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• overview: data transforms used in statistics

• data transforms used by Guttorp and co-authors
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Overview: Data Transforms Used in Statistics

• extend applicability of linear regression (transform predictors
and/or response; see, e.g., Weisberg, 2014, Chapter 8†)

• force non-Gaussian data into Gaussian shoe

• stabilize variances – e.g., square root transform does so for

− Poisson-distributed point processes

− kernel-based estimates of probability density functions

• for time series and spatial series,

− facilitate modeling

− facilitate characterization of correlation

− compensate for correlation

− help extract signal in presence of noise

− handle nonstationarities by forcing data into stationary shoe

†references Brillinger (1982) 3



Data Transforms Used by Guttorp and Co-Authors

• Sampson & Guttorp (1991): looked at how power transforms
alter interaction effects that exist in pretransformed data

• Sampson & Guttorp (1992): advocated transforms to model
nonstationary spatial covariances

• Guttorp & co-authors (10 articles, 1994–2012): used wavelet
transforms for, e.g., trend extraction
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Power Transforms (Sampson & Guttorp, 1991): I

• problem of interest: look at interaction effect comparing mea-
sured pollutant levels before and after closure of copper smelter
between regions presumed affected and unaffected by smelter

• for ANOVA analysis, need to apply a transform such that model
residuals are approximately normally distributed and of con-
stant variance

• cube root transform yielded residuals nicely satisfying distribu-
tional requirements

• alas, after transformation, magnitude of apparent interaction
effect smaller

− in other problems, power transforms often advocated as way
to eliminate interactions when null hypothesis is false
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Power Transforms (Sampson & Guttorp, 1991): II

• solution: devise test for interaction in original data using trans-
formed data in conjunction with second-order Taylor series ex-
pansion (asymptotically equivalent to an approximate likeli-
hood ratio test)

•Monte Carlo simulations verified efficacy of proposed test

• application to copper smelter data indicated closure of smelter
did indeed reduce sulfate deposition in a near-downwind region
from smelter, but no significant reduction in region further away

• particular lesson: dangerous to assess interactions after a trans-
formation with intent of interpreting assessment directly in
terms on interaction on original (raw) data

• general lesson: use of transform to solve one problem can induce
a new problem – no free lunch!
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Another Costly Lunch (Rothrock et al., 2008): I

• problem of interest: assess decline in arctic sea-ice thickness
using submarine data collected over a quarter of a century and
over different arctic regions

• knowledge of sonar-based recording system allows assessment of
amount of variance in original data due to measurement errors

• multiple linear regression used to model annual variations, spa-
tial variations and interannual changes with additive measure-
ment errors

• reasonable to assume normality of errors, but assumption of
independence spatially within a given year dicey – evidence for
long-range dependence
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Another Costly Lunch (Rothrock et al., 2008): II

• while OLS estimates of regression coefficients are unbiased un-
der long-range dependence, statistical theory would advocate
use of generalized least square (GLS)

• GLS can be interpreted as OLS after application of a decorre-
lating transform

• alas, decorrelating transform does not preserve variance – hence
can’t properly assess effect of measurement errors

• solution: use OLS rather than GLS because standard devia-
tions of OLS-estimated parameters are only 5% greater on the
average than GLS-estimated parameters (i.e., although spatial
correlation has long-range dependence, overall effect on multi-
ple regression coefficients is small)
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Another Costly Lunch (Rothrock et al., 2008): III

• research question (unexplored): does there exist an orthonor-
mal transform (hence variance-preserving) that approximates
decorrelating transform well enough to offer an improvement
over OLS?
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Spatial Transforms (Sampson & Guttorp, 1992): I

• problem of interest: get around common assumption that spa-
tial covariances are stationary – unreasonable due to, e.g., effect
of landscape on air pollution or rainfall

• data taken from random function Z(x, t) observed at locations
xi in two-dimensional plane and times ti

• solution: assume temporal stationarity and model spatial dis-
persions

D2(xi, xj) = var {Z(xi, t)− Z(xj, t)} = g(|f (xi)− f (xj)|)
as a general smooth function of station pairs (xi, xj), where
function in question is composition of

− f , a multidimensional scaling (MDS) mapping

− g, a monotone function
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Spatial Transforms (Sampson & Guttorp, 1992): II

