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Outline

• Computer experiments and designs

• Applications

• New type of lattice design

• Nested structure

• Application in predictive science

• Re-cap
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Many processes are investigated using 
computational models

• Many scientific applications use deterministic mathematical models to describe 
physical systems

• To understand how inputs to the computer code impact the system, scientists 
adjust the inputs to computer simulators and observe the response

• The computer models frequently:
1. require solutions to PDEs or use finite element analyses
2. have high dimensional inputs
3. have outputs which are complex functions of the inputs
4. require a large amounts of computing time
5. have features from some of the above 
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Use Gaussian processes (GP’s) for 
emulating computer model output

• GP’s have proven effective for emulating computer model output (Sacks 
et al., 1989; Jones, Schonlau and Welch, 1998) and also data mining 

• Emulating computer model output
– output varies smoothly with input changes 
– output is essentially noise free
– passes through the observed response
– GP’s outperform other modeling approaches in this arena
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Why use a GP for emulation?

€ 

y(x) = µ + z(x)
E(z(x)) = 0;  var(z(x)) =σ 2

cov(z(x),z(x')) =σ 2R(x,x')
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Applications of interest

• Upcoming space based cosmology missions promise exquisite 
measurements of the large-scale structure distribution of the Universe 
(e.g., including weak lensing, baryon acoustic oscillations, clusters of 
galaxies, and redshift space distortions)

• Currently exploring an 8-dimensional input space that, when combined 
with observations, should shed light into the initial conditions of the 
Universe and also the nature of dark energy 
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Applications of interest
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Applications of interest

• Will be running about 100 simulations that should take between 1 and 2 
years to complete … can run several of these in sequence

• Can investigate the response in intermediate stages while other 
simulations are running
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Applications of interest

• At the Center for Radiative Shock Hydrodynamics (CRASH), 
computational models were employed to simulate features of radiative 
shocks

• The CRASH codes consisted of high and low fidelity models

• It was helpful the run the high and low fidelity codes with the same 
inputs to explore the discrepancy between to two models 

• The low fidelity code was run at far more input settings (high fidelity 
design was nested within the low fidelity design)
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Design for computer experiments

• Johnson et al. (1990) and others (e.g., Kunsch et al., 2005) demonstrate that designs with 
good space-filling properties are essential for prediction using GPs

• Latin hypercube designs (McKay et al, 1989) and other variants (Tang, 1993) have proven 
popular 

• For type of sequence of designs and low/high fidelity models, work by Qian (2009), Qian, 
Tang and Wu (2009) is related

• Designs based on Cartesian lattices have also been proposed (Beattie and Lin, 2004; Qian 
and Ai, 2010) 

• Single state lattice designs have been discussed (Bates et al., 1996; Pronzato and Müller, 
2012; He 2016, 2017)

• Here, a new type of lattice design is proposed (based on Heitmann, Bingham et al., 
2016)
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Would like our designs to have specific properties

1. Would like n-run designs where each design point is a d-dimensional 
input vector to the computer model

2. In our setting would like experiment designs (D) with good                  
d-dimensional space-filling properties

3. Would like the designs to have the nesting property
– Important for applications where good intermediate-stage designs are required, as 

well as the final experiment design

– Important for applications with high- and low-fidelity simulators where the high-
fidelity simulator design is a sub-set of the larger, low-fidelity simulator design
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Suggestion …

• Use a lattice

• For one-stage designs, can use already computed lattices (Conway and 
Sloane, 1999) that have good space filling properties

• Not quite as easy as you might think …

• Is more challenging for our setting where nesting is required



Department of Statistics and Actuarial Science

Example

2 S. BERGNER ET AL.

3. Simple example. As an illustration, consider the 2-d example in Figure 1. A coarse design of 18

points is refined by adding another 19 points. Both resolution levels are rotated and scaled versions of the

same lattice.
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(b) 37 point lattice design

Fig 1. 2D example: Lattice designs with a doubling property. The 19 point set (a) is a subset of the 37 point refined design

(b), which is a rotated version of (a) that has twice the density of sample points. With the notation above, the coarse grid (a)

corresponds to scale level s = 1 of the fine grid (b) with a coarsening rate � = 2.

Higher-dimensional versions of this construction operate in the same way with the notable property of

retaining the low coarsening/refinement rate of � = 2 — independent of the dimensionality. Upon each

refinement the number of points inside M roughly doubles and the minimum inter-point distances decrease

by a factor of 1/↵s = 2�s/d.

4. Cosmology application. Our collaborators [1] want to learn about how 8 chosen parameters influ-

ence the behaviour of their cosmological model.

Two sets of ranges, a narrow and a wider one are determined where high and low fidelity versions of the

cosmological simulator are to be run, respectively.
inner region with high accuracy extended ranges with lower accuracy

variable lower bnd upper bnd

!m 0.120 0.155

!b 0.021 0.024

�8 0.700 0.900

h 0.550 0.850

ns 0.850 1.050

w0 -1.300 -0.700

wa -1.500 1.500

!⌫ 0.000 0.010

variable lower bnd upper bnd length factor

!m 0.100 0.155 1.586

!b 0.021 0.024 1.000

�8 0.600 1.000 2.000

h 0.550 0.850 1.000

ns 0.850 1.050 1.000

w0 -1.500 -0.500 1.667

wa -2.000 2.000 1.333

!⌫ 0.000 0.010 1.000

The unconstrained narrow region has a 8-dimensional volume of 1.512e-08 and the outer one 1.066e-07.

The volume of the extended region is 7.048 times larger than the narrow region.

In the constrained case the narrow region has a volume of 1.260e-08 and the outer one 7.992e-08. The

volume of the extended region is 6.343 times larger than the narrow region.

References.

