO −→ MO is localization at {τG,V}G,V

in the category of E∞-global ring spectra.
I MO is ultra-commutative, mO is not.
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The rank filtration of mO

mO(m) is the orthogonal subspectrum of mO with

mO(m)(V ) = Th(γV ↓ Grn(V ⊕ Rm)) ⊂ mO(V ) .

Then mO is a global homotopy colimit
mO = hocolimm mO(m) .

Definition
Let MglT (m) be the free orthogonal spectrum that represents
the functor

SpO −→ (sets) , X 7−→ X (νm)O(m) ,

where νm is the tautological O(m)-representation on Rm.
I MglT (m) is a global Thom spectrum of the virtual global

vector bundle −γm over BglO(m); it refines
MT (m) = BO(m)−γm .

I in GH, the spectrum MglT (m) represents the functor
E 7−→ EO(m)

0 (Sνm ).
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Global morphisms out of mO

Corollary
The orthogonal spectrum mO(m) represents the functor

GH −→ (sets) , E 7−→ EO(m)
m (Sνm ) = π

O(m)
m−νm

(E) .

The following sequence is short exact:

0 −→ lim
m

1 EO(m)
m−1 (Sνm ) −→ JmO,EK ev−−→ lim

m
EO(m)

m (Sνm ) −→ 0

The inverse limit and derived limit are formed along

EO(m)
m (Sνm )

resO(m)
O(m−1)−−−−−−→ EO(m−1)

m (Sνm−1 ∧ S1) ∼= EO(m−1)
m−1 (Sνm−1)

and ‘ev’ is evaluation at the inverse Thom classes τO(m),νm .
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Multiplicative inverse Thom classes

Let E be a global ring spectrum, i.e., a commutative monoid in
GH under globally derived smash product.

Subject to
vanishing lim1-terms, ring spectrum morphisms mO −→ E
correspond to collections of inverse Thom classes

tm ∈ EO(m)
m (Sνm ) , m ≥ 0,

that are multiplicative, i.e., such that

t0 = 1 and resO(k+m)
O(k)×O(m)(tk+m) = tk × tm .

Example
The classes

tm = βU(m),Cm/βU(m),νCm
in KUU(m)

2m (SνCm )

correspond to a global ring spectrum morphism mU −→ KU.
Since mU is connective, this lifts to a morphism mU −→ kuc to
global connective K -theory.
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Examples

Example
Since mO is globally connective and πe

0(mO) = F2,

there is a
unique morphism of global ring spectra mO −→ HF2 to the
Eilenberg-MacLane ring spectrum of the constant global Green
functor. Similarly for mSO −→ HZ.

Example
Let R be a non-equivariant ring spectrum and let bR be the
associated global Borel theory.

Any (non-equivariant) ring
spectrum morphism MO −→ R is adjoint to a morphism of
global ring spectra mO −→ bR. Under the isomorphism

(bR)
O(m)
m (Sνm ) ∼= JmO(m),bRK

∼= [Sm ∧ BO−γm ,R] ∼= R−m(BO−γm )

the inverse Thom class tm corresponds to the Thom class of
the virtual bundle −γm over BO(m).
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Subqotients of the rank filtration

Theorem
There is a global equivalence

mO(m)/mO(m−1) 'gl Sm ∧ Σ∞+ BglO(m) .

[Skip proof]

Proof.
Applying FreeO(m),νm to the cofiber sequence of O(m)-spaces

O(m)/O(m − 1)+ −→ S0 −→ Sνm −→ S1 ∧O(m)/O(m − 1)+

yields a distinguished triangle in GH
FreeO(m−1),νm−1⊕R −→ FreeO(m),νm −→ FreeO(m),νmSνm −→

which is isomorphic to
S−1 ∧MglO(m − 1) −→ MglO(m) −→ Σ∞+ BglO(m) −→

Applying Sm ∧ − gives the distinguished triangle

mO(m−1)
incl−−→ mO(m) −→ Sm ∧ Σ∞+ BglO(m) −→



Subqotients of the rank filtration

Theorem
There is a global equivalence

mO(m)/mO(m−1) 'gl Sm ∧ Σ∞+ BglO(m) .

