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Regression with correlated errors

Linear regression model:

y(x) = 01A(x)+ ...+ Omfm(x) + (x)
= 07f(x)+e(x),

where x € X c R¢,

F(x) = (A(X), - ., ()T,

0=01,....0m)7,

Ele(x)] =0,

K(x,x") = E[e(x)e(x')].

Here K(x,x’) is a covariance kernel (a positive definite function).
For stationary processes, K(x,x') = p(x — x').



Standard Estimators

For observations at {x1,...,xy}:

WLSE : Owise = (XTWX)IXTwy,

Var(@wise) = (XTWX)"IXTW EW X(XTW X)L,

where X = (fi(x;))/=3"% and E = (K(xi,x))ij=1....n-

OLSE : Oorse = (XTX)IXTY,
BLUE : Osue = (XTEZIX)IXTE 1y,
SLSE : Osise = (XTSX)IXTSY.

Here S is an N x N diagonal matrix with entries +1 and —1 on the
diagonal; note that if S # Iy then SLSE is not a standard OLSE.



Continuous version

General estimator:

b, = / y(x)C(dx),

where ((dx) is a signed vector-measure.

Dovse — / Y ()M LE)F(x)E(dx),

where

M(©)= [ FFT(E( ),

and §(dx) is a design (probability measure for OLSE; a signed
measure for SLSE). The covariance matrix of 8o, sg is

Var(HOLSE [// x, 2)f(x)f T (2)€(dx)E(dz) | M(€)72.
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BLUE
Let v be a vector-measure such that
/K(x,x’)y(dx’) = f(x)
and the matrix [ v(dt)fT(t) is non-degenerate. Then
-1

¢(dx) = Dv(dx) with D = [ / V(dx)fT(x)]

determines the BLUE
/éBLUE = /Y(X)C(dx)?

Var(@BLUE) =D.



BLUE, an example (Markovian noise)

= [a, b]. K(t,s) = u(t)v(s) for t <s and K(t,s) = v(t)u(s)
for t > s, where u(-) and v(-) are positive functions such that
q(t) = u(t)/v(t) is monotonically increasing. Define the signed
vector-measure

V(dt) = ZA5A(dt) + ZB5B(dt) + Z(t)dt

with
1 Al
“ = AR e A
B 1 h’(t) B h’(B)
0 = ~5lew) - = v@eEr

where h(t) = f(t)/v(t). Assume that the matrix
= ( T(dt is non-degenerate. Then the estimate 8¢ with
(( t) = C~1y(dt) is a BLUE with covariance matrix C~1.



BLUE, an example (triangular kernel)

K(t,s) = max(1— At —s[,0),A<1, t,se]0,1].

Exact optimal designs for this covariance kernel (with A = 1) have
been considered in WM & Pazman (2003); WM & VF (2007).

v(dt) = [— f;()(\)) + fx} do(dt) + [f;(;) + fx} d1(dt) —

f'/l(t)
2\

dt,

where f, = (f(0) + f(1))/(4 — 2)\). The estimator 8, with
¢(dt) = C~1y(dt) with C = [ f(t)¢T(dt) is the BLUE.



BLUE for processes with trajectories in C1[A, BJ:
Gradient-enhanced estimation

Assume that the error process is exactly once continuously
differentiable (in the mean-square sense). General estimator:

s = [ vO)aldr) + [ ¥ (D))

where (p(dt) and (1(dt) are signed vector-measures.
Assume 1 and v are vector-measures such that

/ K(t,s)vo(dt) + / 6K(§i’s)yl(dt) = f(s), Vs € [A, B]

C:/f(t)yOT(dt)—i—/f’(t)le(dt)

is a non-degenerate matrix. Then the estimator é(o,ﬁ with
¢; = Cly; (i=0,1) is a BLUE with covariance matrix C 1,



BLUE, integrated error processes

K(ts) = /t/ Ko(u, v)dudv.

where 0 < a < A; t,s € [A, B]. This is a more general class of
kernels than that considered in S-Y.

Two examples:
K(t,s) = // min(t’, s')dt'ds’

max(t, s)(min(t,s)? — a%?) a*(min(t,s) —a) min(t,s)® — a3

2 2 6

t s
K(t,s) = /0 /0 max{0,1 — \|t' — §'|}dt'ds’

= ts— Amin(t,s) <3 max(t,s)? — 3ts + 2 min(t,s)2)/6.