First stage (high-fidelity) design First and second stage (low-fidelity) design
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Notation and definitions

• A point lattice is an infinite, discrete set of points in that is 
constructed from integer multiples of a set of basis vectors in the 
columns of a d x d  generating matrix, G,

• A lattice design                                                      is the intersection of 
a point lattice and region                that is shifted by a vector, p

• See Conway and Sloane, 1999 or Patterson, 1954

2

related to using lattices for multi-stage, progressive designs will be laid out thereafter.

Notation. Due to the geometric and statistical nature of this work, the terms dimension and

variable may be used interchangeably and their cardinality is referred to as d. Non-calligraphic

style D 2 Rd often indicates a discrete point set, also referred to as design, which means that for

some fixed real ✏ > 0 any distinct x,y 2 D fulfil kx � yk > ✏ in Euclidean norm. The number of

points in such a set is written n = |D| and is referred to as run-size of experimental design D. The

d-dimensional Lebesgue measure of the indicator function of a set M ✓ Rd is written as volume

voldM. Transformation of a set a↵ects each element individually ↵AM = {↵Ax : x 2 M}. A

matrix diag(x) is diagonal with elements from a vector x 2 Rd. The Minkowski sum of two sets is

denoted as M + ⇤ = {a + b : a 2 M,b 2 ⇤} omitting the brackets around singleton sets so that

translation (shift) of a set looks like ⇤+a. We omit arguments, if their choice is clear from context.

Definition 2.1. A point lattice ⇤ is an infinite, discrete set of points in Rd that is constructed

from integer multiples of a set of basis vectors in the columns of a generating matrix G 2 Rd⇥d

⇤(G) = GZd = {Gk : k 2 Zd
} ⇢ Rd.

Definition 2.2. A lattice design D(⇤,M,p) = M \ {⇤ + p} is the intersection of a region

M ✓ Rd with a lattice ⇤ that is shifted by a vector p 2 Rd, assuming origin p = 0 if omitted.

The algorithmic challenge of enumerating all points in D for general ⇤ and M will be addressed

in Section 3.4. In the following practical example, fortunately, this problem is trivial.

Example 2.1. A factorial design for d variables with numbers of levels given as s = (s
1

, s
2

, . . . , sd)

2 Nd is a particular type of lattice design D(Zd,S[0, 1)d) that is obtained by restricting the d-

dimensional Cartesian lattice of integers (with G = I) to the region [0, 1)d scaled by S = diag(s).

In some contexts (Patterson 1954) the term lattice is used to only refer to a scaled Cartesian

lattice ⇤ = S�1Zd. The notion of a lattice sample in that literature means subsets of S�1Zd chosen

within the unit cube [0, 1]d. Other standard references such as Conway and Sloane (1999, p. 15) also

give non-diagonal matrices G for di↵erent d that are bases for lattices with inter-point distances

that are significantly improved or even optimal by some space-filling criterion. Such properties are

desirable for designs of computer experiments (Johnson et al. 1990), where space-filling plays an

important role. Indeed, the lattices considered here consider non-diagnol G because of their space-

filling properties. [*** We are using the word space-filling a lot now, without having defined properly.

Packing and covering radii could be defined before speaking about Voronoi cells. ]

For readers that are new to point lattices Appendix A provides an introduction that gives basic

properties, pointing out the non-uniqueness of the generating matrix G (Lemma A.6), and defining

concepts such as ⇤-repeatable region (Definition A.1) and fundamental parallelepiped P with volume
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Usually the d-dimensional unit hypercube
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Fun facts about lattices

• As a linear transformation of the integers, lattices inherit their abelian 
group structure
– … this implies that the neighborhood around each lattice point is the same
– This region is also called the Vornoi cell

• The space between the lattice points are described by the fundamental 
parallelepiped
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Fun facts about lattices
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Example

• Factorial design (Cartesian lattice):

• Have d inputs with levels s =(s1, s2, …, sd)

• Here G=Id and the lattice is 

• Region of interest is [0,1)d scaled by diag(s )

2
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We are looking for specific designs

• A sequence of designs, is said to be nested if 

• Increasing l is called a refinement and decreasing l is called coarsening

4
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(b) 37 point lattice design

Fig 1. Lattice designs with a doubling property. The 19 point set (a) is a subset of the 37 point refined design (b),
which is a rotated version of (a) that has twice the expected density of sample points. [*** Add basis vectors G in (a)

and GK

�1
in (b) to interior point at (.35, .6). ]

2.2. Nested lattices are produced by inverse dilation. In this section, we will introduce nested

lattice designs that can be used in sequential computer experiments where computation of sample

points progresses in a certain order and can be interrupted at suitable check points. We will show

in Section 4.??? that these lattices have good space filling properties and [*** ... ].

Definition 2.4. A sequence of designs (Dl) is said to be nested, if

Dl ✓ Dl+1

for all l 2 Z.

Steps towards increasing levels l of nesting are referred to as refinement, whereas decreasing l is

coarsening the lattice and can be considered a type of deterministic sub-sampling.

Example 2.2. An example of two nested lattice designs inside a square region is provided in

Figure 1, where D
1

is given by the • nested in D
2

, the union of all • and + marked points. [***

This example represents all key design features promoted in this paper. . . Notice that D
1

is contained

in D
2

, which means that these two designs are nested. Explain more — either here or earlier in intro.

E.g.: An example of two lattice designs on [0, 1]2 is shown in Figure 1. The left panel is D
1

and the

right panel displays D
2

. Notice D
1

⇢ D
2

... ]

Detailed discussion of properties that are known to result from Definitions 2.1 and 2.4 is provided

in Appendix A.2. Sub-sampling a lattice ⇤(G) such that the chosen sample is also a lattice can

only be performed by right-multiplying an integer dilation matrix onto G (Lemma A.5).