•MDS mapping f implements nonstationary covariances by trans-
forming them into stationary covariances

• careful choice of g yields valid covariances, i.e., ones satisfying
condition of nonpositive definiteness

• spatial data consists of measurements of Z(x, t) recorded at
locations x and times t, but Sampson–Guttorp deformation
method transforms just x’s to allow using stationary models to
handle certain nonstationarities

• deformation method quite successful – inspiration for a lot of
subsequent research

11



Wavelet Transforms: I

• wavelets are analysis tools for time series and images (primarily)

• interest in wavelet tranforms started in geophysics in early
1980s and then migrated to other fields

• wavelet and Fourier transforms often billed as alternatives

• two transforms have some properties in common, including:

− transforms fully equivalent to original data (inverse trans-
forms exist to recover data from transform coefficients)

− transforms preserves variance of original data

− both act as a decorrelating transform (approximately)

− manipulation of tranform coefficients – in conjunction with
inverse transform – can lead to useful signal extraction

− transform coefficients attached to physically meaningful vari-
ables (frequency or time/scale)
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Wavelet Transforms: II

• two transforms differ in important aspects, including

− for stationary processes, arguably Fourier transform better at
decorrelating processes with short-range dependence, while
wavelet transform better for long-range dependence

− Fourier transforms are better at capturing global aspects,
while wavelet transforms are better with local aspects

− types of signals for which two transforms are well adapted
quite different – for signals of practical interest, wavelet trans-
form often promotes sparsity better

• see Guttorp et al. (2007) for a comprehensive comparison of
two transforms for analyzing space-time processes
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Example of Haar DWT (Four Levels)

• oxygen isotope records X from Antarctic ice core (N = 352)
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Multiresolution Analysis

• oxygen isotope records X from Antarctic ice core
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Scale-based Analysis of Variance

• decomposition of sample variance

σ̂2
X ≡

1

N

N−1∑
t=0

(
Xt −X

)2
=

4∑
j=1

1

N
‖Wj‖2 +

1

N
‖V4‖2 −X

2

• Haar-based example for oxygen isotope records

− 0.5 year changes: 1
N‖W1‖2

.
= 0.295 (

.
= 9.2% of σ̂2

X)

− 1.0 years changes: 1
N‖W2‖2

.
= 0.464 (

.
= 14.5%)

− 2.0 years changes: 1
N‖W3‖2

.
= 0.652 (

.
= 20.4%)

− 4.0 years changes: 1
N‖W4‖2

.
= 0.846 (

.
= 26.4%)

− 8.0 years averages: 1
N‖V4‖2 −X

2 .
= 0.947 (

.
= 29.5%)

− sample variance: σ̂2
X
.
= 3.204
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Discrete Wavelet Transform as a Decorrelator: I

X ρ̂X,τ
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• realization of time series X with long-range dependence along
with its sample autocorrelation sequence (ACS): for τ ≥ 0,

ρ̂X,τ =
1
N

∑N−1−τ
t=0 XtXt+τ

1
N

∑N−1
t=0 X2

t

=

∑N−1−τ
t=0 XtXt+τ∑N−1

t=0 X2
t

(assumes time series has known mean or has been centered)

• note that ACS dies down slowly (typical for series with long-
range dependence)
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Discrete Wavelet Transform as a Decorrelator: II
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• DWT of X and sample ACSs for its components Wj & V7,
along with 95% confidence intervals for white noise
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Wavelet Analysis and Wavelet-Based Modeling: I

• long-range dependence, Allan variance & wavelets (Percival &
Guttorp, 1994)

− Allan variance used to characterize frequency instability of
atomic clocks (Allan, 1966)

− Flandrin (1992) briefly noted connection between Allan vari-
ance and variance based upon Haar wavelet coefficients (Haar
wavelet variance)

− paper assessed advantages and disadvantages of Haar wavelet
variance vs. wavelet variances based upon Daubechies wavelet
transforms (latter can handle intrinsically stationary pro-
cesses of various orders)
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Wavelet Analysis and Wavelet-Based Modeling: II

− proposed use of nonorthogonal (but variance preserving) ver-
sion of discrete wavelet transform (DWT) known as maximal-
overlap DWT (MODWT)

