Rook placements and Jordan forms

Martha Yip University of Kentucky

May 18 2017

Motivation: Higman's Conjecture

Let $U_n(\mathbb{F}_q)$ be the group of $n \times n$ unipotent upper-triangular matrices over \mathbb{F}_q .

Let $k_n(q)$ be the number of conjugacy classes of $U_n(\mathbb{F}_q)$.

Higman's Conjecture: $k_n(q)$ is a polynomial in q.

We'll work on an easier related problem.

A Jordan block is

A Jordan block is

$$egin{bmatrix} c & 1 & & & & \ & c & 1 & & & \ & & \ddots & \ddots & & \ & & & c & 1 \end{bmatrix}.$$

$$\begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & 0 & & \\ & & & 0 & 1 \\ & & & & 0 \end{bmatrix} = J_{(3,2)}$$

A Jordan block is

$$\begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & 0 & & \\ & & & 0 & 1 \\ & & & & 0 \end{bmatrix} = J_{(3,2)}$$

Question: How many $n \times n$ upper-triangular nilpotent matrices over \mathbb{F}_q are conjugate to J_{λ} , for $\lambda \vdash n$?

A Jordan block is

$$egin{bmatrix} c & 1 & & & & \ & c & 1 & & & \ & & \ddots & \ddots & & \ & & & c & 1 \end{bmatrix}.$$

Over \mathbb{F}_2 ,

$$X = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ & 0 & 0 & 1 & 0 \\ & & 0 & 1 & 1 \\ & & & 0 & 0 \\ & & & & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & 0 & 1 & \\ & & & & 0 \end{bmatrix} = J_{(3,2)}.$$

Question: How many $n \times n$ upper-triangular nilpotent matrices over \mathbb{F}_q are conjugate to J_{λ} , for $\lambda \vdash n$?

A first example

Let $F_{\lambda}(q)$ be the number of $\uparrow \Delta 0$ matrices conjugate to J_{λ} .

Let n = 3.

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

•
$$F_{(1,1,1)}(q) = 1$$
.

•
$$F_{(3)}(q) = (q-1)^2 q$$
.

•
$$F_{(2,1)}(q) = q^3 - (q-1)^2 q - 1 = (q-1)(2q+1).$$

How can we compute this in general?

Theorem. [Borodin]

$$F_{\lambda}(q) = \sum_{\mu: \lambda > \mu} c_{\lambda \mu}(q) F_{\mu}(q),$$

where if the added box is in the jth column, then

$$c_{\lambda\mu}(q) = \begin{cases} q^{|\mu|-\ell(\mu)}, & \text{if } j = 1, \\ \left(q^{\mu'_{j-1}-\mu'_{j}} - 1\right)q^{|\mu|-\mu'_{j-1}}, & \text{otherwise.} \end{cases}$$

Theorem. [Borodin]

$$F_{\lambda}(q) = \sum_{\mu: \lambda > \mu} c_{\lambda \mu}(q) F_{\mu}(q),$$

where if the added box is in the jth column, then

$$c_{\lambda\mu}(q) = \begin{cases} q^{|\mu|-\ell(\mu)}, & \text{if } j = 1, \\ \left(q^{\mu'_{j-1}-\mu'_{j}} - 1\right)q^{|\mu|-\mu'_{j-1}}, & \text{otherwise.} \end{cases}$$

Example. $\mu = (4, 2, 2, 1), \lambda = (4, 3, 2, 1).$

Theorem. [Borodin]

$$F_{\lambda}(q) = \sum_{\mu: \lambda > \mu} c_{\lambda \mu}(q) F_{\mu}(q),$$

where if the added box is in the jth column, then

$$c_{\lambda\mu}(q) = \begin{cases} q^{|\mu|-\ell(\mu)}, & \text{if } j = 1, \\ \left(q^{\mu'_{j-1}-\mu'_{j}} - 1\right)q^{|\mu|-\mu'_{j-1}}, & \text{otherwise.} \end{cases}$$