Definition 2.5. A dilation matrix K 2 Zd⇥d with |detK| = � > 1 applied to lattice ⇤ forms
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We are looking for specific designs

• A sequence of designs, is said to be nested if 

• Increasing l is called a refinement and decreasing l is called coarsening

• Will be considering sequences of nested lattices
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We are looking for specific designs

• A sequence of designs, is said to be nested if 

• Increasing l is called a refinement and decreasing l is called coarsening

• Will be considering sequences of nested lattices

THE END
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A result

• For two lattices,     and     ,              iff there exists a matrix                  
that relates the generating matrices of the two lattices by                  . And 
under these conditions, if                     then             .
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lattice designs that can be used in sequential computer experiments where computation of sample

points progresses in a certain order and can be interrupted at suitable check points. We will show

in Section 4.??? that these lattices have good space filling properties and [*** ... ].

Definition 2.4. A sequence of designs (Dl) is said to be nested, if

Dl ✓ Dl+1

for all l 2 Z.

Steps towards increasing levels l of nesting are referred to as refinement, whereas decreasing l is

coarsening the lattice and can be considered a type of deterministic sub-sampling.

Example 2.2. An example of two nested lattice designs inside a square region is provided in

Figure 1, where D
1

is given by the • nested in D
2

, the union of all • and + marked points. [***

This example represents all key design features promoted in this paper. . . Notice that D
1

is contained

in D
2

, which means that these two designs are nested. Explain more — either here or earlier in intro.

E.g.: An example of two lattice designs on [0, 1]2 is shown in Figure 1. The left panel is D
1

and the

right panel displays D
2

. Notice D
1

⇢ D
2

... ]

Detailed discussion of properties that are known to result from Definitions 2.1 and 2.4 is provided

in Appendix A.2. Sub-sampling a lattice ⇤(G) such that the chosen sample is also a lattice can

only be performed by right-multiplying an integer dilation matrix onto G (Lemma A.5).

Definition 2.5. A dilation matrix K 2 Zd⇥d with |detK| = � > 1 applied to lattice ⇤ forms⇤1 ⇤2 ⇤1 ✓ ⇤2

G1 = G2K
| detK| = 1 ⇤1 = ⇤2
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coarsening the lattice and can be considered a type of deterministic sub-sampling.
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1
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2

, the union of all • and + marked points. [***

This example represents all key design features promoted in this paper. . . Notice that D
1

is contained

in D
2
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. Notice D
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Detailed discussion of properties that are known to result from Definitions 2.1 and 2.4 is provided

in Appendix A.2. Sub-sampling a lattice ⇤(G) such that the chosen sample is also a lattice can

only be performed by right-multiplying an integer dilation matrix onto G (Lemma A.5).
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lattice designs that can be used in sequential computer experiments where computation of sample

points progresses in a certain order and can be interrupted at suitable check points. We will show

in Section 4.??? that these lattices have good space filling properties and [*** ... ].

Definition 2.4. A sequence of designs (Dl) is said to be nested, if

Dl ✓ Dl+1

for all l 2 Z.

Steps towards increasing levels l of nesting are referred to as refinement, whereas decreasing l is

coarsening the lattice and can be considered a type of deterministic sub-sampling.

Example 2.2. An example of two nested lattice designs inside a square region is provided in

Figure 1, where D
1

is given by the • nested in D
2

, the union of all • and + marked points. [***

This example represents all key design features promoted in this paper. . . Notice that D
1

is contained

in D
2

, which means that these two designs are nested. Explain more — either here or earlier in intro.

E.g.: An example of two lattice designs on [0, 1]2 is shown in Figure 1. The left panel is D
1

and the

right panel displays D
2

. Notice D
1

⇢ D
2

... ]

Detailed discussion of properties that are known to result from Definitions 2.1 and 2.4 is provided

in Appendix A.2. Sub-sampling a lattice ⇤(G) such that the chosen sample is also a lattice can

only be performed by right-multiplying an integer dilation matrix onto G (Lemma A.5).

Definition 2.5. A dilation matrix K 2 Zd⇥d with |detK| = � > 1 applied to lattice ⇤ forms
SPACE-FILLING EXPERIMENTAL DESIGN USING LATTICES 5

a nested sequence of lattices ⇤l�1

⇢ ⇤l via ⇤l�1

= ⇤lK, where in this notation set transformation

from the right changes an existing transformation ⇤ = GZd to become ⇤K = GKZd.

For each increment in refinement level l [*** scale? ] the density (Definition 2.3) of the lattice

increases and the volume of the fundamental parallelepiped (Lemma A.3) decreases by the rate �.

Lemma A.5 [*** move to main text ] formally establishes K being integer with � > 1 to be equivalent

to the nesting property ⇤ ⇢ ⇤K�1. This implies that the density of two nested lattices can only

di↵er by an integer factor � that is at least 2. By Lemma 2.1 this has a proportional e↵ect on the

expected run-size, illustrated in Example 2.3.

To enable guarantees about design quality after a certain number of points have been added to

the design it is important for any method of lattice refinement to ensure that after some number of

iterations there is a strict improvement of point distances in all directions. Due to the importance

of such improvement guarantees, we will in the following give three di↵erent possible approaches,

starting with the notion of admissible dilation of Kovačević and Vetterli (1992).

Definition 2.6. An admissible dilation matrix K fulfils: (a) Definition 2.5, (b) the eigenvalues

�i of K must satisfy |�i| > 1, and for an isotropic dilation (c) all |�i| = ↵ with ↵d = detK.

Property (b) is necessary and su�cient to ensure that any sequence of nested lattices is dense in

the multi-dimensional real numbers, i.e. the sequence of lattice designs (Dl) is densely space-filling

in the sense that the limit Dl!1 = M. The last property (c) is a stronger version of the second

one to ensure that the sub-sampled lattice is treated equally in all basis vector directions. [***

Denseness is not überimportant, but is a consequence of (equivalent to?) the strict improvement of

any distance-base notion of space-fillingness with each refinement resulting from property (b), which is

important, because if we didn’t have (b) it would be possible that the design only refines along certain

lines, but never fills the space between those lines. It is worth to understand and explain this property

in more detail, but space in this writeup is limited and fills up quickly ;-). ] [*** (c) is central in this

paper. Why important? ]

A di↵erent criterion that also ensures strict improvement of point distances in all directions [***

? ] when progressing among di↵erent levels of density is given by the following notion of similarity.

