# Local minimizer and De Giorgi's type conjecture for the isotropic-nematic interface

#### Zhifei Zhang

School of Mathematical Sciences, Peking University

Nov 30, 2017



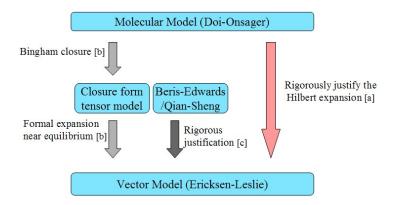
There are three different kinds of theories to model the nematic liquid crystal:

- Onsager molecular theory: use a distribution function  $f(\mathbf{x}, \mathbf{m})$  to represent the number density for the number of molecules whose orientation is parallel to  $\mathbf{m}$  at point  $\mathbf{x}$ .
- Landau-de Gennes Q-tensor theory: use a symmetric traceless tensor  $Q(\mathbf{x})$  to describe the orientation of molecules:

$$Q(\mathbf{x}) = \int_{\mathbb{S}^2} f(\mathbf{x}, \mathbf{m}) \big( \mathbf{m}\mathbf{m} - \frac{1}{3}\mathbf{I} \big) \mathrm{d}\mathbf{m}.$$

• Oseen-Frank vector theory: use a direction field n(x) to describe the average alignment direction of the molecules at x.

### Consistency between the dynamical models



[a] W. Wang, P. Zhang, Z. Zhang, The small Deborah number limit of the Doi-Onsager equation to the Ericksen-Leslie equation, CPAM 2015
[b] J. Han, Y. Luo, W. Wang, P. Zhang, Z. Zhang, From microscopic theory to macroscopic theory: a systematic study on modeling for liquid crystals, ARMA 2015.
[c] W. Wang, P. Zhang, Z. Zhang, Rigorous derivation from Landau-de Gennes theory to Ericksen-Leslie theory, SIAM JMA 2015

[d] W. Wang, P. Zhang, Z. Zhang, Well-posedness of the Ericksen-Leslie system, ARMA 2013.

To prove the consistency between Doi-Onsager model and Ericksen-Lesile model, the main ingredients are as follows:

• Hilbert expansion:

$$egin{aligned} &f^arepsilon(\mathbf{x},\mathbf{m},t) = \sum_{k=0}^3 arepsilon^k f_k(\mathbf{x},\mathbf{m},t) + arepsilon^3 f_R^arepsilon(\mathbf{x},\mathbf{m},t) \ &v^arepsilon(\mathbf{x},t) = \sum_{k=0}^2 arepsilon^k v_k(\mathbf{x},t) + arepsilon^3 v_R^arepsilon(\mathbf{x},t). \end{aligned}$$

• The equilibrium  $f_0 = f_0(\mathbf{n} \cdot \mathbf{m})$ (Liu-Zhang-Zhang, CMS 2005):

$$\mathcal{A}[f] = \int_{\mathbb{S}^2} \left( f(\mathbf{m}) \ln f(\mathbf{m}) + \frac{1}{2} f(\mathbf{m}) \mathcal{U}f(\mathbf{m}) \right) \mathrm{d}\mathbf{m}.$$

- The spectral analysis of the linearized operator around  $f_0$ .
- Uniform estimates of  $(f_R, v_R)$ .

**Remark**.  $(v_0, \mathbf{n})$  satisfies the Ericksen-Lesile system.

- Use a symmetric traceless tensor  $Q(\mathbf{x})$  to describe the orientation of molecules:
  - Q=0:  $\Rightarrow$  isotropic;
  - Q has two equal eigenvalues:  $Q = s(nn \frac{1}{3}I), n \in \mathbb{S}^2$ .  $\Rightarrow$  uniaxial;
  - Q has three different eigenvalues:

$$Q = s(\mathbf{n}\mathbf{n} - \frac{1}{3}\mathbf{I}) + \lambda(\mathbf{n}'\mathbf{n}' - \frac{1}{3}\mathbf{I}), \quad \mathbf{n}, \mathbf{n}' \in \mathbb{S}^2, \quad \mathbf{n} \cdot \mathbf{n}' = 0.$$

 $\Rightarrow$ biaxial;

• The Landau-de Gennes energy:

$$\begin{split} \mathcal{F}^{(LG)}[Q] = & \int_{\Omega} \underbrace{\left(\frac{a}{2} \mathrm{tr}(Q^2) - \frac{b}{3} \mathrm{tr}(Q^3) + \frac{c}{4} (\mathrm{tr}Q^2)^2\right)}_{F_{bulk}} \mathrm{d}\mathbf{x} \\ & + \frac{1}{2} \int_{\Omega} \underbrace{\left(L_1 |\nabla Q|^2 + L_2 Q_{ij,j} Q_{ik,k} + L_3 Q_{ik,j} Q_{ij,k} + L_4 Q_{lk} Q_{ij,k} Q_{ij,l}\right)}_{F_{elastic}} \mathrm{d}\mathbf{x}. \end{split}$$

Take  $L_4 = 0$  to ensure that the energy has a lower bound(Ball-Majumdar, 2010). The  $L_2$  term and  $L_3$  term differ from only a boundary term, so we take  $L_3 = 0$ .