− outlined efficient algorithm for computing MODWT (same
order of computational complexity as FFT algorithm)

− analyzed time series of vertical shear measurements from the
ocean, demonstrating value of time-dependent multiresolu-
tion analysis and fact that Allan variance leads to misleading
analysis as compared to one based on Daubechies wavelet
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Wavelet Analysis and Wavelet-Based Modeling: III

• wavelet-based covariance analysis (Whitcher, Guttorp & Perci-
val, 2000a)

− introduced multiscale analysis of covariance between two time
series

− defined MODWT-based wavelet covariance and wavelet cor-
relation as alternative to cross-spectrum analysis

− defined wavelet cross covariance and wavelet cross correlation
to investigate scale-based lead/lag relationships

− looked at Madden–Julian Oscillation as manifested in the bi-
variate relationship between the Southern Oscillation Index
and pressure series at Truk Island
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Wavelet Analysis and Wavelet-Based Modeling: IV

− localized nature of wavelet transform allows scale-based sub-
series to be partitioned into seasonal periods (winter or sum-
mer) and according to state of El Niño–Southern Oscillation
(ENSO)

∗ found statistically significant increased correlations and in-
creased variances in boreal winter over scales associated
with periods of 16 to 128 days

∗ also found reduced variance and reduced correlation during
warm ENSO episodes over scales associated with periods
of 8 to 512 days
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Minimum Annual Water Levels X of Nile River
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• data from ≈ 715 to 1284 recorded at Roda gauge near Cairo

• method(s) used to record data from 622 to ≈ 715 source of
speculation
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Wavelet Analysis and Wavelet-Based Modeling: V

• testing for homogeneity of variance in a time series exhibiting
long-range dependence (Whitcher, Byers, Guttorp & Percival,
2002)

− DWT of time series with long-range dependence yields wavelet
coefficients that are approximately white noise across a given
scale

− under a Gaussian assumption, can assess null hypothesis of
homogeneity of variance on a scale-by-scale basis by using
a test based on cumulative sum of squares of wavelet coeffi-
cients (test designed originally for white noise)

− if null hypothesis is rejected, can use MODWT to locate
change points
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Wavelet Analysis and Wavelet-Based Modeling: VI

− for Nile River, can reject the null hypothesis at two smallest
scales (1 and 2 years), but not at higher scales

−MODWT-based change point detector picked out a change
point at 720, which is consistent with change of of measure-
ment method

− alternative explanation of change in long-range dependence
behaviour at 715 harder to justify physically than change due
to new measurement method suggested by wavelet analysis
(new method decreased small scale noise)

− analysis in transform domain here allowed use of existing
test for homogeneity of variance that cannot be used with
untransformed data
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Wavelet Analysis and Wavelet-Based Modeling: VII

• assessing existence of trend in a time series exhibiting long-
range dependence (Craigmile, Guttorp & Percival, 2004)

− no commonly accepted precise definition for trend, but to
quote Kendall (1973):

“the essential idea of trend is that it shall be smooth”

− assume time series Xt can be modeled as Xt = Tt + Yt,
where

∗ Tt is a nonstochastic trend component

∗ Yt is stochastic: either a stationary process with long-range
dependence or an intrinsically stationary process (nonsta-
tionary, but stationary after suitable differencing)

− trend assessment challenging: Yt has significant low frequency
components hard to distinguish from smoothly varying Tt
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Wavelet Analysis and Wavelet-Based Modeling: VIII

− conservative approach to trend assessment: will not falsely
declare a significant trend in Xt if in fact Yt is reasonably
capable of generating observed low frequency variations

− assuming Tt well approximated at least locally by a low order
polynomial, DWT based on Daubechies wavelet filter can
transform Xt into wavelet coefficients that are invariant with
respect to Tt and scaling coefficients that trap Tt

− ability of DWT to cleanly separate Xt into components trap-
ping Yt and Tt is key to proposed methodology for

∗ estimating Tt
∗ testing for significance of trend

∗ constructing confidence bands for unknown trend

− methodology worked well in assessing trend in a climatolog-
ical time series
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Wavelet Analysis and Wavelet-Based Modeling: IX

• space-time modeling of trends (Craigmile & Guttorp, 2011)

