Elliptic rook and file numbers

Meesue Yoo

Sungkyunkwan University joint work with Michael Schlosser

May 18, 2017

- Introduction to rook theory
 - rook numbers
 - file numbers
- q-analogues
 - q-rook numbers
 - q-file numbers
- 3 Elliptic analogues
 - Elliptic rook numbers
 - Elliptic Stirling numbers of the second kind
 - Elliptic file numbers
 - Elliptic r-Stirling numbers of the first kind

Introduction to rook theory

Let
$$[n] = \{1, 2, ..., n\}.$$

- A board B is a finite subset of $[n] \times [n]$.
- We say that we place k
 non-attacking rooks in B for
 choosing a k-subset of B such
 that no two rooks lie in the
 same row or column.

Introduction to rook theory

Let
$$[n] = \{1, 2, ..., n\}.$$

- A board B is a finite subset of $[n] \times [n]$.
- We say that we place k
 non-attacking rooks in B for
 choosing a k-subset of B such
 that no two rooks lie in the
 same row or column.

- $\mathcal{N}_k(B)$ = the set of all non-attacking k-rook placements in B.
- $r_k(B) = |\mathcal{N}_k(B)|$, the *k*-th rook number of *B*

Given $b_1, \ldots, b_n \in \mathbb{N}$, $B(b_1, \ldots, b_n)$ denote the set of cells

$$B(b_1,\ldots,b_n) = \{(i,j) \mid 1 \le i \le n, \ 0 \le j \le b_i\}.$$

- If a board B equals to $B(b_1, \ldots, b_n)$ for some b_i 's, then B is called a *skyline board*.
- If, in addition, $b_1 \leq b_2 \leq \cdots \leq b_n$, then a skyline board B is called a *Ferrers board*.

Proposition

Let B be a Ferrers board of height at most m and let $B \cup m$ denote the board obtained by adding a column of length m to B. Then we have

$$r_k(B \cup m) = r_k(B) + (m - k + 1)r_{k-1}(B).$$

5 / 33

Meesue Yoo (SKKU) Elliptic rook theory May 18, 2017

Theorem (Goldman-Joichi-White, '75)

Given a Ferrers board $B = B(b_1, ..., b_n)$,

$$\prod_{i=1}^{n} (z + b_{i} - i + 1) = \sum_{k=0}^{n} r_{n-k}(B) \cdot (z) \downarrow_{k},$$

where
$$(z) \downarrow_k = z(z-1) \cdots (z-k+1)$$
.

Meesue Yoo (SKKU) Elliptic rook theory May 18, 2017 5 / 33

Example

• Consider a staircase board $St_n = B(0, 1, ..., n-1)$.

GJW Theorem ⇒

$$z^n = \sum_{k=0}^n r_{n-k}(St_n) \cdot (z) \downarrow_k,$$

$$r_{n-k}(St_n) = S_{n,k}$$
, the Stirling number of the second kind

- k-rook placement $\Leftrightarrow n k$ set partition of [n]
- $\bullet \ \mathcal{S}_{n,k+1} = \mathcal{S}_{n,k-1} + k\mathcal{S}_{n,k}$

File numbers

Let $C_k(B)$ denote the set of all placements (*file placements*) of k rooks in B such that there is at most one rook in each column.

$$f_k(B) = |\mathcal{C}_k(B)|$$
; the k-th file number of B

Meesue Yoo (SKKU)

File numbers

Let $C_k(B)$ denote the set of all placements (*file placements*) of k rooks in B such that there is at most one rook in each column.

$$f_k(B) = |C_k(B)|$$
; the k-th file number of B

Theorem (Garsia-Remmel, '86)

Given a skyline board $B = B(b_1, \ldots, b_n)$,

$$\prod_{i=1}^{n} (z + b_i) = \sum_{k=0}^{n} f_{n-k}(B) z^k.$$

7 / 33

Meesue Yoo (SKKU) Elliptic rook theory May 18, 2017

Example

• Consider a staircase board $St_n = B(0, 1, ..., n-1)$.