Definition 2.7. Two lattices ⇤
1,2 are similar or scale-equivalent if they are scaled by a factor

↵ = �1/d and rotated via matrixQ withQTQ = ↵2I, such that ⇤
1

= Q⇤
2

as implied byG
1

= QG
2

.

A strict improvement is also guarranteed, if after a certain number l = c � 1 of steps the

coarsening returns to a scaled version of the original lattice, i.e. K(c) = ↵cI. In the examples

considered here we only use one type of dilation K(l) = Kl and in the following c = 1 with ↵ = 2.

Example 2.3. Dyadic sub-sampling discards every second point in each basis vector direction,

⇤l�1 ⇢ ⇤l
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• A dilation matrix,                , with                         , applied to a lattice 
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• Sub-sampling a lattice such that the chosen sample is also a lattice is 
performed by right-multiplying an integer dilation matrix onto G
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Fig 1. Lattice designs with a doubling property. The 19 point set (a) is a subset of the 37 point refined design (b),
which is a rotated version of (a) that has twice the expected density of sample points. [*** Add basis vectors G in (a)

and GK

�1
in (b) to interior point at (.35, .6). ]

2.2. Nested lattices are produced by inverse dilation. In this section, we will introduce nested

lattice designs that can be used in sequential computer experiments where computation of sample

points progresses in a certain order and can be interrupted at suitable check points. We will show

in Section 4.??? that these lattices have good space filling properties and [*** ... ].

Definition 2.4. A sequence of designs (Dl) is said to be nested, if

Dl ✓ Dl+1

for all l 2 Z.

Steps towards increasing levels l of nesting are referred to as refinement, whereas decreasing l is

coarsening the lattice and can be considered a type of deterministic sub-sampling.

Example 2.2. An example of two nested lattice designs inside a square region is provided in

Figure 1, where D
1

is given by the • nested in D
2

, the union of all • and + marked points. [***

This example represents all key design features promoted in this paper. . . Notice that D
1

is contained

in D
2

, which means that these two designs are nested. Explain more — either here or earlier in intro.

E.g.: An example of two lattice designs on [0, 1]2 is shown in Figure 1. The left panel is D
1

and the

right panel displays D
2

. Notice D
1

⇢ D
2

... ]

Detailed discussion of properties that are known to result from Definitions 2.1 and 2.4 is provided

in Appendix A.2. Sub-sampling a lattice ⇤(G) such that the chosen sample is also a lattice can

only be performed by right-multiplying an integer dilation matrix onto G (Lemma A.5).

Definition 2.5. A dilation matrix K 2 Zd⇥d with |detK| = � > 1 applied to lattice ⇤ forms
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and GK

�1
in (b) to interior point at (.35, .6). ]

2.2. Nested lattices are produced by inverse dilation. In this section, we will introduce nested

lattice designs that can be used in sequential computer experiments where computation of sample

points progresses in a certain order and can be interrupted at suitable check points. We will show

in Section 4.??? that these lattices have good space filling properties and [*** ... ].

Definition 2.4. A sequence of designs (Dl) is said to be nested, if

Dl ✓ Dl+1

for all l 2 Z.

Steps towards increasing levels l of nesting are referred to as refinement, whereas decreasing l is

coarsening the lattice and can be considered a type of deterministic sub-sampling.

Example 2.2. An example of two nested lattice designs inside a square region is provided in

Figure 1, where D
1

is given by the • nested in D
2

, the union of all • and + marked points. [***

This example represents all key design features promoted in this paper. . . Notice that D
1

is contained

in D
2

, which means that these two designs are nested. Explain more — either here or earlier in intro.

E.g.: An example of two lattice designs on [0, 1]2 is shown in Figure 1. The left panel is D
1

and the

right panel displays D
2

. Notice D
1

⇢ D
2

... ]

Detailed discussion of properties that are known to result from Definitions 2.1 and 2.4 is provided

in Appendix A.2. Sub-sampling a lattice ⇤(G) such that the chosen sample is also a lattice can

only be performed by right-multiplying an integer dilation matrix onto G (Lemma A.5).

Definition 2.5. A dilation matrix K 2 Zd⇥d with |detK| = � > 1 applied to lattice ⇤ forms
SPACE-FILLING EXPERIMENTAL DESIGN USING LATTICES 5

a nested sequence of lattices ⇤l�1

⇢ ⇤l via ⇤l�1

= ⇤lK, where in this notation set transformation

from the right changes an existing transformation ⇤ = GZd to become ⇤K = GKZd.

For each increment in refinement level l [*** scale? ] the density (Definition 2.3) of the lattice

increases and the volume of the fundamental parallelepiped (Lemma A.3) decreases by the rate �.

Lemma A.5 [*** move to main text ] formally establishes K being integer with � > 1 to be equivalent

to the nesting property ⇤ ⇢ ⇤K�1. This implies that the density of two nested lattices can only

di↵er by an integer factor � that is at least 2. By Lemma 2.1 this has a proportional e↵ect on the

expected run-size, illustrated in Example 2.3.

To enable guarantees about design quality after a certain number of points have been added to

the design it is important for any method of lattice refinement to ensure that after some number of

iterations there is a strict improvement of point distances in all directions. Due to the importance

of such improvement guarantees, we will in the following give three di↵erent possible approaches,

starting with the notion of admissible dilation of Kovačević and Vetterli (1992).

