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Motivation: Higman's Conjecture

Let U,(Fq) be the group of n x n unipotent upper-triangular
matrices over Fy.

Let kn(q) be the number of conjugacy classes of Up(Fy).
Higman’s Conjecture: k,(q) is a polynomial in gq.

We'll work on an easier related problem.
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A Jordan block is
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Counting nilpotent matrices

A Jordan block is

1
0 = J(3,2)

Question: How many n X n upper-triangular nilpotent matrices
over [, are conjugate to J,, for A+ n?
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Counting nilpotent matrices

A Jordan block is
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Question: How many n X n upper-triangular nilpotent matrices
over [, are conjugate to J,, for A+ n?



A first example

Let F\(q) be the number of 1 A0 matrices conjugate to J,.

Let n = 3.
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. Fi3y(q) = (¢ —1)%q.

e Foy(@) =¢>—(¢—1)%¢—1=(¢—1)(2¢+ 1).

How can we compute this in general?



A recursive formula

Theorem. [Borodin]
(@)= > ex(@)Fu(e),
i AL
where if the added box is in the jth column, then
q|:u|_£(,u)’ if ] — 17

s / / !
CAM(Q) (q“j—l_'uj — 1) qw_“j—l, otherwise.
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A recursive formula

Theorem. [Borodin]

(@)= > ex(@)Fu(e),
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where if the added box is in the jth column, then
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Visualize cy,(q) on Young's lattice
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Rephrase the formula

Fy(@) = ) _ ]]edge weights= ) Fr(q).

paths € TeSYT(N)

Example.

Fo1y(@) = 1-(¢°—=1) + (¢—1)-q =(g—1)(2¢+1)

[
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Some consequences

1. Fy\(q) € Z[q].

2. For every SYT T,
n
deg Fr(q) = () — n(N).
3. Coefficient of highest term of F\(q) is f» = #SYT()).
4. (g — 1)t divides F\(g). In fact,

Gr(q) = Fx(q)/(q—1)"*™ e N[q].



Some consequences

1. Fy\(q) € Z[q].

2. For every SYT T,
n
deg Fr(q) = () — n(N).
3. Coefficient of highest term of F\(q) is f» = #SYT()).
4. (g — 1)t divides F\(g). In fact,
GA(q) = F(q)/(g — 1)" "M e N[q].

Question: Is there a combinatorial interpretation of the non-
negative coefficients in G,(q)7



Rook placements

Example. Staircase board B(0,1,2,3,4,5).
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Example. Staircase board B(0,1,2,3,4,5).

o N rk(C) =3
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C = C NI
Fo(q) = (g —1)3¢°




Rook placements

Example. Staircase board B(0,1,2,3,4,5).

. o | & rk(C) =3
NBBEE ne(C) = 6
C = Al
Fo(q) = (¢ —1)3¢°

Theorem. [Haglund] The number of n x n matrices over F,
with rank k& and with support on the board B is

(q_ 1)I’k(C) Z qne(C).
CeC(B.,k)

Idea: Is it possible to refine this formula with respect to Jordan
forms?
8-b
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Theorem. [Haglund] The number of n x n matrices over F,
with rank k& and with support on the board B is

(q_ 1)I’k(C) Z qne(C).
CeC(B.,k)

Idea: Is it possible to refine this formula with respect to Jordan
forms?



Modify YV
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A Dbijection

Theorem. [Y] There exists a weight preserving bijection

placements on B paths in Z to \
with k rooks (N =n—k

Example. n =4, k = 2 rooks.
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A Dbijection

Theorem. [Y] There exists a weight preserving bijection

placements on B paths in Z to \
with k rooks (N =n—k

Example. n =4, k = 2 rooks.
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(¢—1)q
e Fia1y () = (¢~ 1)2(3¢® + ¢)
— =
q—1 Ao o e A  JK
e Ao a
1 q q2
~1 ~1
: o Fo2y(@) = (g - 1)2(2¢% + q)
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A second bijection

Theorem. [Y] There exists a weight preserving bijection

placements on B set partitions of [n]
with k rooks with n — k parts

Example. n =4, kK = 2 rooks.

Fiz1y(q) = (g - 12343 + ¢°)

F(2)(q) = (¢ — 1)?(2¢% + q)

11



A second bijection

Theorem. [Y] There exists a weight preserving bijection

placements on B set partitions of [n]
with k rooks with n — k parts

Example. n =4, kK = 2 rooks.
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Fi31)(@) = (¢—1)?(3¢° +¢%) 123|4 124|3 1342 2341

h oo
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Fio0y(q) = (¢—1)?(2¢° +q) 1234 1324 23[14
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Recap

So far, F\(q) counts matrices, and it can be refined:

(@)= > Fprleg= >  Folg).

tableau T placement C
has type A has type A

Question: Is there an algebraic/geometric meaning for G- (q)~

Example. Compare the polynomials

F2,1)(a) = (2+1) Q) (@) =2 +1
Fz 1)(a) = BP+eD) Qi (@ =3q+1

Fo2)(a) = 22 +a)  QEH @ =(a+1)(2q+1)
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Flags
Q5(q) is Green's polynomial.
Theorem. [Hotta, Springer] Q%ln)(Q) is the number of Fs-rational

points in the variety X, of n-stable flags, where n is a nilpotent
matrix conjugate to J,.

10
Example. Let n = 0 0|. Over k D Fy, with V = k3,
00
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Flags

Qf,‘(q) is Green’s polynomial.

Theorem. [Hotta, Springer] Q%‘ln)(q) is the number of F,-rational
points in the variety X, of n-stable flags, where n is a nilpotent

matrix conjugate to J,.

Example. The variety X (5 1y has two irreducible subvarieties.

(V2 D (e1), V2 2 kern) X

2

3

G21(q) =q¢+1+g

o

(Vo = kern)
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