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Many processes are investigated using
computational models

* Many scientific applications use deterministic mathematical models to describe
physical systems

* To understand how inputs to the computer code impact the system, scientists
adjust the inputs to computer simulators and observe the response

* The computer models frequently:

1. require solutions to PDEs or use finite element analyses
have high dimensional inputs
have outputs which are complex functions of the inputs

require a large amounts of computing time

ook

have features from some of the above
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Use Gaussian processes (GI”’s) for
emulating computer model output

e GP’ s have proven effective for emulating computer model output (Sacks
et al., 1989; Jones, Schonlau and Welch, 1998) and also data mining

¢ Emulating computer model output
— output varies smoothly with input changes
— output is essentially noise free
— passes through the observed response

— GP’ s outperform other modeling approaches in this arena
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Why use a GP for emulation?

True function and observations

y(x) = u+2z(x)

. E(2(x)) =0; var(z(x)) =0
. 2 cov(z(x),z(x")) = 0" R(x,x")
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Applications of interest B

* Upcoming space based cosmology missions promise exquisite
measurements of the large-scale structure distribution of the Universe
(e.g., including weak lensing, baryon acoustic oscillations, clusters of
galaxies, and redshift space distortions)

* Currently exploring an 8-dimensional input space that, when combined
with observations, should shed light into the initial conditions of the
Universe and also the nature of dark energy
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Applications of interest e

* Will be running about 100 simulations that should take between 1 and 2
years to complete ... can run several of these in sequence

* Can investigate the response in intermediate stages while other
simulations are running
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Applications of interest

1400 1600 1800 2000 2200 2400
Target Coord. X (um)

e At the Center for Radiative Shock Hydrodynamics (CRASH),

computational models were employed to simulate features of radiative

shocks
¢ The CRASH codes consisted of high and low fidelity models

* It was helpful the run the high and low fidelity codes with the same
inputs to explore the discrepancy between to two models

* 'The low fidelity code was run at far more input settings (high fidelity
design was nested within the low fidelity design)
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Design for computer experiments

*  Johnson etal. (1990) and others (e.g., Kunsch et al., 2005) demonstrate that designs with
good space-filling properties are essential for prediction using GPs

e  Latin hypercube designs (McKay et al, 1989) and other variants (Tang, 1993) have proven
popular

*  For type of sequence of designs and low/high fidelity models, work by Qian (2009), Qian,
Tang and Wu (2009) 1s related

*  Designs based on Cartesian lattices have also been proposed (Beattie and Lin, 2004; Qian
and Ai, 2010)

*  Single state lattice designs have been discussed (Bates et al., 1996; Pronzato and Miiller,
2012; He 2016, 2017)

*  Here, a new type of lattice design is proposed (based on Heitmann, Bingham et al.,
2010)
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Would like our designs to have specific properties

1.  Would like #-run designs where each design point is a 4-dimensional
input vector to the computer model

2. In our setting would like experiment designs (D) with good
d-dimensional space-filling properties

3.  Would like the designs to have the nesting property

—  Important for applications where good intermediate-stage designs are required, as
well as the final experiment design

—  Important for applications with high- and low-fidelity simulators where the high-
fidelity simulator design is a sub-set of the larger, low-fidelity simulator design
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Suggestion ...

e [Use a lattice

* TFor one-stage designs, can use already computed lattices (Conway and
Sloane, 1999) that have good space filling properties

* Not quite as easy as you might think ...

* Is more challenging for our setting where nesting is required
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Example

First stage (high-fidelity) design First and second stage (low-fidelity) design
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Notation and definitions

* A point lattice is an infinite, discrete set of points in R hat is

constructed from integer multiples of a set of basis vectors in the
columns of a 4 x 4 generating matrix, G,

AMG)=GZ={Gk:k ez} c R?

* Alattice design D(A, M, p) — M N {A + p} is the intersection of
a point lattice and region M C R? that is shifted by a vector, p

* See Conway and Sloane, 1999 or Patterson, 19

Usually the d-dimensional unit hypercube

Department of Statistics and Actuarial Science
SFU SIMON FRASER UNIVERSITY
ENGAGING THE WORLD



Fun facts about lattices

* Asalinear transformation of the integers, lattices inherit their abelian
group structure

— ... this implies that the neighborhood around each lattice point is the same

— This region 1s also called the Vornoi cell

* The space between the lattice points are described by the fundamental
parallelepiped
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Fun facts about lattices
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Example

* Factorial design (Cartesian lattice):
* Have dinputs with levels S =(S;, Sy, ..., Sg)
* Here G=I,4 and the lattice is A(G) = GZ% = {Gk : k € Z9} c R?

* Region of interest is [0,1)?scaled by diag(s)
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We are looking for specific designs

* A sequence of designs, is said to be nested if

Dy CDpyqforalll e Z

* Increasing /is called a refinement and decreasing /is called coarsening
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We are looking for specific designs

* A sequence of designs, is said to be nested if

Dy CDpyqforalll e Z

* Increasing /is called a refinement and decreasing /is called coarsening

e Wil be considering sequences of nested lattices
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We are looking for specific designs

* A sequence of designs, is said to be nested if

Dy CDpyqforalll e Z

* Increasing /is called a refinement and decreasing /is called coarsening

e Wil be considering sequences of nested lattices

THE END
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A result

* For two lattices, A;and Ay, A; C A, iff there exists a matrix K e z94*d
that relates the generating matrices of the two lattices by G; = G5 K. And
under these conditions, if |det K| =1 then A; = Ao
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More notation and definitions