Garsia-Remmel Theorem ⇒

$$(z)\uparrow_n=\sum_{k=0}^n f_{n-k}(St_n)\cdot z^k,$$

 $f_{n-k}(St_n) = c_{n,k}$, the signless Stirling number of the first kind

- n k-rook placement \Leftrightarrow permutations of S_n with k-cycles
- \bullet $c_{n+1,k} = c_{n,k-1} + nc_{n,k}$
- $\bullet \leftrightarrow (1\ 7\ 3)(2\ 4)(5\ 9\ 8)(6)$

40 > 40 > 40 > 40 > 40 > 40 >

q-analogues

q-analogues

- Garsia and Remmel ('86) defined a *q*-analogue of the rook numbers for Ferrers boards.
 - Given a placement $P \in \mathcal{N}_k(B)$, B a Ferrers board, let each rook in P cancels all squares to its right and below it.

$$r_k(q;B) = \sum_{P \in \mathcal{N}_k(B)} q^{u_B(P)},$$

where $u_B(P)$ is the number of uncancelled squares in B-P.

Proposition (Garsia-Remmel, '86)

Let B be a Ferrers board of height at most m and let $B \cup m$ denote the board obtained by adding a column of length m to B. Then we have

$$r_k(q; B \cup m) = q^{m-k} r_k(q; B) + [m-k+1]_q r_{k-1}(q; B).$$

Meesue Yoo (SKKU)

Proposition (Garsia-Remmel, '86)

Let B be a Ferrers board of height at most m and let $B \cup m$ denote the board obtained by adding a column of length m to B. Then we have

$$r_k(q; B \cup m) = q^{m-k} r_k(q; B) + [m-k+1]_q r_{k-1}(q; B).$$

Theorem (Garsia-Remmel, '86)

For a Ferrers board $B=B(b_1,\ldots,b_n),\ b_1\leq\cdots\leq b_n,$

$$\prod_{i=1}^{n} [z + b_i + i - 1]_q = \sum_{k=0}^{n} r_{n-k}(q; B)[z]_q \downarrow_k,$$

where
$$[n]_q = \frac{1-q^n}{1-q}$$
, $[z]_q \downarrow_k = [z]_q [z-1]_q \cdots [z-k+1]_q$.

Meesue Yoo (SKKU)

Elliptic rook theory

q-file numbers

• Given a file placement $P \in \mathcal{C}_k(B)$, B a skyline board, let each rook in P cancels all squares below it only.

$$f_k(q;B) = \sum_{P \in \mathcal{C}_k(B)} q^{u_B(P)},$$

where $u_B(P)$ is the number of uncancelled squares in B-P.

Proposition

Let B be a skyline board and $B \cup m$ denote the board obtained by adding a column of length m to B. Then for any k, we have

$$f_k(q; B \cup m) = q^m f_k(q; B) + [m]_q f_{k-1}(q; B).$$

13 / 33

Meesue Yoo (SKKU) Elliptic rook theory May 18, 2017

Proposition

Let B be a skyline board and $B \cup m$ denote the board obtained by adding a column of length m to B. Then for any k, we have

$$f_k(q; B \cup m) = q^m f_k(q; B) + [m]_q f_{k-1}(q; B).$$

Theorem

For a skyline board $B = B(b_1, b_2, ..., b_n)$,

$$\prod_{i=1}^{n} [z+b_{i}]_{q} = \sum_{k=0}^{n} f_{n-k}(q;B)[z]_{q}^{k}.$$

Elliptic analogues

Elliptic analogues

- A function is *elliptic* if it is meromorphic and doubly periodic.
- Elliptic functions can be built from quotients of theta functions.

Elliptic analogues

- A function is *elliptic* if it is meromorphic and doubly periodic.
- Elliptic functions can be built from quotients of theta functions.

Define a *modified Jacobi theta* function with argument x and nome p by

$$\theta(x; p) := \prod_{j \ge 0} ((1 - p^{j}x)(1 - p^{j+1}/x)),$$

$$\theta(x_1, \dots, x_m; p) = \prod_{k=1}^{m} \theta(x_k; p),$$

where $x, x_1, ..., x_m \neq 0, |p| < 1$.

- $\theta(x; p) = -x\theta(1/x; p)$, $\theta(px; p) = -\frac{1}{x}\theta(x; p)$
- addition formula: $\theta(xy, x/y, uv, u/v; p)$ = $\theta(xv, x/v, uy, u/y; p) + \frac{u}{y} \theta(yv, y/v, xu, x/u; p)$