#### Critical points of bulk energy

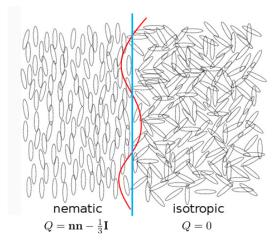
• Critical points of *F*<sub>bulk</sub>:

$$Q = 0$$
 or  $Q = s^{\pm}(\mathbf{nn} - \frac{1}{3}\mathbf{I}),$ 

where  $s^{\pm}$  are the solutions of  $3a - bs + 2cs^2 = 0$ , i.e.,

$$s^{\pm} = \frac{b \pm \sqrt{b^2 - 24ac}}{4c}$$

- Stability of critical point: if  $0 < a < \frac{b^2}{24c}$ , then Q = 0 and  $Q = s^+(nn \frac{1}{3}I)$  are stable, while  $Q = s^-(nn \frac{1}{3}I)$  is unstable.
- We impose  $b^2 = 27ac$  so that the bulk energy of two stable phases are equal. After a scaling if necessary, we may choose a = 1/3, b = 3, c = 1 so that  $s^+ = 1$  and  $s^- = \frac{1}{2}$ .



**I-N interface problem**: study the configuration in which the two phases Q = 0 and  $Q = nn - \frac{1}{3}I$  coexist?

The elastic energy will prevent instantaneous jump from one phase to another one. The transition between two phases appears in a thin region of the width  $\sqrt{L_1}$ . Thus, we introduce  $Q(x) = \tilde{Q}(x/\sqrt{L_1})$ . Letting  $L_1 \to 0$ , the limiting energy functional takes

$$\mathcal{F}(Q) = \int_{\mathbb{R}^3} \Big( rac{1}{6} \mathrm{tr}(Q^2) - \mathrm{tr}(Q^3) + rac{1}{4} (\mathrm{tr}Q^2)^2 + rac{1}{6} |
abla Q|^2 + rac{L}{4} Q_{ij,j} Q_{ik,k} \Big) \mathrm{d}\mathbf{x}.$$

Minimization problem:

 $\min_{Q} \mathcal{F}(Q)$ 

among all symmetric traceless tensor Q satisfying the boundary condition:

$$Q(x_1, x_2, -\infty) = 0, \quad Q(x_1, x_2, +\infty) = nn - \frac{1}{3}I.$$
 (1)

The Euler-Lagrange equation (L = 0) takes

$$-\Delta \mathbf{Q} + \mathbf{Q} - 9\mathbf{Q}^2 + 3|\mathbf{Q}|^2\mathbf{Q} + 3|\mathbf{Q}|^2\mathbf{I} = 0.$$
(2)

Energy functional:

$$E_{arepsilon}(\mathbf{v}_{arepsilon}) = \int_{\Omega} rac{arepsilon}{2} |
abla \mathbf{v}_{arepsilon}|^2 + rac{1}{4arepsilon} (1-\mathbf{v}_{arepsilon}^2)^2 dx.$$

The constant functions  $v = \pm 1$  minimize the functional  $E_{\varepsilon}$ .

**Phase transition problem:** study the configurations in which the two phases  $\pm 1$  coexist?

$$u = 1 \qquad \qquad u = -1$$
$$\Delta u = (u^2 - 1)u$$

- N = 1: the function w(t) = tanh (<sup>t</sup>/<sub>√2</sub>) solves (AC) with the boundary condition w(±∞) = ±1.
- for any  $y, e \in \mathbf{R}^N$ , the family

$$u(x) = w((x - y) \cdot e)$$

solves (AC).

• In 1978, De Giorgi made the following conjecture:

Let u be a bounded solution of the Allen-Cahn equation, which is monotone in one direction. Then, at least when  $N \leq 8$ , there exists  $y, e \in \mathbf{R}^N$  so that

$$u(x) = w((x - y) \cdot e).$$

Equivalently, all level sets of u must be hyperplanes.

This conjecture was solved by Ghoussoub and Gu(N = 2), Ambrosio-Cabré(N = 3), and Savin $(4 \le N \le 8)$ .