Example. $\mu = (4, 2, 2, 1), \lambda = (4, 3, 2, 1).$

Theorem. [Borodin]

$$F_{\lambda}(q) = \sum_{\mu: \lambda > \mu} c_{\lambda \mu}(q) F_{\mu}(q),$$

where if the added box is in the jth column, then

$$c_{\lambda\mu}(q) = \begin{cases} q^{|\mu|-\ell(\mu)}, & \text{if } j = 1, \\ \left(q^{\mu'_{j-1}-\mu'_{j}} - 1\right)q^{|\mu|-\mu'_{j-1}}, & \text{otherwise.} \end{cases}$$

Example. $\mu = (4, 2, 2, 1), \lambda = (4, 3, 2, 1).$

Visualize $c_{\lambda\mu}(q)$ on Young's lattice

Rephrase the formula

$$F_{\lambda}(q) = \sum_{\substack{\text{paths to } \lambda}} \prod_{e} \text{edge weights} = \sum_{T \in SYT(\lambda)} F_{T}(q).$$

Example.

Some consequences

- 1. $F_{\lambda}(q) \in \mathbb{Z}[q]$.
- 2. For every SYT T,

$$\deg F_T(q) = \binom{n}{2} - n(\lambda).$$

- 3. Coefficient of highest term of $F_{\lambda}(q)$ is $f^{\lambda} = \#SYT(\lambda)$.
- 4. $(q-1)^{n-\ell(\lambda)}$ divides $F_{\lambda}(q)$. In fact,

$$G_{\lambda}(q) = F_{\lambda}(q)/(q-1)^{n-\ell(\lambda)} \in \mathbb{N}[q].$$

Some consequences

- 1. $F_{\lambda}(q) \in \mathbb{Z}[q]$.
- 2. For every SYT T,

$$\deg F_T(q) = \binom{n}{2} - n(\lambda).$$

- 3. Coefficient of highest term of $F_{\lambda}(q)$ is $f^{\lambda} = \#SYT(\lambda)$.
- 4. $(q-1)^{n-\ell(\lambda)}$ divides $F_{\lambda}(q)$. In fact,

$$G_{\lambda}(q) = F_{\lambda}(q)/(q-1)^{n-\ell(\lambda)} \in \mathbb{N}[q].$$

Question: Is there a combinatorial interpretation of the non-negative coefficients in $G_{\lambda}(q)$?

Example. Staircase board B(0, 1, 2, 3, 4, 5).

$$rk(C) = 3$$

Example. Staircase board B(0, 1, 2, 3, 4, 5).

$$rk(C) = 3$$

 $ne(C) = 6$

$$F_C(q) = (q-1)^3 q^6$$

Example. Staircase board B(0, 1, 2, 3, 4, 5).

$$rk(C) = 3$$

$$ne(C) = 6$$

$$F_C(q) = (q-1)^3 q^6$$

Theorem. [Haglund] The number of $n \times n$ matrices over \mathbb{F}_q with rank k and with support on the board B is

$$(q-1)^{\mathsf{rk}(C)} \sum_{C \in \mathcal{C}(B,k)} q^{\mathsf{ne}(C)}.$$

Idea: Is it possible to refine this formula with respect to Jordan forms?

Theorem. [Haglund] The number of $n \times n$ matrices over \mathbb{F}_q with rank k and with support on the board B is

$$(q-1)^{\mathsf{rk}(C)} \sum_{C \in \mathcal{C}(B,k)} q^{\mathsf{ne}(C)}.$$

Idea: Is it possible to refine this formula with respect to Jordan forms?