* A dilation matrix, K ¢ z9xd, with |det K| = 8 > 1, applied to a lattice
forms a nested sequence of lattices, A;_; C A, via A;_; = AK
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More notation and definitions

* A dilation matrix, K ¢ z9xd, with |det K| = 8 > 1, applied to a lattice
forms a nested sequence of lattices, A;_; C A, via A;_; = AK

e Sub-sampling a lattice such that the chosen sample is also a lattice is
performed by right-multiplying an integer dilation matrix onto G
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More notation and definitions

* A dilation matrix, K ¢ z9xd, with |det K| = 8 > 1, applied to a lattice
forms a nested sequence of lattices, A;_; C A, via A;_; = AK

* For this setting, an admissible dilation matrix 1s one where
(a) K is a dilation matrix;
(b) magnitude of all eigen-values of K are larger than 1; and

© det K= %, where o is the eignen-value for K
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Theoretical results we can prove

* In[0,1)4, the expected number of lattice points is 1/det G
* K must be an integer matrix

* Tor refinement (i.e., / goes up) the volume of the fundamental
parallelepiped decreases by |det K| =3

* (Can show that to get a nested lattice 8 >1, thus best refinement 1s to half
the volume between points as the run-size is doubled
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Why do all this fancy stuff?

* Dyadic sub-sampling is impossible for Cartesian lattices with 4 > 2

* TFor Cartesian lattices, number of lattice points grows exponentially with
dimension

* The main idea is to:
— use more general, non-diagonal generators, G

— allow for sub-sampling rates that are 2, 3, 5, ... (2 1s most useful)
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Why do all this fancy stuff?

e Benefits:

—  Sometimes can use general bases for known best packing or covering
lattices, leading to a direct construction of maxi-min or mini-max designs,
respectively

— can consider virtually any run size
— allows a sequence of designs that can be used in practical applications

—  Once bases are computed, do not need to recompute
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How do we find designs

* Assume that the design region is [0,1)?

* 1n1is the experiment run size

* looking for a non-singular lattice generating matrix G that, when sub-
sampled by a dilation matrix K with reduction rate § = |det K|

e Need to find
1. G
2. K

3. Shift, rotation and scaling to fit # points in the design region
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How do we find designs

* Need some more theory:

* Restrict attention to designs where sub-sampled lattice is a scaled or
rotated version of the original lattice

 GK=QG
* Preserves nice geometric properties... rotationally similar

* Imposes restrictions on K
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How do we find designs... more theory

* The restriction (GK=QG) implies the choice of G up to rotation and scale ...
reason is that this implies that K and Q have same characteristic polynomial

* Can prove that: (1) for even 4, there are 5 different K; and (i1) for odd 4 there 1s
only 1 K

* Restricting to diagnolizable K and Q, finding K allows us to find G and Q

* We can still warp these G and we do so to optimize a desirable property (e.g.,
mini-max, maxi-min, correlation between columns of the design matrix)

* Finally, G is scaled so that G'=det cG = 1/n ...
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How do we find designs

* Finally, we can use the generating matric G* and K to construct outr
lattice design

* However, the number of points in the region of interest 1s only expected
to be 7

* So, we randomly rotate G* and also shift the lattice to achieve the desired
run-size in [0,1)7
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Algorithms

Algorithm 1: Obtain a lattice with 1sotropic dilation matrix K

1. For given input dimension and sub-sampling rate construct 1sotropic
dilation matrix K

2. Form the generating matrix, G

Algorithm 2: Produce a lattice design in the unit hypercube

1. Consists of finding possible designs under random shifts, p, of the lattice
given G, Q and K

2. Effective to first determine points in a bounding box of design region and
then find which of these points are in design region

Algorithm 3: Can further refine based on random shifts, p, and rotations
Q7, to optimize additional properties
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Example

First stage (high-fidelity) design First and second stage (low-fidelity) design
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Cosmology — what did we

* Had 8-dimensional input space, #=100 runs in 3 stages:
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Cosmology . What did we do? B

* Had a low-fidelity model (linear power spectrum) to test the efficacy of
the designs

* Used a 3-stage lattice design 7=25; 7,=25; #;=50 (optimized via maximin
criterion)

— Ran each design on the low-fidelity code and did intermediate analyses (l.e.,
after 25 runs, 50 runs and finally 100 runs)

— 'Turned out that several of the runs produced non-physical results

— Had to do with implicit constrains on the dark energy parameters
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Cosmology — what did we do? S

* Instead, re-did the design procedure using the constraint w,+w, < 0
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Re-cap

1. Have proposed a new type of lattice design that 1s useful in a variety of
applications

2. Can be used to find designs with good space filling properties
3. Can find large designs from small ones

4. We are pre-computing good bases for different 4
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Thank you for indulging me
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More notation and definitions

* A dilation matrix, K ¢ 744, with |det K| = 8 > 1, applied to a lattice
forms a nested sequence of lattices, A; ; € A;, Via A;_; = AK

* For this setting, an admissible dilation matrix 1s one where (a) Kis a
dilation matrix; and (b) o4 = det K, where «is the eignen-value for K

e Sub-sampling a lattice such that the chosen sample 1s also a lattice is
performed by right-multiplying an integer dilation matrix onto G

* Dyadic sub-sampling: discards every second point in each basis vector
direction (K=2I; 5 =27)

Department of Statistics and Actuarial Science
SF SIMON FRASER UNIVERSITY
ENGAGING THE WORLD