We write

$$Q(z) = \lambda_1 \mathbf{n}_1 \mathbf{n}_1 + \lambda_2 \mathbf{n}_2 \mathbf{n}_2 + \lambda_3 \mathbf{n}_3 \mathbf{n}_3$$
, where  $\mathbf{n}_i(z) \cdot \mathbf{n}_j(z) = \delta_j^i$ ,  
with  $\lambda_1 + \lambda_2 + \lambda_3 = 0$ . Then

$$\mathcal{F}(Q) \geq F(diag\{\lambda_1, \lambda_2, \lambda_3\}).$$

Thus, we may assume

$$Q = diag \Big\{ -\frac{S+T}{3}, -\frac{S-T}{3}, \frac{2S}{3} \Big\}.$$

The energy  $\mathcal{F}(Q)$  reduces to

$$\begin{aligned} \mathcal{F}(S,T) = & \frac{2}{9} \int \left( \frac{1}{6} [3(S')^2 + (T')^2] \right. \\ & \left. + \frac{1}{6} (3S^2 + T^2) - S(S^2 - T^2) + \frac{1}{18} (3S^2 + T^2)^2 \right) \mathrm{d}z, \end{aligned}$$
with  $S(-\infty) = T(\pm \infty) = 0, S(+\infty) = 1.$ 

Euler-Lagrange equations:

$$-S'' + S - 3S^{2} + T^{2} + 2S(3S^{2} + T^{2})/3 = 0,$$
  
- T'' + T + 6ST + 2T(3S^{2} + T^{2})/3 = 0.

Explicit (uniaxial) solution:

$$S(x) = 1 - (1 + \exp(x - t))^{-1}, \quad T(x) = 0.$$

#### Theorem (Park-Wang-Zhang-Z, CVPDE 2017)

The global minimizer of  $\mathcal{F}(Q)$  must take the form

$$Q(s) = \frac{1}{2}(1 + \tanh \frac{1}{2}(s-t))(nn - \frac{1}{3}I),$$
 (3)

where t is an arbitrary parameter.

Question: Is the uniaxial solution the only solution of all the local minimizers?

#### Theorem (Chen-Zhang-Z 2017)

All the local minimizers of  $\mathcal{F}(Q)$  must take the form (3). In fact, (3) gives all solutions of (2)-(1) in 1-D.

**Difficulty:** For the global minimizer, one can reduce Q to a diagonal form. For the local minimizer, we have to consider the general form:

$$Q = \lambda_1 \mathbf{n}_1 \mathbf{n}_1 + \lambda_2 \mathbf{n}_2 \mathbf{n}_2 + \lambda_3 \mathbf{n}_3 \mathbf{n}_3,$$

where  $\mathbf{n}_i(z) \cdot \mathbf{n}_j(z) = \delta_j^i$ .

# 1-D problem with L = 0: local minimizer

#### Key ingredients of the proof:

• Introduce two quantities:  $A(x) = |Q(x)|^2$  and  $B(x) = |Q'(x)|^2$ 

$$A'' = -A + 5B + \frac{3}{2}A^2, \quad B(\pm \infty) = 0, \quad A(-\infty) = 0, \quad A(+\infty) = \frac{2}{3}.$$

- $B \ge A \sqrt{6}A^{3/2} + \frac{3}{2}A^2$  and the equality holds if and only if  $\lambda_i = 2a$  and  $\lambda_j = -a$  for  $j \ne i$ .
- $0 < A < \frac{2}{3}$  and A'(x) > 0.
- $A''(x) = 4A 5\sqrt{6}A^{3/2} + 9A^2$ , which implies that

$$B = A - \sqrt{6}A^{3/2} + \frac{3}{2}A^2$$

• Assume that  $\lambda_1 = \lambda_2 = -\frac{5(x)}{3}$  and  $\lambda_3 = \frac{25(x)}{3}$ . Then we prove that  $\mathbf{n}_3(x)$  is a constant vector  $\mathbf{n}$ .

For the case of  $L \neq 0$ , the problem becomes more complex. In this case, the direction vector **n** on the anchoring condition at  $+\infty$  could make a significant effect on the behavior for the minimizers. There are three different types of the alignment director **n** on the boundary as below:

- Homeotropic anchoring:  $\mathbf{n} \cdot (0, 0, 1) = 1$ ;
- 2 Planar anchoring:  $\mathbf{n} \cdot (0, 0, 1) = 0$ ;
- **③** Tilt anchoring:  $0 < \mathbf{n} \cdot (0, 0, 1) < 1$ .