CAR(2) and AR(2) noise
t € [A, B], e(t) is a continuous autoregressive (CAR) process of
order 2. Formally, it is a solution of the linear stochastic
differential equation

deM(t) = aeM(t) + are(t) + 02dW(2),

where W(t) is a standard Wiener process.
There are three different forms of the autocorrelation function p(t)
of CAR(2) processes:

- TV S

= Rt (0 #£ Ao, AL >0, 00 >0
Y Y , (A1 # A2, A1 >0, A2 > 0)

pa(t)

A
pa(t) = e*/\m{ cos(q|t]) + asin(q|t\)} , A>0,g>0,

p3(t) = e M@+ \t]), x>0,

The kernel associated with p3 is widely known as Matérn kernel
with parameter 3/2.
Discretised CAR(2) process is not AR(2); it is ARMA(2;1).



BLUE for processes with exactly g derivatives

Let X C [A, B], K(-,-) € CI([A, B] x [A, B]) and
f(-) € CI([A, B]) for some g > 0. Suppose that the process y(t)
along with its g derivatives can be observed at all t € X,

Y = (yOe),... 7y(q)(t))T. Let vg, ..., vq be signed
vector-measures such that the matrix

5 [, O\
c ;/ (dr) (F) " (1)

is non-degenerate. Define ¢ = (o, ..., (q), Ci(dt) = C~1¢i(dt) for
i=0,...,q. The estimator 8, = [ ((dt)Y(t) is the BLUE if and
only if

: KO(t, s)vi(dt) = f(s)
>/

for all s. The covariance matrix of éC is Var(@c) =Cc L



Non-uniqueness of the BLUE measures

If X = [A, B] and f has sufficient number of derivatives, then for a

given set of signed vector-measures G = (Go, G, ..., Gg) on X' we
can always find another set of measures H = (Hp, H1, . .., Hy) such
that the signed vector-measures Hy, ..., Hy have no continuous

parts but the expectations and covariance matrices of the
estimators 8¢ and 8y coincide.



Discretization of the continuous BLUE

Assume X = [A, B] and m = 1. No derivatives.
BLUE is

b\BLUE = /Y(X)C(dx)

where
C:(dX) = CA5A(dX) + CB5B(dX) + gb(x)dx,

D = Var(Bs1ve) = [ / u(dx)f(x)} h

with [ K(x,x")v(dx’) = f(x), ((dx) = Dv(dx).

Most natural discretization is: take A, B and the quantiles of the
density const|¢(x)|.

S-Y advice: take A, B and the quantiles of the density
const|p(x)[%/3.

Similar with derivatives where we really have to use the derivatives
(only at A and B).



The density of the optimal design

f(t) =1+ 0.5sin(2nt), t € [1,2], K(t, t') = u(t)v(t') with
u(t) =t and v(t) = t.
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Variances of the N-point designs

f(t) = 1+0.5sin(2nt), t € [1,2], covariance kernel with u(t) = t?
and v(t) = t.
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Figure: The variance of BLUE for the proposed (N+2)-point designs
(grey circles), the (N+2)-point designs from [S-Y, 1966] (crosses) and

the BLUE with corresponding optimal (N + 2)-point designs (line);
N=2,...,20.



OLSE versus BLUE

OLSE vs BLUE:

Bloomfield P., and Watson G. S., " The inefficiency of least
squares.” Biometrika 62 (1975): 121-128.

Knott, M.. "On the minimum efficiency of least squares.”
Biometrika (1975): 129-132.

» One-parameter case

» SLSE vs BLUE (almost the same)
» Location-scale model (convex, easy)
» General f: non-convex problem but still often solvable

» Multi-parameter case: emulation of the BLUE



OLSE, m=1

Model: y(x) = 0f(x) +(x), m = 1.
The variance of the OLSE is the design optimality criterion:

p(e) = | [ Peeta)| / [ Kx 2 @)eldme(o2)

as the design optimality functional. £(dx) is a design (probability
measure for OLSE, a signed measure with total mass 1 for SLSE).

In general, this functional is not convex.



Location-scale model: f(x) =1

The design optimality functional becomes

p©) = [ | Kix2)e(dx)s(da).
This functional is convex:

D((1 = a)§ + ao) < (1 —a)D(§) + aD(&)

If K is strictly positive definite, then D is strictly convex.
Optimality condition: &* is optimal if and only if

gyw@ﬂzmsxanozijaaw»

In potential theory, 1/D(&*) is called (Wiener) capacity of the set
X.



Some examples, f(x) =1, X = [-1,1]

» p(t) = e Mt £* is a mixture of the continuous uniform
measure and a two-point discrete measure supported on

{-1,1}:
p*(x) = w* (éél(x) + ;5_1(X)) +(1- W*)%l[—l,l](x)7

where w* =1/(1+ A), b(-,£*) = D(&*) =1/(1 4+ N).

» triangular correlation function p(t) = max{0,1 — A|t|}:
discrete design

» p(t) =1/]t|% 0 < a < 1: optimal design has Beta-density

270& a—1
pr(x) = ———(1+x)°7 (1 —x) 2 .
B(lera’ lera)
» p(t) = —In(t?) (functional is not convex): optimal design has

the arcsine density



Optimal design for SLSE in one-parameter models

Assume the design space is finite: X = {x1,...,xn}. In this case,
the optimal design for the SLSE can be found explicitly.