Definition 2.6. An admissible dilation matrix K fulfils: (a) Definition 2.5, (b) the eigenvalues

�i of K must satisfy |�i| > 1, and for an isotropic dilation (c) all |�i| = ↵ with ↵d = detK.

Property (b) is necessary and su�cient to ensure that any sequence of nested lattices is dense in

the multi-dimensional real numbers, i.e. the sequence of lattice designs (Dl) is densely space-filling

in the sense that the limit Dl!1 = M. The last property (c) is a stronger version of the second

one to ensure that the sub-sampled lattice is treated equally in all basis vector directions. [***

Denseness is not überimportant, but is a consequence of (equivalent to?) the strict improvement of

any distance-base notion of space-fillingness with each refinement resulting from property (b), which is

important, because if we didn’t have (b) it would be possible that the design only refines along certain

lines, but never fills the space between those lines. It is worth to understand and explain this property

in more detail, but space in this writeup is limited and fills up quickly ;-). ] [*** (c) is central in this

paper. Why important? ]

A di↵erent criterion that also ensures strict improvement of point distances in all directions [***

? ] when progressing among di↵erent levels of density is given by the following notion of similarity.

Definition 2.7. Two lattices ⇤
1,2 are similar or scale-equivalent if they are scaled by a factor

↵ = �1/d and rotated via matrixQ withQTQ = ↵2I, such that ⇤
1

= Q⇤
2

as implied byG
1

= QG
2

.

A strict improvement is also guarranteed, if after a certain number l = c � 1 of steps the

coarsening returns to a scaled version of the original lattice, i.e. K(c) = ↵cI. In the examples

considered here we only use one type of dilation K(l) = Kl and in the following c = 1 with ↵ = 2.

Example 2.3. Dyadic sub-sampling discards every second point in each basis vector direction,

⇤l�1 ⇢ ⇤l
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More notation and definitions

• A dilation matrix,                , with                         , applied to a lattice 
forms a nested sequence of lattices,                , via                  

• For this setting, an admissible dilation matrix is one where 
(a) K is a dilation matrix; 
(b) magnitude of all eigen-values of K are larger than 1; and  
(c) det K =       , where      is the eignen-value for K
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Fig 1. Lattice designs with a doubling property. The 19 point set (a) is a subset of the 37 point refined design (b),
which is a rotated version of (a) that has twice the expected density of sample points. [*** Add basis vectors G in (a)

and GK

�1
in (b) to interior point at (.35, .6). ]

2.2. Nested lattices are produced by inverse dilation. In this section, we will introduce nested

lattice designs that can be used in sequential computer experiments where computation of sample

points progresses in a certain order and can be interrupted at suitable check points. We will show

in Section 4.??? that these lattices have good space filling properties and [*** ... ].

Definition 2.4. A sequence of designs (Dl) is said to be nested, if

Dl ✓ Dl+1

for all l 2 Z.

Steps towards increasing levels l of nesting are referred to as refinement, whereas decreasing l is

coarsening the lattice and can be considered a type of deterministic sub-sampling.

Example 2.2. An example of two nested lattice designs inside a square region is provided in

Figure 1, where D
1

is given by the • nested in D
2

, the union of all • and + marked points. [***

This example represents all key design features promoted in this paper. . . Notice that D
1

is contained

in D
2

, which means that these two designs are nested. Explain more — either here or earlier in intro.

E.g.: An example of two lattice designs on [0, 1]2 is shown in Figure 1. The left panel is D
1

and the

right panel displays D
2

. Notice D
1

⇢ D
2

... ]

Detailed discussion of properties that are known to result from Definitions 2.1 and 2.4 is provided

in Appendix A.2. Sub-sampling a lattice ⇤(G) such that the chosen sample is also a lattice can

only be performed by right-multiplying an integer dilation matrix onto G (Lemma A.5).

Definition 2.5. A dilation matrix K 2 Zd⇥d with |detK| = � > 1 applied to lattice ⇤ forms
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which is a rotated version of (a) that has twice the expected density of sample points. [*** Add basis vectors G in (a)
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in (b) to interior point at (.35, .6). ]

2.2. Nested lattices are produced by inverse dilation. In this section, we will introduce nested

lattice designs that can be used in sequential computer experiments where computation of sample

points progresses in a certain order and can be interrupted at suitable check points. We will show

in Section 4.??? that these lattices have good space filling properties and [*** ... ].

Definition 2.4. A sequence of designs (Dl) is said to be nested, if

Dl ✓ Dl+1

for all l 2 Z.

Steps towards increasing levels l of nesting are referred to as refinement, whereas decreasing l is

coarsening the lattice and can be considered a type of deterministic sub-sampling.

Example 2.2. An example of two nested lattice designs inside a square region is provided in

Figure 1, where D
1

is given by the • nested in D
2

, the union of all • and + marked points. [***

This example represents all key design features promoted in this paper. . . Notice that D
1

is contained

in D
2

, which means that these two designs are nested. Explain more — either here or earlier in intro.

E.g.: An example of two lattice designs on [0, 1]2 is shown in Figure 1. The left panel is D
1

and the

right panel displays D
2

. Notice D
1

⇢ D
2

... ]

Detailed discussion of properties that are known to result from Definitions 2.1 and 2.4 is provided

in Appendix A.2. Sub-sampling a lattice ⇤(G) such that the chosen sample is also a lattice can

only be performed by right-multiplying an integer dilation matrix onto G (Lemma A.5).

Definition 2.5. A dilation matrix K 2 Zd⇥d with |detK| = � > 1 applied to lattice ⇤ forms
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a nested sequence of lattices ⇤l�1

⇢ ⇤l via ⇤l�1

= ⇤lK, where in this notation set transformation

from the right changes an existing transformation ⇤ = GZd to become ⇤K = GKZd.

For each increment in refinement level l [*** scale? ] the density (Definition 2.3) of the lattice

increases and the volume of the fundamental parallelepiped (Lemma A.3) decreases by the rate �.

