Droplet phase in a nonlocal isoperimetric problem under confinement J

Stan Alama

McMaster University

Banff, 2017

with Lia Bronsard (McMaster), Rustum Choksi (McGill), and Thsan Topaloglu (VCU)

12 Floréal, 225 (12/8/225)



Diblock Copolymers

» Polymer strands composed of two monomers A, B glued together.

(a)
m

» Monomers of the same type attract; of opposite type repel.
» Diffuse-interface energy (Ohta-Kawasaki) model, u: Q = T3 — R phase function.

» u =1 in pure A-phase, u = 0 in pure B-phase.

(b)

Images from S. Darling, Energy Environ Sci. (2009)



["-convergence ~~ sharp interface model, a nonlocal isoperimetric problem (NLIP).
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fa denotes the volume fraction of A-type monomers.

Images from S. Darling, Energy Environ Sci. (2009)



The Nonlocal Isoperimetric Problem (NLIP)

Seek periodic patterns, u € BV/(T?;{0,1}) on unit torus T, with given mass

m= udx,
T3

&t = [ 1Vul+ylu—m,.

= [vul+ v [ [ Gt yutuy) ooy

The first term is perimeter of the interfaces.

u e BV(T"; {0,1}) is a characteristic function, u = xg

The total variation [V u|(T®) = [1s |Vu| = Pergs(E).
The second term introduces nonlocal interactions; G is the (periodic, mean-zero)
Laplace Green’s function.
&, is obtained as a [ -limit of Ohta-Kawasaki mean-field model.

Acerbi-Fusco-Morini, Alberti-Choksi-Otto, Bonacini-Cristofert,

Choksi-Glasner, Choksi-Peletier, Choksi-Ren, Choksi-Sternberg, Frank-Lieb-Nam,

Goldman-Muratov-Serfaty, Kniipfer-Muratov, Lu-Otto, Muratov, Ren-Wei,
Sternberg-Topalaglu,. ..



How to Influence Phase Separation?

» Goal (applications): alter the morphology of the phase domains.

» Idea: add filler nanoparticles, which are coated so as to prefer one of the polymer
phases.

» By adjusting the density of the nanoparticles we hope to confine the domains to
specified regions and select a different minimizing morphology.

Study by the research group of Fredrickson: first column shows low-density, second column shows
high-density of nanoparticles.




Sharp Interface Model with Confinement

Confinement: seek to alter minimizing configurations via nanoparticles, coated to prefer
one of the phases.

Set-up: Minimize over periodic configurations u € BV(T"; {0, 1}) with given mass
m= ﬁ Jpn U

ol = [ Ve v [ [ Glryututy deay
-0 / u(x) p(x) dx

Here, G is the (periodic, mean-zero) Laplace Green's function, and 1 € Z,(T")
represents the limiting nanoparticle density as a measure.

The first term and second are exactly as in the NLIP, perimeter and nonlocal
interactions.

The third term models nanoparticle interactions. p € L*(T") gives the density of
nanoparticles, which attract the phase u = 1.

E, , is obtained as a [-limit of Ohta-Kawasaki with the inclusion of a large number
of nanoparticles of negligible volume. CGinzburg-Otu-Balacz; A-B-1



Droplet Regime

Ev) = [ 1Vul+y [ [ uxu)Gixy dxay —o [ uptxian

We seek a regime in which all three terms (perimeter, nonlocal, confinement) are felt. We
choose the “droplet scaling” (Choksi-Peletier):

Assume the volume ratio (of phase A to phase B) is very small.

Expect small balls of phase A in a sea of phase B.

Advantage: treat droplets as particles in an appropriate limit.

Introduce small length scale parameter (droplet radius) 0 < n < 1, assume total
mass m = Mn?, for fixed M.

We rescale the order parameter, to have mass M but concentrate on its support,

v(X) % [BV:M.

Choose the “critical scaling” y = 72,0 = n', so that all terms in the energy
contribute at the same scale.

The energy transforms to...



E,(v):=n '/TS IVv+n /T3 /Ta v(x)v(y)G(x, y) dxdy — /T3 v(x)p(x) dx
with [ v =M.
Heuristics:
v~y T omo,, withM=)  m
First term wants to minimize droplet perimeter (spheres?)

Droplet centers x; sample nanoparticle density p(x;), seek maxima of p(x).

For simplicity, assume p attains its max at the origin, with

PX) = Pmax — p1 ‘X|2 + o(‘x‘z)

Will all the mass simply form a single droplet at the origin? And if not, how does it
split?
Choksi-Peletier:  Same scaling limit, but no confinement, p = 0. Droplets form uniform
lattice on T® [Coulomb repulsion].