Define the theta shifted factorial (or q, p-shifted factorial) by

$$(a;q,p)_n = \begin{cases} \prod_{k=0}^{n-1} \theta(aq^k;p), & n=1,2,\dots, \\ 1, & n=0, \\ 1/\prod_{k=0}^{-n-1} \theta(aq^{n+k};p), & n=-1,-2,\dots, \end{cases}$$

and

$$(a_1, a_2, \ldots, a_m; q, p)_n = \prod_{k=1}^m (a_k; q, p)_n.$$

Meesue Yoo (SKKU) Elliptic rook theory May 18, 2017 16 / 33

Define the theta shifted factorial (or q, p-shifted factorial) by

$$(a;q,p)_n = \begin{cases} \prod_{k=0}^{n-1} \theta(aq^k;p), & n = 1,2,\dots, \\ 1, & n = 0, \\ 1/\prod_{k=0}^{-n-1} \theta(aq^{n+k};p), & n = -1,-2,\dots, \end{cases}$$

and

$$(a_1, a_2, \ldots, a_m; q, p)_n = \prod_{k=1}^m (a_k; q, p)_n.$$

Remark

For p = 0,

$$\theta(x;0) = 1 - x$$
, hence $(a;q,0)_n = (a;q)_n$.

◆ロト ◆個ト ◆差ト ◆差ト を めらぐ

Elliptic weights

Define the *elliptic weights* depending on two independent parameters a, b, base q, nome p by

$$w_{a,b;q,p}(k) = \frac{\theta(aq^{2k+1}, bq^k, aq^{k-2}/b; p)}{\theta(aq^{2k-1}, bq^{k+2}, aq^k/b; p)} q,$$

$$W_{a,b;q,p}(k) = \frac{\theta(aq^{1+2k}, bq, bq^2, aq^{-1}/b, a/b; p)}{\theta(aq, bq^{k+1}, bq^{k+2}, aq^{k-1}/b, aq^k/b; p)} q^k.$$

For positive integer k,

$$W_{a,b;q,p}(k) = \prod_{j=1}^{k} w_{a,b;q,p}(j).$$

Meesue Yoo (SKKU) Elliptic rook theory May 18, 2017 17 / 33

Elliptic weights

Define the *elliptic weights* depending on two independent parameters a, b, base q, nome p by

$$w_{a,b;q,p}(k) = \frac{\theta(aq^{2k+1}, bq^k, aq^{k-2}/b; p)}{\theta(aq^{2k-1}, bq^{k+2}, aq^k/b; p)}q,$$

$$W_{a,b;q,p}(k) = \frac{\theta(aq^{1+2k}, bq, bq^2, aq^{-1}/b, a/b; p)}{\theta(aq, bq^{k+1}, bq^{k+2}, aq^{k-1}/b, aq^k/b; p)}q^k.$$

For positive integer k,

$$W_{a,b;q,p}(k) = \prod_{j=1}^{k} w_{a,b;q,p}(j).$$

Remark

If we let $p \to 0$, $a \to 0$ and then $b \to 0$, then

$$w_{0,0;a,0}(k) = q,$$
 $W_{0,0;a,0}(k) = q^k$

Meesue Yoo (SKKU)

Elliptic analogue of q-integer

Define an elliptic analogue of the (complex) number n by

$$[n]_{a,b;q,p} = \frac{\theta(q^n, aq^n, bq^2, a/b; p)}{\theta(q, aq, bq^{n+1}, aq^{n-1}/b; p)}.$$

Elliptic analogue of q-integer

Define an elliptic analogue of the (complex) number n by

$$[n]_{a,b;q,p} = \frac{\theta(q^{n}, aq^{n}, bq^{2}, a/b; p)}{\theta(q, aq, bq^{n+1}, aq^{n-1}/b; p)}.$$

- $[n]_{a,b;q,p} = [n-1]_{a,b;q,p} + W_{a,b;q,p}(n-1)$
- For a positive integer n, the above recursion defines $[n]_{a,b;q,p}$ uniquely, with $W_{a,b;q,p}(0)=1$.

10,10,10,10,10,10

Elliptic enumeration of lattice paths

Lattice paths in \mathbb{Z}^2 :

Given $A, \Omega \in \mathbb{Z}^2$, let $\mathcal{P}(A \to \Omega)$ denote the set of all lattice paths from A to Ω .

Meesue Yoo (SKKU)

We weight the steps in a lattice path: to each horizontal step from (s-1,t) to (s,t), assign the weight $W_{a,b;q,p}(s,t)$

$$(s-1,t) \quad (s,t)$$

where

$$W_{a,b;q,p}(s,t) = \frac{\theta(aq^{s+2t}, bq^{2s}, bq^{2s-1}, aq^{1-s}/b, aq^{-s}/b)}{\theta(aq^s, bq^{2s+t}, bq^{2s+t-1}, aq^{1+t-s}/b, aq^{t-s}/b)}q^t$$

and 1 to each horizontal step $(s, t-1) \rightarrow (s, t)$.