Lemma A.5 [*** move to main text ] formally establishes K being integer with � > 1 to be equivalent

to the nesting property ⇤ ⇢ ⇤K�1. This implies that the density of two nested lattices can only

di↵er by an integer factor � that is at least 2. By Lemma 2.1 this has a proportional e↵ect on the

expected run-size, illustrated in Example 2.3.

To enable guarantees about design quality after a certain number of points have been added to

the design it is important for any method of lattice refinement to ensure that after some number of

iterations there is a strict improvement of point distances in all directions. Due to the importance

of such improvement guarantees, we will in the following give three di↵erent possible approaches,

starting with the notion of admissible dilation of Kovačević and Vetterli (1992).

Definition 2.6. An admissible dilation matrix K fulfils: (a) Definition 2.5, (b) the eigenvalues

�i of K must satisfy |�i| > 1, and for an isotropic dilation (c) all |�i| = ↵ with ↵d = detK.

Property (b) is necessary and su�cient to ensure that any sequence of nested lattices is dense in

the multi-dimensional real numbers, i.e. the sequence of lattice designs (Dl) is densely space-filling

in the sense that the limit Dl!1 = M. The last property (c) is a stronger version of the second

one to ensure that the sub-sampled lattice is treated equally in all basis vector directions. [***

Denseness is not überimportant, but is a consequence of (equivalent to?) the strict improvement of

any distance-base notion of space-fillingness with each refinement resulting from property (b), which is

important, because if we didn’t have (b) it would be possible that the design only refines along certain

lines, but never fills the space between those lines. It is worth to understand and explain this property

in more detail, but space in this writeup is limited and fills up quickly ;-). ] [*** (c) is central in this

paper. Why important? ]

A di↵erent criterion that also ensures strict improvement of point distances in all directions [***

? ] when progressing among di↵erent levels of density is given by the following notion of similarity.

Definition 2.7. Two lattices ⇤
1,2 are similar or scale-equivalent if they are scaled by a factor

↵ = �1/d and rotated via matrixQ withQTQ = ↵2I, such that ⇤
1

= Q⇤
2

as implied byG
1

= QG
2

.

A strict improvement is also guarranteed, if after a certain number l = c � 1 of steps the

coarsening returns to a scaled version of the original lattice, i.e. K(c) = ↵cI. In the examples

considered here we only use one type of dilation K(l) = Kl and in the following c = 1 with ↵ = 2.

Example 2.3. Dyadic sub-sampling discards every second point in each basis vector direction,

⇤l�1 ⇢ ⇤l

↵d ↵
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Theoretical results we can prove

• In [0,1)d, the expected number of lattice points is 1/det G

• K must be an integer matrix

• For refinement (i.e., l goes up) the volume of the fundamental 
parallelepiped decreases by |det K| = β 

• Can show that to get a nested lattice β >1, thus best refinement is to half 
the volume between points as the run-size is doubled



Department of Statistics and Actuarial Science

Why do all this fancy stuff?

• Dyadic sub-sampling is impossible for Cartesian lattices with d > 2

• For Cartesian lattices, number of lattice points grows exponentially with 
dimension

• The main idea is to:
– use more general, non-diagonal generators, G
– allow for sub-sampling rates that are 2, 3, 5, … (2 is most useful)



Department of Statistics and Actuarial Science

Why do all this fancy stuff?

• Benefits:

– Sometimes can use general bases for known best packing or covering 
lattices, leading to a direct construction of maxi-min or mini-max designs, 
respectively

– can consider virtually any run size

– allows a sequence of designs that can be used in practical applications

– Once bases are computed, do not need to recompute
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How do we find designs

• Assume that the design region is [0,1)d

• n is the experiment run size

• looking for a non-singular lattice generating matrix G that, when sub-
sampled by a dilation matrix K with reduction rate β = |det K|

• Need to find
1. G
2. K
3. Shift, rotation and scaling to fit n points in the design region
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How do we find designs

• Need some more theory:

• Restrict attention to designs where sub-sampled lattice is a scaled or 
rotated version of the original lattice 

• GK=QG

• Preserves nice geometric properties… rotationally similar

• Imposes restrictions on K
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How do we find designs… more theory

• The restriction (GK=QG) implies the choice of G up to rotation and scale … 
reason is that this implies that K and Q have same characteristic polynomial

• Can prove that: (i) for even d , there are 5 different K; and (ii) for odd d there is 
only 1 K

• Restricting to diagnolizable K and Q, finding K allows us to find G and Q

• We can still warp these G and we do so to optimize a desirable property (e.g., 
mini-max, maxi-min, correlation between columns of the design matrix)

• Finally, G is scaled so that G*=det cG = 1/n … 
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How do we find designs

• Finally, we can use the generating matric G* and K to construct our 
lattice design

• However, the number of points in the region of interest is only expected 
to be n

• So, we randomly rotate G* and also shift the lattice to achieve the desired 
run-size in [0,1)d
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Algorithms

Algorithm 1: Obtain a lattice with isotropic dilation matrix K
1. For given input dimension and sub-sampling rate construct isotropic 

dilation matrix K
2. Form the generating matrix, G

Algorithm 2: Produce a lattice design in the unit hypercube
1. Consists of finding possible designs under random shifts, p, of the lattice 

given G, Q and K
2. Effective to first determine points in a bounding box of design region and 

then find which of these points are in design region

Algorithm 3: Can further refine based on random shifts, p, and rotations 
Q*, to optimize additional properties
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Example

2 S. BERGNER ET AL.

3. Simple example. As an illustration, consider the 2-d example in Figure 1. A coarse design of 18

points is refined by adding another 19 points. Both resolution levels are rotated and scaled versions of the

same lattice.
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(b) 37 point lattice design

Fig 1. 2D example: Lattice designs with a doubling property. The 19 point set (a) is a subset of the 37 point refined design

(b), which is a rotated version of (a) that has twice the density of sample points. With the notation above, the coarse grid (a)

corresponds to scale level s = 1 of the fine grid (b) with a coarsening rate � = 2.