[Skip proof]

Proof.
Applying FreeO(m),νm to the cofiber sequence of O(m)-spaces

O(m)/O(m − 1)+ −→ S0 −→ Sνm −→ S1 ∧O(m)/O(m − 1)+

yields a distinguished triangle in GH
FreeO(m−1),νm−1⊕R −→ FreeO(m),νm −→ FreeO(m),νmSνm −→

which is isomorphic to
S−1 ∧MglO(m − 1) −→ MglO(m) −→ Σ∞+ BglO(m) −→

Applying Sm ∧ − gives the distinguished triangle

mO(m−1)
incl−−→ mO(m) −→ Sm ∧ Σ∞+ BglO(m) −→



Subqotients of the rank filtration

Theorem
There is a global equivalence

mO(m)/mO(m−1) 'gl Sm ∧ Σ∞+ BglO(m) .

[Skip proof]

Proof.
Applying FreeO(m),νm to the cofiber sequence of O(m)-spaces

O(m)/O(m − 1)+ −→ S0 −→ Sνm −→ S1 ∧O(m)/O(m − 1)+

yields a distinguished triangle in GH
FreeO(m−1),νm−1⊕R −→ FreeO(m),νm −→ FreeO(m),νmSνm −→

which is isomorphic to
S−1 ∧MglO(m − 1) −→ MglO(m) −→ Σ∞+ BglO(m) −→

Applying Sm ∧ − gives the distinguished triangle

mO(m−1)
incl−−→ mO(m) −→ Sm ∧ Σ∞+ BglO(m) −→



Subqotients of the rank filtration

Theorem
There is a global equivalence

mO(m)/mO(m−1) 'gl Sm ∧ Σ∞+ BglO(m) .

[Skip proof]

Proof.
Applying FreeO(m),νm to the cofiber sequence of O(m)-spaces

O(m)/O(m − 1)+ −→ S0 −→ Sνm −→ S1 ∧O(m)/O(m − 1)+

yields a distinguished triangle in GH
FreeO(m−1),νm−1⊕R −→ FreeO(m),νm −→ FreeO(m),νmSνm −→

which is isomorphic to
S−1 ∧MglO(m − 1) −→ MglO(m) −→ Σ∞+ BglO(m) −→

Applying Sm ∧ − gives the distinguished triangle

mO(m−1)
incl−−→ mO(m) −→ Sm ∧ Σ∞+ BglO(m) −→



Subqotients of the rank filtration

Theorem
There is a global equivalence

mO(m)/mO(m−1) 'gl Sm ∧ Σ∞+ BglO(m) .

[Skip proof]

Proof.
Applying FreeO(m),νm to the cofiber sequence of O(m)-spaces

O(m)/O(m − 1)+ −→ S0 −→ Sνm −→ S1 ∧O(m)/O(m − 1)+

yields a distinguished triangle in GH
FreeO(m−1),νm−1⊕R −→ FreeO(m),νm −→ FreeO(m),νmSνm −→

which is isomorphic to
S−1 ∧MglO(m − 1) −→ MglO(m) −→ Σ∞+ BglO(m) −→

Applying Sm ∧ − gives the distinguished triangle

mO(m−1)
incl−−→ mO(m) −→ Sm ∧ Σ∞+ BglO(m) −→



Building mO by killing transfers

Corollary
mO is built from S by killing TrO(m)

O(m−1) for m ≥ 1.

I The rank filtration starts with S = mO(0) −→ mO, the unit
map.

I For m ≥ 1 there is a distinguished triangle
in the global stable homotopy category:

Sm−1∧BglO(m)+
∂−−→ mO(m−1)

incl−−→ mO(m) −→ Sm∧BglO(m)+

I The morphism ∂ is classified by

TrO(m)
O(m−1)

(
τO(m−1),νm−1

)
in πO(m)

m−1 (mO(m−1)),

the ‘dimension shifting’ transfer.
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Global description of π0(mO)

Since BglG represents πG
0 (−), the composite

Σ∞+ BglO(m + 1)
∂−−→ S−m ∧mO(m)

q−−→ Σ∞+ BglO(m)

represents a natural operation of equivariant homotopy groups,

namely the ‘degree zero’ transfer

trO(m)
O(m−1) : π

O(m)
0 (X ) −→ π

O(m+1)
0 (X ) .