Meesue Yoo (SKKU)

Let w(P) :=product of the weights of all its steps for a lattice path P.

Theorem (Schlosser, '07)

$$\begin{bmatrix} n \\ k \end{bmatrix}_{a,b;q,p} = \sum_{P \in \mathcal{P}((0,0) \to (k,n-k))} w(P)$$

where

$$\begin{bmatrix} n \\ k \end{bmatrix}_{a,b;q,p} := \frac{(q^{1+k}, aq^{1+k}, bq^{1+k}, aq^{1-k}/b; q, p)_{n-k}}{(q, aq, bq^{1+2k}, aq/b; q, p)_{n-k}}.$$

Meesue Yoo (SKKU) Elliptic rook theory May 18, 2017 21 / 33

Let w(P) :=product of the weights of all its steps for a lattice path P.

Theorem (Schlosser, '07)

$$\begin{bmatrix} n \\ k \end{bmatrix}_{a,b;q,p} = \sum_{P \in \mathcal{P}((0,0) \to (k,n-k))} w(P)$$

where

$$\begin{bmatrix} n \\ k \end{bmatrix}_{a,b;q,p} := \frac{(q^{1+k},aq^{1+k},bq^{1+k},aq^{1-k}/b;q,p)_{n-k}}{(q,aq,bq^{1+2k},aq/b;q,p)_{n-k}}.$$

The elliptic number $[n]_{a,b;q,p}$ is

$$[n]_{a,b;q,p} = \begin{bmatrix} n \\ 1 \end{bmatrix}_{a,b;q,p}$$

: it can be interpreted as an area generating function of lattice paths from (0,0) to (1,n-1).

< □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷ < □ ▷

Addition of numbers

Ordinary case:
$$n + (m - n) = m$$

q-analogue:
$$[n]_q + q^n[m-n]_q = [m]_q$$

Addition of numbers

Ordinary case:
$$n + (m - n) = m$$

q-analogue:
$$[n]_q + q^n[m-n]_q = [m]_q$$

Elliptic case:

$$[n]_{a,b;q,p} + W_{a,b;q,p}(n)[m-n]_{aq^{2n},bq^{n};q,p}$$

= $[m]_{a,b;q,p}$

q

q

q

q

q

q

q

W₂

 W_1

Elliptic rook numbers

Given a Ferrers board B and a placement $P \in \mathcal{N}_k(B)$, let $U_B(P)$ denote the set of cells in B-P which are not cancelled by any rooks in P.

Definition

We define an elliptic analogue of the k-th rook number by

$$r_k(a, b; q, p; B) = \sum_{P \in \mathcal{N}_k(B)} wt(P),$$

where

$$wt(P) = \prod_{(i,j) \in U_B(P)} w_{a,b;q,p}(i - j - r_{(i,j)}(P)),$$

and $r_{(i,j)}(P)$ is the number of rooks in P which are in the north-west region of (i,j).

Example

Consider a Ferrers board B = B(3,3,3) and let P be a placement of two rooks in (1,3) and (3,1) in B.

$$U_B(P) = \{(2,1), (2,2), (3,2)\}$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Theorem (Schlosser-Y, '2017)

Let $B = B(b_1, ..., b_n)$ be a Ferrers board. Then we have

$$\prod_{i=1}^{n} [z+b_{i}-i+1]_{aq^{2(i-b_{i}-1)},bq^{i-b_{i}-1};q,p}
= \sum_{k=0}^{n} r_{n-k}(a,b;q,p;B) \prod_{i=1}^{k} [z-j+1]_{aq^{2(j-1)},bq^{j-1};q,p}$$

Meesue Yoo (SKKU) Elliptic rook theory May 18, 2017 25 / 33

Theorem (Schlosser-Y, '2017)

Let $B = B(b_1, ..., b_n)$ be a Ferrers board. Then we have

$$\prod_{i=1}^{n} [z+b_{i}-i+1]_{aq^{2(i-b_{i}-1)},bq^{i-b_{i}-1};q,p}$$

$$= \sum_{i=1}^{n} r_{n-k}(a,b;q,p;B) \prod_{i=1}^{k} [z-j+1]_{aq^{2(j-1)},bq^{i-1};q,p}$$

Corollary

For a Ferrers board $B = B(b_1, \ldots, b_n)$,

$$r_n(a, b; q, p; B) = \prod_{i=1}^n [b_i - i + 1]_{aq^{2(i-b_i-1)}, bq^{i-b_i-1}; q, p}.$$