Higher-dimensional versions of this construction operate in the same way with the notable property of

retaining the low coarsening/refinement rate of � = 2 — independent of the dimensionality. Upon each

refinement the number of points inside M roughly doubles and the minimum inter-point distances decrease

by a factor of 1/↵s = 2�s/d.

4. Cosmology application. Our collaborators [1] want to learn about how 8 chosen parameters influ-

ence the behaviour of their cosmological model.

Two sets of ranges, a narrow and a wider one are determined where high and low fidelity versions of the

cosmological simulator are to be run, respectively.
inner region with high accuracy extended ranges with lower accuracy

variable lower bnd upper bnd

!m 0.120 0.155

!b 0.021 0.024

�8 0.700 0.900

h 0.550 0.850

ns 0.850 1.050

w0 -1.300 -0.700

wa -1.500 1.500

!⌫ 0.000 0.010

variable lower bnd upper bnd length factor

!m 0.100 0.155 1.586

!b 0.021 0.024 1.000

�8 0.600 1.000 2.000

h 0.550 0.850 1.000

ns 0.850 1.050 1.000

w0 -1.500 -0.500 1.667

wa -2.000 2.000 1.333

!⌫ 0.000 0.010 1.000

The unconstrained narrow region has a 8-dimensional volume of 1.512e-08 and the outer one 1.066e-07.

The volume of the extended region is 7.048 times larger than the narrow region.

In the constrained case the narrow region has a volume of 1.260e-08 and the outer one 7.992e-08. The

volume of the extended region is 6.343 times larger than the narrow region.

References.

First stage (high-fidelity) design First and second stage (low-fidelity) design
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Cosmology – what did we do?

• Had 8-dimensional input space, n=100 runs in 3 stages:
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Cosmology – what did we do?

• Had a low-fidelity model (linear power spectrum) to test the efficacy of 
the designs

• Used a 3-stage lattice design n1=25; n2=25; n3=50 (optimized via maximin
criterion)
– Ran each design on the low-fidelity code and did intermediate analyses (i.e., 

after 25 runs, 50 runs and finally 100 runs)
– Turned out that several of the runs produced non-physical results
– Had to do with implicit constrains on the dark energy parameters 
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Cosmology – what did we do?

• Instead, re-did the design procedure using the constraint wa+wo < 0
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Re-cap

1. Have proposed a new type of lattice design that is useful in a variety of 
applications

2. Can be used to find designs with good space filling properties

3. Can find large designs from small ones

4. We are pre-computing good bases for different d
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Thank you for indulging me
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More notation and definitions

• A dilation matrix,                , with                       , applied to a lattice 
forms a nested sequence of lattices,                , via 

• For this setting, an admissible dilation matrix is one where (a) K is a 
dilation matrix; and (b)                 , where    is the eignen-value for K

• Sub-sampling a lattice such that the chosen sample is also a lattice is 
performed by right-multiplying an integer dilation matrix onto G

• Dyadic sub-sampling: discards every second point in each basis vector 
direction (K=2I;        2d )
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(b) 37 point lattice design

Fig 1. Lattice designs with a doubling property. The 19 point set (a) is a subset of the 37 point refined design (b),
which is a rotated version of (a) that has twice the expected density of sample points. [*** Add basis vectors G in (a)

and GK

�1
in (b) to interior point at (.35, .6). ]

2.2. Nested lattices are produced by inverse dilation. In this section, we will introduce nested

lattice designs that can be used in sequential computer experiments where computation of sample

points progresses in a certain order and can be interrupted at suitable check points. We will show

in Section 4.??? that these lattices have good space filling properties and [*** ... ].

Definition 2.4. A sequence of designs (Dl) is said to be nested, if

Dl ✓ Dl+1

for all l 2 Z.

Steps towards increasing levels l of nesting are referred to as refinement, whereas decreasing l is

coarsening the lattice and can be considered a type of deterministic sub-sampling.

Example 2.2. An example of two nested lattice designs inside a square region is provided in

Figure 1, where D
1

is given by the • nested in D
2

, the union of all • and + marked points. [***

This example represents all key design features promoted in this paper. . . Notice that D
1

is contained

in D
2

, which means that these two designs are nested. Explain more — either here or earlier in intro.

E.g.: An example of two lattice designs on [0, 1]2 is shown in Figure 1. The left panel is D
1

and the

right panel displays D
2

. Notice D
1

⇢ D
2

... ]

Detailed discussion of properties that are known to result from Definitions 2.1 and 2.4 is provided

in Appendix A.2. Sub-sampling a lattice ⇤(G) such that the chosen sample is also a lattice can

only be performed by right-multiplying an integer dilation matrix onto G (Lemma A.5).

Definition 2.5. A dilation matrix K 2 Zd⇥d with |detK| = � > 1 applied to lattice ⇤ forms
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points progresses in a certain order and can be interrupted at suitable check points. We will show
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Definition 2.4. A sequence of designs (Dl) is said to be nested, if

Dl ✓ Dl+1

for all l 2 Z.

Steps towards increasing levels l of nesting are referred to as refinement, whereas decreasing l is

coarsening the lattice and can be considered a type of deterministic sub-sampling.

Example 2.2. An example of two nested lattice designs inside a square region is provided in

Figure 1, where D
1

is given by the • nested in D
2

, the union of all • and + marked points. [***

This example represents all key design features promoted in this paper. . . Notice that D
1

is contained

in D
2

, which means that these two designs are nested. Explain more — either here or earlier in intro.