For simplicity, we will first seek minimizers of the diagonal form

$$Q = \begin{pmatrix} -\frac{1}{3}(S+T) & 0 & 0\\ 0 & -\frac{1}{3}(S-T) & 0\\ 0 & 0 & \frac{2}{3}S \end{pmatrix},$$
 (4)

which is meaningful due to the rotation invariant of the bulk energy.

In 1-D, the energy functional is reduced to

$$\begin{split} \mathcal{F}_L(S,T) &= \frac{2}{9} \int_{\mathbb{R}} \Big( \frac{1+L}{2} (S')^2 + \frac{1}{6} (T')^2 + \frac{1}{6} (3S^2 + T^2) - S(S^2 - T^2) \\ &\quad + \frac{1}{18} (3S^2 + T^2)^2 \Big) \mathrm{d}s. \end{split}$$

The associated Euler-Lagrange equation takes

$$\begin{cases} -\frac{1+L}{2}S'' + \frac{5}{2} - \frac{3S^2}{2} + \frac{T^2}{2} + \frac{S(3S^2 + T^2)}{3} = 0, \\ -\frac{1}{6}T'' + \frac{T}{6} + ST + \frac{T(3S^2 + T^2)}{9} = 0. \end{cases}$$
(5)

Here we consider the homeotropic anchoring condition, which leads to the following boundary conditions for (S, T):

$$S(+\infty) = 1, \quad T(+\infty) = S(-\infty) = T(-\infty) = 0.$$
 (6)

It is obvious that (5)-(6) has a uniaxial solution with T = 0 and S(s) solving  $-(1+L)S'' + S - 3S^2 + 2S^3 = 0.$ 

That is, an uniaxial equilibrium state takes

$$\mathbf{Q}_0(s) = S(s) ext{diag} \Big\{ -rac{1}{3}, -rac{1}{3}, rac{2}{3} \Big\}, \quad S(s) = S^*(s/\sqrt{1+L}),$$

where  $S^*$  solves

$$-S'' + S - 3S^{2} + 2S^{3} = 0, \quad S(-\infty) = 0, \ S(+\infty) = 1.$$
(7)

Theorem (Park-Wang-Zhang-Z, CVPDE 2017)

The uniaxial equilibrium state  $\mathbf{Q}_0$  is stable for the energy functional  $\mathcal{F}(Q)$  when  $L \leq 0$  and unstable when L > 0.

**Conclusion:** the stable solution subject to the homeotropic anchoring must be biaxial when L > 0.

#### Questions:

- When L < 0, is there any other solution?
- When L > 0, the profile of the stable (biaxial) solution?

#### Partial progress:

Theorem (Chen-Zhang-Z 2017)

For all L > -1, the ODE system (5)-(6) has only one solution

$$T(x) \equiv 0, \quad S(x) = S^*(rac{x}{\sqrt{1+L}}),$$

where  $S^*$  solves (7).

**Conclusion:** the stable solution subject to the homeotropic anchoring can not be of the diagonal form (4) when L > 0.

Motivated by De Giorgi's conjecture, we propose the following **generalized De Giorgi's conjecture(GDC)**:

Let **Q** be symmetric, traceless and a bounded solution of (2)-(1). Let  $\lambda_3$  be the largest eigenvalue of *Q*. If  $\partial_{x_3}\lambda_3 > 0$ , then all level sets  $\{x \in \mathbf{R}^3 : Q_{ij}(x) = s\}$  must be hyperplanes.

Remark.

- Compared with the Allen-Cahn equation, this conjecture seems more difficult, since (2) is a system with five independent components.
- When  $L \neq 0$ , it remains unclear what is the right version of De Giorgi's conjecture?

Under the assumption that the eigenvector of Q corresponding to the largest eigenvalue is a constant vector, we can give an affirmative answer to GDC.

#### Theorem (Chen-Zhang-Z 2017)

The level set of global solutions of (2)-(1) satisfying  $\mathbf{n}_3(x_1, x_2, x_3) \equiv \mathbf{n}$  and  $\partial_{x_3} \lambda_3 > 0$  are hyperplanes in  $\mathbf{R}^3$ . Moreover,

$$\mathbf{Q}(x_1,x_2,x_3)=S(x_3)(\mathsf{nn}-\frac{1}{3}\mathsf{I}).$$

**Key point:** In this case, we can reduce the system to a PDE system of the form:

$$\Delta S = S - 3S^{2} + T^{2} + \frac{2S(3S^{2} + T^{2})}{3},$$
  
$$\Delta T = 4|\mathbf{n}_{1} \cdot \nabla \mathbf{n}_{2}|^{2} \cdot T + T + 6ST + \frac{2T(3S^{2} + T^{2})}{3}.$$