In particular, for $B = B(n, n, ..., n) = [n] \times [n]$,

$$r_n(a,b;q,p;B) = [n]_{aq^{-2n},bq^{-n};q,p}[n-1]_{aq^{2-2n},bq^{1-n};q,p}\dots[1]_{aq^{-2},bq^{-1};q,p}.$$

Meesue Yoo (SKKU) Elliptic rook theory May 18, 2017 25 / 33

Proposition

Let B be a Ferrers board with I columns of height at most m, and $B \cup m$ denote the board obtained by adding the (I+1)-th column of length m to B. Then for any $k \le I$, we have

$$r_{k}(a, b; q, p; B \cup m) = W_{aq^{2(l-m)},bq^{l-m};q,p}(m-k) r_{k}(a, b; q, p; B) + [m-k+1]_{aq^{2(l-m),bq^{l-m}};q,p} r_{k-1}(a, b; q, p; B).$$

Elliptic Stirling numbers of the second kind

Consider the staircase board $St_n = B(0, 1, 2, ..., n-1)$. The product formula for $St_n \Rightarrow$

$$([z]_{a,b;q,p})^n = \sum_{k=0}^n r_{n-k}(a,b;q,p;St_n) \prod_{j=1}^k [z-j+1]_{aq^{2(j-1)},bq^{j-1};q,p}.$$

Meesue Yoo (SKKU) Elliptic rook theory May 18, 2017 27 / 33

Elliptic Stirling numbers of the second kind

Consider the staircase board $St_n = B(0, 1, 2, ..., n-1)$. The product formula for $St_n \Rightarrow$

$$([z]_{a,b;q,p})^n = \sum_{k=0}^n r_{n-k}(a,b;q,p;St_n) \prod_{j=1}^k [z-j+1]_{aq^{2(j-1)},bq^{j-1};q,p}.$$

 $r_{n-k}(a, b; q, p, St_n)$ is the elliptic Stirling numbers of the second kind $S_{a,b;q,p}(n,k)$ defined by Zsófia Kereskényiné Balogh and Michael Schlosser.

27 / 33

Elliptic Stirling numbers of the second kind

Consider the staircase board $St_n = B(0, 1, 2, ..., n-1)$. The product formula for $St_n \Rightarrow$

$$([z]_{a,b;q,p})^n = \sum_{k=0}^n r_{n-k}(a,b;q,p;St_n) \prod_{j=1}^k [z-j+1]_{aq^{2(j-1)},bq^{j-1};q,p}.$$

 $r_{n-k}(a, b; q, p, St_n)$ is the *elliptic Stirling numbers of the second kind* $S_{a,b;q,p}(n,k)$ defined by Zsófia Kereskényiné Balogh and Michael Schlosser.

Considering whether there is a rook in the last column or not, we obtain the following recursion

$$S_{a,b;q,p}(n+1,k) = W_{a,b;q,p}(k-1)S_{a,b;q,p}(n,k-1) + [k]_{a,b;q,p}S_{a,b;q,p}(n,k).$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ り へ ○

Meesue Yoo (SKKU)

Elliptic file numbers

Definition

Given a skyline board $B = B(c_1, ..., c_n)$, we define an elliptic analogue of the k-th file number of B by

$$f_k(a, b; q, p; B) = \sum_{Q \in \mathcal{C}_k(B)} wt_f(Q),$$

where

$$\operatorname{wt}_f(Q) = \prod_{(i,j) \in U_B(Q)} w_{\mathsf{a},b;q,p}(1-j).$$

Proposition

For any skyline board B, let $B \cup m$ denote a board obtained by attaching a column of height m to B. Then

$$f_k(a, b; q, p; B \cup m) = W_{aq^{-2m}, bq^{-m}; q, p}(m) f_k(a, b; q, p; B) + [m]_{aq^{-2m}, bq^{-m}; q, p} f_{k-1}(a, b; q, p; B).$$

Proposition

For any skyline board B, let $B \cup m$ denote a board obtained by attaching a column of height m to B. Then

$$f_k(a, b; q, p; B \cup m)$$
= $W_{aq^{-2m}, bq^{-m}; q, p}(m) f_k(a, b; q, p; B) + [m]_{aq^{-2m}, bq^{-m}; q, p} f_{k-1}(a, b; q, p; B).$

Theorem (Schlosser-Y, '2017)