Since all mO(m)/mO(m−1) are globally connective, so is mO.
Moreover, there is a short exact sequence of global functors

π0(Σ∞+ BglO(1))
π0(∂)−−−→ π0(S) −→ π0(mO) −→ 0

Corollary
The action of the Burnside ring global functor on the unit
element 1 ∈ πe

0(mO) induces an isomorphism of global functors

A/〈trO(1)
e 〉 ∼= π0(mO) .
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Summary

The fundamental relation trO(1)
e (1) = 0 implies the more familiar

2 = resO(1)
e (trO(1)

e (1)) = 0 in πe
0(mO).

Corollary
Let G be a compact Lie group. An F2-basis of πG

0 (mO) is given
by the classes trG

H(1), indexed by conjugacy classes of closed
subgroups H of G whose Weyl group is finite and of odd order.

Summary:
I The global stable homotopy category is the home of all

equivariant phenomena with ‘maximal symmetry’
I Orthogonal spectra and global equivalences provide a

convenient model
I The global perspective reveals universal properties

of equivariant Thom spectra
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Induction versus transfer

Question:
Why is the TP-construction bijective only for G ∼=finite×torus?

A closer look at the functoriality for closed subgroups H ≤ G:

Geometry:
induction isomorphism:

NH
n−d (X )

IndG
H−−→ NG

n (G ×H X )

[M,h] 7−→ [G ×H M,G ×H h]

where d = dim(G/H)

→ shift by dimension

Homotopy theory:
‘Wirthmüller isomorphism’:

mOH
n (SL∧X+)

TrG
H−−→ mOG

n (G×HX+)

where L = TH(G/H)
→ twist by an H-representation

Answer:
Different formal behaviour of induction / transfer.
So no chance for an isomorphism in general.
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Why ‘finite×torus’ !

However:
G is isomorphic to the product of a finite group and a torus

⇐⇒ for every closed subgroup H of G
the tangent H-representation TH(G/H) is trivial

⇐⇒ all transfers ‘up to G’ are untwisted

In fact, this suggests a homotopy theoretic proof
(induction over the size of G, isotropy separation)

More refined statement: let V be a G-representation
p : S(V ⊕ R) −→ SV stereographic projection
represents a tautological equivariant bordism class

dG,V ∈ ÑG
|V |(S

V )
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Correction by tautological class

Recall: L = TH(G/H) tangent H-representation,
of dimension d = dim(G/H)

Proposition
For every closed subgroup H of a compact Lie group G and
every H-space X the following diagram commutes:

NH
n−d (X )

IndG
H
∼=

��

TP // mOH
n−d (X+)

dH,L×−��
mOH

n (SL ∧ X+)

TrG
H

∼= ��

NG
n (G ×H X )

TP
// mOG

n ((G ×H X )+)

I the tautological class dH,L measures the failure of
Thom-Pontryagin map to commute with induction/transfer.
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Stable equivariant bordism and MO

I The classes dG,V are not invertible in NG
∗ (−) nor mOG

∗ (−).

I Formally inverting them forces
‘geometric induction = homotopical transfer’.

Corollary (Bröcker-Hook ‘72)
After formally inverting all tautological classes in NG

∗ (−) and in
mOG

∗ (−), the Thom-Pontryagin construction becomes an
isomorphism for all compact Lie groups G and all G-spaces X.

Formally inverting the classes dG,V yields:
I stable equivariant bordism:

NG:S
n (X ) = colimV ÑG

n+|V |(S
V ∧ X+)

I tom Dieck’s homotopical equivariant bordism:

MOG
n (X ) = colimV mOG

n+|V |(S
V ∧ X+)
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Summary

Open questions:

I Does mOG
∗ (−) describe any geometric G-bordism theory?

We need to twist induction by the tangent representation...
I Are there generalizations to equivariant bordism theories

with more structure (mSOG
∗ , mSpinG

∗ , mUG
∗ ,. . . )?

Induction needs extra structure on G/H ...

[back to main story]
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