**Key lemma:** If  $0 \le S \le M$  for some M > 0, then  $T \equiv 0$ .

The gradient flow of Landau-de Gennes energy:

$$egin{aligned} \mathcal{Q}^arepsilon_t &= -rac{1}{arepsilon^2} f(\mathcal{Q}^arepsilon) + \mathcal{L} \mathcal{Q}^arepsilon, \end{aligned}$$

where

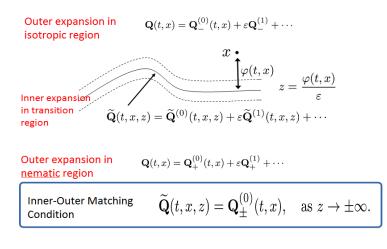
$$f(Q)=aQ-bQ^2+c|Q|^2Q+rac{b}{3}|Q|^2\mathbf{I},$$

and

$$(\mathcal{L}Q)_{kl} = L_1 \Delta Q_{kl} + \frac{1}{2}(L_2 + L_3)(Q_{km,ml} + Q_{lm,mk} - \frac{2}{3}\delta_{kl}Q_{ij,ij}).$$

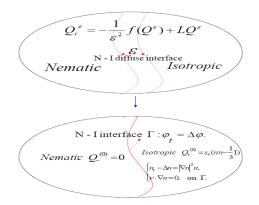
**Goal:** study the behaviour of the solution  $Q^{\varepsilon}$  as  $\varepsilon \to 0$ .

# Asymptotic matching expansion



## Sharp interface model without hydrodynamics

In the case when  $L_1 = 1, L_2 = L_3 = 0$ , as  $\varepsilon \to 0$ ,



M. Fei, W. Wang, P. Zhang, Z. Zhang, SIAM J. Appl. Math., 75(2015), 1700-1724.

Let  $Q_R^{\varepsilon} = Q^{\varepsilon} - Q_A^{\varepsilon}$ . Then we have

$$\begin{split} &\frac{1}{2}\partial_t \int_{\Omega} |Q_R^{\varepsilon}|^2 dx + \int_{\Omega} \left( |\nabla Q_R^{\varepsilon}|^2 + \varepsilon^{-2} \left( f'(Q_A^{\varepsilon}) Q_R^{\varepsilon} : Q_R^{\varepsilon} \right) \right) dx \\ &= -\frac{1}{2} \varepsilon^{-2} \int_{\Omega} \left( f''(Q_A^{\varepsilon} + \theta Q_R^{\varepsilon}) Q_R^{\varepsilon^2} : Q_R^{\varepsilon} \right) dx - \int_{\Omega} (Q_B^{\varepsilon} : Q_R^{\varepsilon}) dx. \end{split}$$

The key ingredient is to establish the spectral lower bound:

#### Theorem

There exists a positive constant C independent of  $\varepsilon$  so that

$$\int_{\Omega} \left( \left| 
abla Q 
ight|^2 + arepsilon^{-2} (f'(Q^arepsilon_A) Q : Q)) dx \geq -C \int_{\Omega} |Q|^2 dx$$

for any traceless and symmetric  $3 \times 3$  matrix Q.

M. Fei, W. Wang, P. Zhang, Z. Zhang, preprint 2017.

#### Summary

• 1-D problem with L = 0: all local minimizers must take the form

$$Q(s) = rac{1}{2}(1+ anhrac{1}{2}(s-t))(\mathbf{nn}-rac{1}{3}\mathbf{l}).$$

- 1-D problem with  $L \leq 0$  and homeotropic anchoring: the uniaxial equilibrium state  $\mathbf{Q}_0 = S(s) \operatorname{diag} \left\{ -\frac{1}{3}, -\frac{1}{3}, \frac{2}{3} \right\}$  is stable.
- 1-D problem with L > 0 and homeotropic anchoring: the stable solution can not be of the diagonal form.
- 3-D problem with L = 0: we propose the generalized De Giorgi's conjecture, and gave a positive answer when the eigenvector of Q corresponding to the largest eigenvalue is a constant vector.
- Sharp interface model without hydrodynamics.

- Which profile is stable for 1-D problem with  $L \le 0$  and planar (or tilt) anchoring?
- Which profile is stable for 1-D problem with *L* > 0 and homeotropic (or planar, tilt) anchoring?
- Generalized De Giorgi's conjecture when L = 0?
- What is the right version of De Giorgi's conjecture when  $L \neq 0$ ?
- Sharp interface model with hydrodynamics and  $L \neq 0$ .

# Thanks for Your Attention!