A generic approximate design on this design space is an arbitrary
discrete signed measure { = {x1,...,Xy; W1, ..., Wy}, where

W = Sipj, Si € {—1,1}, pi >0 (i: ].,...,/V) and Zl{\lzlp,‘: 1.
The variance of the SLSE:

N

D= EN: EN: K (i g wingf () (x7) / (S0 wif (7))

i=1 j=1 i=1
Optimal weights:
W;*:e;’—‘):_lf/f(xi); i:]-a'-'aN’

where f = (f(x1),...,f(xn))", e, = (0,0,...,0,1,0,...,0) 7.
The resulting weighted SLSE coincides with BLUE (except that
repetition of observations does not make sense)



SLSE: an explicit formula for optimal weights

Assume K(x;,x;) = ujv; for i < j and denote f = f(xx),
gk = uk/vk. Then If f; A0 (i =1,...,N), then the optimal
weights can be represented explicitly as follows:

c . N C U f1 f
S ]
" fi (011 Lo 2) f1V1V2(CI2 - Q‘1) uy u>
c . - c v fn-1
wy = — (Gnnfv+On—1nfu—1) = (* - >7
N fn ( ' ) fuvn(gn — gn-1) \ww  vn—1
c
w = 7 (Giifi + Gi—1,ifi—1 + Giiv1fiy1)
_ ¢ ( (gi+1 — qi-1)fi B fiz1 B fiv1 )
fivi\vi(gir1 — qi)(gi — gi—1)  vi-1(gi — gi-1)  viy1(qis1 —qi)/

for i =2,...,N — 1. Here &;; denotes the element in the position
(i,j) of the matrix ) Mg (Gij)ij=1,..N-

Some references: Harman, R. and Stulajter, F. (2011) JSPI, 141(8),
2750-2758. AZ & Kondratovich (1984), AZ (1985).



Optimal designs, one-parameter case, Markovian noise

Assume X = [a, b], K(t,t') = u(t)v(t'), t < t’. Criterion:

0= [ [ K ofe)fedeede /([ Rode)”

Optimal design: masses

B c fla)u'(a) B .. H(b)
v = ] v e | RS  p ere

at the points a and b, respectively, and the (signed) density

p(t) = —

c [h/(t)}/
F(t)v(t) Lq'(2)

where h(t) = f(t)/v(t).

Optimality of a design £* can be verified directly by checking that
D(&*) coincides with the variance of the continuous BLUE.



OLSE/BLUE

General estimator:

b, = / y(x)C(dx).

where ((dx) is a signed vector-measure.

foLse = / Y ()M F ()& (dx),

where

M(e)= / F(x)F T (x)E(dx),

and £(dx) is a design (probability measure for OLSE; a signed
measure for SLSE).

If m =1 then any signed measure ((dx) can be represented in the
form M~1(&)f(x)&(dx) and so optimal continuous SLSE is equal
to continuous BLUE. Discretization is another issue.



OLSE/BLUE, m > 1

General estimator:

b, = / y(x)C(dx).

where ((dx) is a signed vector-measure.
Continuous Matrix-Weighted estimator (MWLSE)

Onuise — / Y()M1(€)O(x)F(x)€(dx),

where O(x) is a matrix weight assigned to a point x and

M(©)= [ OF ()T ((c)
and &(dx) is a design.

Any signed vector-measure ((dx) can be represented in the form
~1(€)O(x)f(x)&(dx) and so optimal continuous MWLSE

coincides with continuous BLUE.

In making a discretization, we only need to keep weights at A and

B; the rest can be achieved by assigning + and thinning.

All is similar for the gradient-enhanced estimation.



Results of Bickel and Herzberg and extensions

y(t) = 07T f(t) + (t) with stationary error process and

X =[-T, T]. Suppose that for N observations, the correlation
function is given by pn(t) = po(Nt), where

po(t) = vp(t) + (1 — )¢ and p(t) — 0 as t — oo, v € (0, 1].
Q) = X, p(jt), xin = a(N;_ll) i=1,...,N.

m

RGa) = ( | " a(0)) () Q3 (1) au)

B-H: the covariance matrix of the OLSE

ij=1

lim o 2NVar(Borse) = WL(a) + 29W 1 (a)R(a)W 1 (a),

N—o0

where W(a (fo i( )fi(a(u)) d“) =1

Two our generallzatlons of the B-H results: (a) LRD errors (joint
with N.Leonenko), (b) different rate of expansion of the interval:
pn(t) = po(Nt) with 0 < o < 1.



Thank you for listening



