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Big Picture

Quantum groups are certain Hopf algebras, including deformations of
universal enveloping algebras, that provide solutions to Yang-Baxter
equations.

Whittaker functions are certain matrix coefficients for representations of
reductive algebraic groups over local fields, like GLr (R) or GLr (Qp), or
their covers.

GOAL: Explain these terms in greater detail, and describe connections
between them. From work in the ‘70’s by Kazhdan-Kostant over R to
recent work for metaplectic covers of groups over non-archimedean fields
(B.-Buciumas-Bump (2016), B3-Friedberg (2017), and more in Daniel
Bump’s talk).
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Basics of quantum groups in two slides (1 of 2)

Here’s an example of a presentation of a quantum group:

Uq(sl2) := 〈E ,F ,K ,K−1 |
KK−1 = K−1K = 1

KEK−1 = q2E ,KFK−1 = q−2F[
E ,F

]
= K−K−1

q−q−1

〉

A similar presentation is possible for Uq(g) for any complex
semisimple Lie algebra g, using Cartan matrix and q-binomial
coefficients (so has a PBW-type basis).

If q is not a root of unity, representation theory of Uq(g) closely
resembles that of g (semisimplicity, highest weight theory).

More generally, quantum groups B are quasi-triangular Hopf algebras,
so there is a co-algebra structure ∆ : B −→ B ⊗ B (and so tensor
products of B-modules are B-modules).
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Quantum groups and the Yang-Baxter equation

co-algebra structure ∆ : B −→ B ⊗ B

Possible trouble – natural map τ : a⊗ b 7→ b ⊗ a does not yield
isomorphism of B-mods V ⊗W 'W ⊗ V . (τ ◦∆ 6= ∆ in general)

Hope – invertible element R ∈ B ⊗ B such that

R−1∆(b)R = τ ◦∆(b) for all b ∈ B

and then τ ◦ R gives the desired isomorphism of modules.

Drinfeld (ICM86) demonstrated such an R for version of U = Uq(sl2)
and showed

R12R13R23 = R23R13R12 (∗)

on U ⊗ U ⊗ U, where Rij denotes R on the i-th and j-th copy of U.

Relation (∗) is known as the quantum Yang-Baxter equation.



Quantum groups and the Yang-Baxter equation

co-algebra structure ∆ : B −→ B ⊗ B

Possible trouble – natural map τ : a⊗ b 7→ b ⊗ a does not yield
isomorphism of B-mods V ⊗W 'W ⊗ V . (τ ◦∆ 6= ∆ in general)

Hope – invertible element R ∈ B ⊗ B such that

R−1∆(b)R = τ ◦∆(b) for all b ∈ B

and then τ ◦ R gives the desired isomorphism of modules.

Drinfeld (ICM86) demonstrated such an R for version of U = Uq(sl2)
and showed

R12R13R23 = R23R13R12 (∗)

on U ⊗ U ⊗ U, where Rij denotes R on the i-th and j-th copy of U.

Relation (∗) is known as the quantum Yang-Baxter equation.



Quantum groups and the Yang-Baxter equation

co-algebra structure ∆ : B −→ B ⊗ B

Possible trouble – natural map τ : a⊗ b 7→ b ⊗ a does not yield
isomorphism of B-mods V ⊗W 'W ⊗ V . (τ ◦∆ 6= ∆ in general)

Hope – invertible element R ∈ B ⊗ B such that

R−1∆(b)R = τ ◦∆(b) for all b ∈ B

and then τ ◦ R gives the desired isomorphism of modules.

Drinfeld (ICM86) demonstrated such an R for version of U = Uq(sl2)
and showed

R12R13R23 = R23R13R12 (∗)

on U ⊗ U ⊗ U, where Rij denotes R on the i-th and j-th copy of U.

Relation (∗) is known as the quantum Yang-Baxter equation.



Utility of Quantum Groups

History really in reverse – Drinfeld, Jimbo defined these structures to
provide instances of qYBE

Extremely rigid structure – canonical bases with structure constants
in positive integers arise “at q = 0” (Kashiwara, Lusztig)

Jimbo: Generalized Schur-Weyl duality in which (Sr ,GLn) on V⊗r is
replaced by the pair (Hr ,Uq(gln)), with Hr the finite Hecke algebra

Jones: Restrict this to GL2 and to reps of Sr with Young diagram at
most two rows to obtain Temperley-Lieb algebra in place of Hr .

In this talk, discuss how the matrix R associated to particular
quantum group appears in a wholly new context in Whittaker
functions of covering groups



Whittaker functions for reductive groups over local fields

A Whittaker function used to be just a solution to a second-order
(confluent hypergeometric) differential equation.