− goal: characterize temperature trends jointly over space-time

− approach: build wavelet-based space-time hierarchical Bayesian
models to simultaneously model trend, seasonality and error,
with error component accounting for long-range dependence

− as motivation, use five decades of daily temperature series
collected at 17 locations in central Sweden

− site-by-site analysis elicited key common characteristics in-
cluding seasonal dependent variability (handled by express-
ing log of standard deviation as a two-term harmonic model)

− spatial structure trapped in scaling coefficients, for which a
separable space-time model is entertained

− inference for hierarchical model done in wavelet domain
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Questions to Motivate Breakout Session: I

• adaptation of existing transforms (Fourier, wavelet etc.) to han-
dle new problems arising in environmental data analysis: what
are interesting directions to pursue?

• are there other transforms of interest for analysis of environ-
mental data that have yet to be fully explored?

− empirical mode decomposition (Huang et al, 1998)

− synchrosqueezed wavelet transforms (billed as an empirical
mode decomposition-like tool, but more amenable to math-
ematical analysis; Daubechies et al., 2011)

− dynamic mode decomposition (Schmid, 2010)

− multiresolution dynamic mode decomposition (Kutz et al.,
2016)
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Questions to Motivate Breakout Session: II

• ideas for entirely new transforms?

• what is the best way to deal with transforms that help satisfy
distributional problems, but then mess up correlations?

• for transforms that do not preserve variance, are there ways in
which we can do at least a quasi-ANOVA?
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Raton: Taylor and Francis, pp. 77–150.

• N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C.C. Tung and H.H. Liu
(1998), ‘The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary
time series analysis,’ Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sci-
ences, vol. 454, no. 1971, pp. 903–95.

• M. Kendall, Time Series, Charles Griffin: 1973.

• J. N. Kutz, X. Fu, and S. L. Brunton (2016), ‘Multiresolution dynamic mode decomposition,’ SIAM
Journal on Applied Dynamical Systems, vol. 15, no. 2, pp. 713–35.

• D.B. Percival and P. Guttorp (1994), ‘Long-memory processes, the Allan variance and wavelets,’ in
Wavelets in Geophysics, edited by E. Foufoula-Georgiou and P. Kumar, a volume in the series Wavelet
Analysis and Its Applications (series edited by C. Chui). New York: Academic Press, pp. 325–44.

• D.A. Rothrock, D.B. Percival and M. Wensnahan (2008), ‘The decline in arctic sea-ice thickness:
Separating the spatial, annual, and interannual variability in a quarter century of submarine data,’
Journal of Geophysical Research – Oceans, vol. 113, C05003.

• P.D. Sampson and P. Guttorp (1991), ‘Power transformations and tests of environmental impact as
interaction effects,’ American Statistician, vol. 45, pp. 83–9.

32



References: III

• P.D. Sampson and P. Guttorp (1992), ‘Nonparametric estimation of nonstationary spatial covariance
structure,’ Journal of the American Statistical Association, vol. 87, pp. 108–19.

• P.J. Schmid (2010), ‘Dynamic mode decomposition of numerical and experimental data,’ Journal of
Fluid Mechanics, vol. 656, no. 11, pp. 5–28

• S. Weisberg, Applied Linear Regression (Fourth Edition), Wiley: 2014.

• B.J Whitcher, S.D. Byers, P. Guttorp and D.B. Percival (2002), ‘Testing for homogeneity of variance
in time series: long memory, wavelets and the Nile River,’ Water Resources Research, vol. 38, no. 5,
10.1029/2001WR000509.

• B.J Whitcher, P. Guttorp and D.B. Percival (2000a), ‘Wavelet analysis of covariance with application
to atmospheric time series,’ Journal of Geophysical Research, vol. 105, no. D11, pp. 14,941–62.

• B.J Whitcher, P. Guttorp and D.B. Percival (2000b), ‘Multiscale detection and location of multiple
variance changes in the presence of long memory,’ Journal of Statistical Computation and Simulation,
vol. 68, no. 1, pp. 65–88.

33



Thanks to:

• Peter Craigmile et al. for organizing a stimulating workshop in
an amazing location

• Peter Guttorp for being a mentor and colleague since 1980
(37 years . . . and counting!)

34