For any skyline board $B = B(c_1, ..., c_n)$, we have

$$\prod_{i=1}^{n} [z+c_{i}]_{aq^{-2c_{i}},bq^{-c_{i}};q,p} = \sum_{k=0}^{n} f_{n-k}(a,b;q,p;B)([z]_{a,b;q,p})^{k}.$$

4□ > 4□ > 4 = > 4 = > = 90

The *r-Stirling numbers of the first kind*, denoted by $\mathfrak{c}^{(r)}(n,k)$, are defined, for all positive r, by the number of permutations of the set $\{1,\ldots,n\}$ having k cycles, such that the numbers $1,2,\ldots,r$ are in distinct cycles. (Broder, '84)

The *r-Stirling numbers of the first kind*, denoted by $\mathfrak{c}^{(r)}(n,k)$, are defined, for all positive r, by the number of permutations of the set $\{1,\ldots,n\}$ having k cycles, such that the numbers $1,2,\ldots,r$ are in distinct cycles. (Broder, '84)

The *r*-Stirling numbers of the first kind have the following generating function

$$\sum_{k=0}^n \mathfrak{c}^{(r)}(n,k) z^k = \left\{ \begin{array}{ll} z^r(z+r)(z+r+1)\cdots(z+n-1), & n \geq r \geq 0, \\ 0, & \text{otherwise.} \end{array} \right.$$

Meesue Yoo (SKKU)

The *r-Stirling numbers of the first kind*, denoted by $\mathfrak{c}^{(r)}(n,k)$, are defined, for all positive r, by the number of permutations of the set $\{1,\ldots,n\}$ having k cycles, such that the numbers $1,2,\ldots,r$ are in distinct cycles. (Broder, '84)

The *r*-Stirling numbers of the first kind have the following generating function

$$\sum_{k=0}^n \mathfrak{c}^{(r)}(n,k)z^k = \left\{ \begin{array}{l} z^r(z+r)(z+r+1)\cdots(z+n-1), & n \geq r \geq 0, \\ 0, & \text{otherwise}. \end{array} \right.$$

Consider the board $R_n = B(c_1, ..., c_n)$ such that $c_1 = \cdots = c_r = 0$, $c_i = i - 1$, for $r + 1 \le i \le n$. The product formula gives

$$z^{r}(z+r)(z+r+1)\cdots(z+n-1) = \sum_{k=0}^{n} f_{n-k}(R_{n})z^{k}$$

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ · 臺 · か९○

File placements correspond to permutations of the set $\{1, ..., n\}$ having k cycles, such that the numbers 1, 2, ..., r are in distinct cycles.

Example
$$(n = 8, r = 3, n - k = 5)$$

$$\longleftrightarrow (1 \ 4 \ 7 \ 6)(2 \ 5)(3 \ 8)$$

For $R_n = B(\underbrace{0, \dots, 0}_r, r, r+1, \dots, n-1)$, the product formula gives

$$([z]_{a,b;q,p})^r \prod_{i=1}^n [z+r+i-1]_{aq^{2(1-r-i)},bq^{1-r-i};q,p}$$

$$= \sum_{k=0}^n f_{n-k}(a,b;q,p;R_n)([z]_{a,b;q,p})^k.$$

Meesue Yoo (SKKU) Elliptic rook theory May 18, 2017 32 / 33

For $R_n = B(\underbrace{0, \dots, 0}_r, r, r+1, \dots, n-1)$, the product formula gives

$$([z]_{a,b;q,p})^r \prod_{i=1}^n [z+r+i-1]_{aq^{2(1-r-i)},bq^{1-r-i};q,p}$$

$$= \sum_{k=0}^n f_{n-k}(a,b;q,p;R_n)([z]_{a,b;q,p})^k.$$

Let $\mathfrak{c}_{a,b;q,p}^{(r)}(n,k)$ denote $f_{n-k}(a,b;q,p;R_n)$.

- $c_{a,b;q,p}^{(r)}(n,k)$ defines an elliptic analogue of r-Stirling numbers of the first kind.
- $\begin{aligned} \bullet \ & \mathfrak{c}_{a,b;q,p}^{(r)}(n+1,k) = \\ & [n]_{aq^{-2n},bq^{-n};q,p} \mathfrak{c}_{a,b;q,p}^{(r)}(n,k) + W_{aq^{-2n},bq^{-n};q,p}(n) \mathfrak{c}_{a,b;q,p}^{(r)}(n,k-1). \end{aligned}$

Meesue Yoo (SKKU)

Elliptic rook theory

May 18, 2017

32 / 33

Thank you