E.g.: An example of two lattice designs on [0, 1]2 is shown in Figure 1. The left panel is D
1

and the

right panel displays D
2

. Notice D
1

⇢ D
2

... ]

Detailed discussion of properties that are known to result from Definitions 2.1 and 2.4 is provided

in Appendix A.2. Sub-sampling a lattice ⇤(G) such that the chosen sample is also a lattice can

only be performed by right-multiplying an integer dilation matrix onto G (Lemma A.5).

Definition 2.5. A dilation matrix K 2 Zd⇥d with |detK| = � > 1 applied to lattice ⇤ forms
SPACE-FILLING EXPERIMENTAL DESIGN USING LATTICES 5

a nested sequence of lattices ⇤l�1

⇢ ⇤l via ⇤l�1

= ⇤lK, where in this notation set transformation

from the right changes an existing transformation ⇤ = GZd to become ⇤K = GKZd.

For each increment in refinement level l [*** scale? ] the density (Definition 2.3) of the lattice

increases and the volume of the fundamental parallelepiped (Lemma A.3) decreases by the rate �.

Lemma A.5 [*** move to main text ] formally establishes K being integer with � > 1 to be equivalent

to the nesting property ⇤ ⇢ ⇤K�1. This implies that the density of two nested lattices can only

di↵er by an integer factor � that is at least 2. By Lemma 2.1 this has a proportional e↵ect on the

expected run-size, illustrated in Example 2.3.

To enable guarantees about design quality after a certain number of points have been added to

the design it is important for any method of lattice refinement to ensure that after some number of

iterations there is a strict improvement of point distances in all directions. Due to the importance

of such improvement guarantees, we will in the following give three di↵erent possible approaches,

starting with the notion of admissible dilation of Kovačević and Vetterli (1992).

Definition 2.6. An admissible dilation matrix K fulfils: (a) Definition 2.5, (b) the eigenvalues

�i of K must satisfy |�i| > 1, and for an isotropic dilation (c) all |�i| = ↵ with ↵d = detK.

Property (b) is necessary and su�cient to ensure that any sequence of nested lattices is dense in

the multi-dimensional real numbers, i.e. the sequence of lattice designs (Dl) is densely space-filling

in the sense that the limit Dl!1 = M. The last property (c) is a stronger version of the second

one to ensure that the sub-sampled lattice is treated equally in all basis vector directions. [***

Denseness is not überimportant, but is a consequence of (equivalent to?) the strict improvement of

any distance-base notion of space-fillingness with each refinement resulting from property (b), which is

important, because if we didn’t have (b) it would be possible that the design only refines along certain

lines, but never fills the space between those lines. It is worth to understand and explain this property

in more detail, but space in this writeup is limited and fills up quickly ;-). ] [*** (c) is central in this

paper. Why important? ]

A di↵erent criterion that also ensures strict improvement of point distances in all directions [***

? ] when progressing among di↵erent levels of density is given by the following notion of similarity.

Definition 2.7. Two lattices ⇤
1,2 are similar or scale-equivalent if they are scaled by a factor

↵ = �1/d and rotated via matrixQ withQTQ = ↵2I, such that ⇤
1

= Q⇤
2

as implied byG
1

= QG
2

.

A strict improvement is also guarranteed, if after a certain number l = c � 1 of steps the

coarsening returns to a scaled version of the original lattice, i.e. K(c) = ↵cI. In the examples

considered here we only use one type of dilation K(l) = Kl and in the following c = 1 with ↵ = 2.

Example 2.3. Dyadic sub-sampling discards every second point in each basis vector direction,
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corresponding to the admissible dilation matrix K = 2I with determinant � = detK = 2d.

As per Lemma 2.1 the dyadic sub-sampling of this example changes the expected run-size n by a

factor � that is exponential in d leading to a rapid increase in run-size of the design sequence even

for moderately large d. [*** Maybe also early on in intro? ] Considering this issue Van De Ville et al.

(2005) showed that sub-sampling the Cartesian lattice Zd using admissible dilation with � = 2 is

impossible for d > 2. The main idea of the following construction is to relax the starting condition

to include general, non-diagonal generators G 2 Rd⇥d. To allow for fine-grained progression among

di↵erent scales of resolution our particular interest is on obtaining low sub-sampling rates � = 2, 3,

or 5 that — unlike Example 2.3 — are independent of the dimensionality d of the design.

After showing in Sections 3.1–3.2 how lattice bases G with admissible low-rate dilation K are

produced, we show how to construct lattice design sequences within any bounded region M ⇢ Rd.

While the decision to only use nested, space-filling lattice designs of a given run-size within a region

M pre-determines many properties of possible designs, there are still some free parameters that

can be chosen to optimize further space-filling criteria of the resulting design sequence as pointed

out in Section 3.4 and discussed in more detail in Section 4. Practical use of our designs will be

demonstrated in a number of real examples of Section 5. [*** List main results: ]

• We (re-)emphasize the usefulness of sampling lattices as experimental designs in estimation

and prediction tasks involving stationary Gaussian processes over a region of interest in Rd.

Major benefits arise from using general bases for known best packing or covering lattices,

leading to a direct construction of maxi-min or mini-max designs, respectively.

• Nesting and run-size

• The low-rate dilation rate our construction provides allows for many possible intermediate

check points in a design sequence and also allows to decompose any given lattice into the

maximum possible number of equivalent sub-designs so that the trade-o↵ between number of

di↵erent shifts and size of each sub-design is maximized.

• We also provide a library of optimized bases that can be plugged into the design algorithm

of section 3.4(?).

3. Construction of sampling lattices with low-rate rotational dilation. In order to

construct a space-filling sequence of nested lattices as in Definition 2.5 and shown in Figure 1, we

are now looking for a non-singular lattice generating matrix G that, when sub-sampled by a dilation

matrix K with reduction rate � = |detK| produces a scale-equivalent lattice as in Definition 2.7.

This can be expressed algebraically as

QG = GK, (3.1)