Jacquet (‘67) defined them on groups over local fields F . Let ψ be a
non-degenerate character of the unipotent radical U(F ) of a Borel sg.
Then a Whittaker function W (g) is a function satisfying

W (ug) = ψ(u)W (g) u ∈ U(F ), g ∈ G (F ), (∗∗)

and appearing in an irreducible subspace under the G -action by right
translation on functions satisfying (∗∗).

Theorem (Gelfand-Graev, Jacquet-Langlands, P-S, Shalika, Rodier)

F : finite or local. An irreducible representation (π,V ) of G (F ) has at
most one Whittaker model (space of Whittaker functions isomorphic to π).
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Whittaker functions and number theory

Whittaker functions over local fields are a basic tool in the theory of
automorphic forms and the construction of automorphic L-functions:

They give the local contributions of Fourier coefficients of
non-holomorphic Eisenstein series, so feature in the Langlands-Shahidi
method and are fundamental to the Rankin-Selberg method.

As we’ll see in the next few slides, they appear in important structure
theorems in local theory of automorphic forms.



Archimedean Whittaker functions (F = R or C)

Often, we seek formulas for the Whittaker function of a K -fixed vector in
the representation (K – maximal compact). “spherical Whittaker function”
So the resulting function is left (U, ψ)-equivariant and right K -invariant.

In the archimedean case, this is the same (up to change of vars.) as the
left (U, ψ)- and right (U−, ψ−)-equivariant function.

Kostant (‘79) showed that Whittaker functions are common eigenfunctions
of commuting Hamiltonians for the associated quantum Toda chain.
(Restrict Laplace operator and its higher order analogues to the space of
Whittaker functions)

Jimbo (‘86) calculated the R-matrix of the Toda system for classical affine
types. They are the R-matrices for the standard module of Uq(g).

Skipping lots of interesting results evaluating archimedean Whittaker
functions (Stade, Givental, GLO). See Lam’s article (arXiv:1308.5451) for
a nice summary.
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Geometric Satake Equivalence

Theorem (Satake Isomorphism)

For a non-archimedean local field F with ring of integers O,

Cc [G (F )/G (O)]G(O) ' C[X∗(T )]W ' C⊗ K0(Rep(G∨))

Lusztig, Ginzburg, and Mirkovic-Vilonen (‘07) demonstrated an
equivalence between Rep(G∨) and a category of perverse sheaves
(D-modules) on Gr(G ) := G ((t))/G [[t]].

This offers a construction of G∨ without using root data.
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Quantizing the Geometric Satake Equivalence

Gaitsgory (‘08) quantized the geometric Satake equivalence:

If we replace Rep(G∨) with Rep(Uq(G∨)),
then what replaces the category of D-modules?

Naive guess: D-modules on line bundles of Gr(G ), with fibers having
monodromy described by q. (Wrong)

J. Lurie: Use Whittaker D-modules – (U((t)), ψ)-equivariant D-modules
on Gr(G ). (Actually worse; need twisted version with twist related to q)

Theorem (Gaitsgory, Lurie)

Let q = e2πic , not a root of unity. Then Whitc(Gr(G )) ' Rep(Uq(G∨))

This “Whittaker category” was studied in earlier papers of Frenkel,
Gaitsgory, Kazhdan, and Vilonen, resulting in a geometric proof of the
Casselman-Shalika formula for spherical Whittaker function over local field.
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Whittaker functions over non-archimedean local fields

For unramified principal series of G (F ): (χ : T (F )/T (O) −→ C)

i(χ) := IndG
B (δ1/2χ) = {f ∈ C∞(G ) | f (bg) = δ1/2χ(b)f (g),∀b ∈ B, g ∈ G}

We may compute the image of its spherical (i.e., G (O)-fixed) vector f ◦

under the Whittaker embedding Wχ.

Theorem (Shintani, Kato, Casselman-Shalika)

Let χ have Langlands parameters z = (z1, . . . , zr ). Then for tλ ∈ T with
λ dominant,

Wχ(f ◦)(tλ) = δ1/2(tλ)
∏
α∈Φ+

(1− q−1zα)sλ(z)

sλ : the character of the irreducible rep of G∨(C) of highest weight λ.
q : cardinality of the residue field of G (O)
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Key ingredients in Casselman-Shalika’s proof

Whittaker models are unique.

i(χ) and i(χw ) are isomorphic for w ∈W . Let Aw be the intertwining
operator made by averaging over Uw = U ∩ wU−w−1.

So since Wχ and Wχw ◦ Aw are both Whittaker models on i(χ), they
differ by a scalar (depending on z associated to χ).

Suffices to compute this “magic factor” for a simple reflection s ∈W .

Depending on lots of choices, the “magic factor” is roughly of the form:

zα∨ − q−1

1− zα∨
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Whittaker functions for metaplectic covers

Suppose that µn ⊂ F . Construct a central extension:

1 −→ µn −→ G̃
π−→ G (F ) −→ 1

We can ask about spherical Whittaker functions, but everything is MORE
COMPLICATED!