Modify ${\mathcal Y}$

Modify ${\mathcal Y}$

A bijection

Theorem. [Y] There exists a weight preserving bijection

$$\left\{ \begin{array}{c} \text{placements on } B \\ \text{with } k \text{ rooks} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{paths in } \mathcal{Z} \text{ to } \lambda \\ \ell(\lambda) = n - k \end{array} \right\}$$

A bijection

Theorem. [Y] There exists a weight preserving bijection

$$\left\{ \begin{array}{c} \text{placements on } B \\ \text{with } k \text{ rooks} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{paths in } \mathcal{Z} \text{ to } \lambda \\ \ell(\lambda) = n - k \end{array} \right\}$$

$$F_{(3,1)}(q) = (q-1)^2(3q^3 + q^2)$$

$$F_{(2,2)}(q) = (q-1)^2(2q^2+q)$$

A second bijection

Theorem. [Y] There exists a weight preserving bijection

$$\left\{ \begin{array}{c} \text{placements on } B \\ \text{with } k \text{ rooks} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{set partitions of } [n] \\ \text{with } n-k \text{ parts} \end{array} \right\}$$

$$F_{(3,1)}(q) = (q-1)^2(3q^3 + q^2)$$

$$F_{(2,2)}(q) = (q-1)^2(2q^2+q)$$

A second bijection

Theorem. [Y] There exists a weight preserving bijection

$$\left\{ \begin{array}{c} \text{placements on } B \\ \text{with } k \text{ rooks} \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \text{set partitions of } [n] \\ \text{with } n-k \text{ parts} \end{array} \right\}$$

Recap

So far, $F_{\lambda}(q)$ counts matrices, and it can be refined:

$$F_{\lambda}(q) = \sum_{\substack{\text{tableau } T \\ \text{has type } \lambda}} F_T(q) = \sum_{\substack{\text{placement } C \\ \text{has type } \lambda}} F_C(q).$$

Question: Is there an algebraic/geometric meaning for $G_C(q)$?

Example. Compare the polynomials

$$F_{(2,1)}(q) = (q-1)(2q+1) Q_{(1^3)}^{(2,1)}(q) = 2q+1$$

$$F_{(3,1)}(q) = (q-1)^2(3q^3+q^2) Q_{(1^4)}^{(3,1)}(q) = 3q+1$$

$$F_{(2,2)}(q) = (q-1)^2(2q^2+q) Q_{(1^4)}^{(2,2)}(q) = (q+1)(2q+1)$$

Flags

 $Q_{\rho}^{\lambda}(q)$ is Green's polynomial.

Theorem. [Hotta, Springer] $Q_{(1^n)}^{\lambda}(q)$ is the number of \mathbb{F}_q -rational points in the variety X_{λ} of η -stable flags, where η is a nilpotent matrix conjugate to J_{λ} .

Example. Let
$$\eta = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
. Over $k \supseteq \mathbb{F}_2$, with $V = k^3$,
$$\{0\}, \langle \mathbf{e}_1 \rangle, \langle \mathbf{e}_1, \mathbf{e}_3 \rangle, V$$

$$\{0\}, \langle \mathbf{e}_3 \rangle, \langle \mathbf{e}_1, \mathbf{e}_3 \rangle, V$$

$$\{0\}, \langle \mathbf{e}_1 + \mathbf{e}_3 \rangle, \langle \mathbf{e}_1, \mathbf{e}_3 \rangle, V$$

$$\{0\}, \langle \mathbf{e}_1 \rangle, \langle \mathbf{e}_1, \mathbf{e}_2 \rangle, V$$

$$\{0\}, \langle \mathbf{e}_1 \rangle, \langle \mathbf{e}_1, \mathbf{e}_2 + \mathbf{e}_3, \rangle, V$$

Flags

 $Q_{\rho}^{\lambda}(q)$ is Green's polynomial.

Theorem. [Hotta, Springer] $Q_{(1^n)}^{\lambda}(q)$ is the number of \mathbb{F}_q -rational points in the variety X_{λ} of η -stable flags, where η is a nilpotent matrix conjugate to J_{λ} .

Example. The variety $X_{(2,1)}$ has two irreducible subvarieties.