For example, T̃ = π−1(T (F )) is not abelian, but we can still construct a
principal series with G (O) fixed vectors. Whittaker models are generally
not unique (Kazhdan-Patterson (‘84), Savin (‘88,‘04), McNamara (‘12))

In particular, Kazhdan and Patterson computed the scattering matrix for

W
(i)
χs ◦ As in terms of a natural basis of Whittaker functions {W (j)

χ }.

For example, if G = GLr it is a complicated though sparse square matrix
of size nr and its entries contain n-th order Gauss sums.
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Results on spherical Whittaker functions for G̃

Lots of (non-canonical) descriptions as generating functions
parametrized by representation-theoretic data on “dual group”
depending on cover degree (B-Bump-Friedberg, McNamara,
B-Friedberg, Friedberg-Zhang), or

Descriptions as average of metaplectic version of Weyl group action
or Hecke algebra action (Chinta-Offen, McNamara, Patnaik-Puskás)

We’d like an algebraic characterization of the result.
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Whittaker functions on covers of GLr(F )

Theorem (B-Buciumas-Bump, 2016)

For a simple reflection si , the Kazhdan-Patterson scattering matrix for

GL
(n)
2 (F ) is a Drinfeld twist of the R-matrix for the standard module of

U√
q−1(ĝln).

In dealing with a simple reflection, we reduce our calculation down to
rank one. Hence covers of GL2 suffice.

We discovered this by first expressing the metaplectic Whittaker
function as a partition function of a two-dimensional lattice model
(more in Dan’s talk about this, work of BBCFG) and then the above
paper showed this model was solvable. It has a Yang-Baxter equation.

The Yang-Baxter equation for the model is actually the R-matrix of a
twist of the standard module for U√
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q−1(ĝln).

In dealing with a simple reflection, we reduce our calculation down to
rank one. Hence covers of GL2 suffice.

We discovered this by first expressing the metaplectic Whittaker
function as a partition function of a two-dimensional lattice model
(more in Dan’s talk about this, work of BBCFG) and then the above
paper showed this model was solvable. It has a Yang-Baxter equation.

The Yang-Baxter equation for the model is actually the R-matrix of a
twist of the standard module for U√
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Further directions for Whittaker functions on covers

One can ask about other groups. We expect to be able to handle
classical groups similarly. (Progress on this in type C by N. Gray)

In very recent work (BBBF, ‘17), we give a formalism for creating
Hecke algebra actions from R-matrices. The resulting Hecke action
recovers metaplectic Demazure operators in Chinta-Gunnells-Puskas.

The R matrix associated to si acts on Vzi ⊗ Vzi+1 , with each Vzi a
copy of the standard module of U√

q−1(gln). So in total, scattering

matrices act on an r -fold tensor of Vzi ’s.

The Hecke actions constructed in BBBF also agree with those of
Ginzburg-Reshetikhin-Vasserot (‘94) and Kashiwara-Miwa-Stern (‘95)
in the context of quantum affine versions of Schur-Weyl duality.



The theorem again...

Theorem (B-Buciumas-Bump (arXiv:1604.02206))

There is an isomorphism θz of the space Wz of spherical Whittaker
functions to the vector space V (z1)⊗ · · ·V (zr ), which takes the vectors
va1(z1)⊗ · · · ⊗ var (zr ) into the basis of Wz given in KP84. Then the
following diagram commutes:

Wz
θz−−−−→ V (z1)⊗ · · · ⊗ V (zi )⊗ V (zi+1)⊗ · · · ⊗ V (zr )yĀ∗si yIV+(z1)⊗···⊗τRzi ,zi+1

⊗···⊗IV (zr )

Wsiz
θsiz−−−−→ V (z1)⊗ · · · ⊗ V (zi+1)⊗ V (zi )⊗ · · · ⊗ V (zr )

,

where Ā∗si denotes the map obtained by W χ
b 7→W χ

b ◦ Āsi with
appropriately normalized intertwining operator Āsi .



So what to make of all this?

Spherical Whittaker functions for the local field F = . . .

(Kazhdan-Kostant) . . .R are eigenfunctions of quantum Toda lattice,
whose R-matrix is that of a standard module on Uq(g). (no dual gp)

(Gaitsgory-Lurie-Lysenko) . . .Fq((t)) are evaluated using facts about
the Whittaker category, which appears in the quantized geometric
Satake equivalence with Uq(g∨). (dual gp)

(B-Buciumas-Bump) . . . non-archimedean, metaplectic n-covers of
GLr have scattering matrices which are R-matrices for standard
modules on Uq(ĝln).

What, if anything, connects these points of view?