Ansatz (upper bound construction)

Recall:

E( *’]/“vv“f’ﬂ// G(x, y) dxdy — /TSv(x)p(x)dx, /TSV:M

Assume v forms n droplets near the origin (max point of p),

n

B X — X

X) = v,(x) = E N3z (717 !
i

with z;(x) compactly supported, z(x) € {0,1}, and [;5 z = m;, and each x; = x/ — 0 (to
maximize p(x).)

At what rate do x; — 0? Scale x; = 0y;, with 6 = d(n) — 0.
For | — x| small, nG(x;, ;) ~ nxi — x|~ = O(no~")
AlSO, p(X,') = Pmax — 62‘}//‘2 + 0(62)

’ 2 n mym;
E,7<v>~;[/Rs|Vz,|+||z,||HW(Ra)]mzw ot pwzmy, Mpiar

self-energy

Thus, the optimal separation scale is § = O(n'®)...



Droplets accumulate at max of p

Droplets have “radii” O(n), and are separated by 0 = O(n'?®)
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» To construct a complementing lower bound we use a Concentration Compactness type
lemma by Frank-Lieb.
» But why should there be more than one droplet?



The blowup problem

To understand the splitting of the droplets, we look at the “self-energy” terms. The droplet
“profiles” z; minimize (for m = m')

eo(m):inf{/Rs\VzH/Rs/Ra%: zeBV(RS;{OJ}),/Raz:m},

Theorem (Lu-Otto, Knupfer-Muratov)

There exist constants 0 < mg, < mg, < Mg, such that

>

|

>

For m < my,, there exists a minimizer of ey(m);
For m < mg, the minimizer is a ball;

For m > mg, the minimum is not attained.

The nonexistence of a minimizer is due to splitting of the mass into pieces. So when
our M is large, the minimizers v, must split into several pieces, each of which is
small enough that the minimizer gy(m’) exists!

This is also related to Gamow's Liquid Drop model for nuclet (1930).
(Frank-Killip-Nam, Bonacini-Cristofert)



Our result (A-Bronsard-Choksi-Topaloglu)

Recall:
E,(v) = ”Aa IVv|+n /".r3 /[r3 v(x)v(y)G(x, y) dxdy — /1r3 v(x)p(x) dx, /1"3 v=M
PX) = Pmax — p1 ‘X‘z + 0(‘X|2)
Define: M, = {M > 0: ey(M) admits a minimizer {.

Let v, minimize E,. Then along a subsequence of n — O, there exists n € N, points
{¥itiza_n in R3 and masses m' € My, Y 1, m = M, with:

Vy— 4 mds, — 0 in the sense of measures;
The energy admits an asymptotic expansion,

n

Er(va) = > [&o(m) = m pmax] + PP Fo(yr. . Ymm', ., m") + o (n?®),

i=1
where
= 1 & mm
Folyr, ..., Yoom', oo m") = m|y? + — Il
o =Xyl g
i+

The renormalized droplet centers y', .., y" minimize the energy F for given {m'}, n.



Lower Bound

Take a minimizing sequence v, = n %xq,, and blow up at order n, E, = n~'Q), C R®
Frank-Lieb: after translation by y, € R®, there is concentration:
F,=E,NBg — E, G,:=E,NB§— 0 locally,
[E| € (0, M), lim,_o( Per (E,)— Per (F,)— Per(G,)) = 0.

If |E| = M, the seqence converges, and there is no splitting.

If |[E| < M, we repeat with G, replacing E,, to get a sequence of droplet sets, each of
which will be minimizers for the NLIP in R®.

Problem: How to control errors 0(7?®) to get 2nd Gamma limit?

u, and rescaled limits do solve an NLIP, so they are w-minimizers of the perimeter
functional.

By regularity theory, £, — E in C"“ (de Giorgi-Miranda, Tamanini,
Acerbi-Fusco-Morini)

So in fact Per(E,) = Per(F,) + Per(G,), and a forteriori no error is introduced by
the splitting of mass.



Remarks

If M € M,, then there is no splitting of the droplets, and a single droplet center
concentrates at the origin (where p is maximized.)

Although stated for minimizers, the energy decomposition may be proved in the more
general framework of ["-convergence.

The case without the nanoparticle confinement was studied by Choksi-Peletier. In
that case, the droplets remain O(1) apart, there is no ' length scale involved, and
the second order term in the energy is governed by the purely Coulombic repulsion
term given by G(x, y).

Ditto for piecewise constant p: the droplets will distribute themselves in the region
of strongest nanoparticle density, according to the Coulomb repulsion (as in
Choksi-Peletier).

The two-scale concentration recalls many features of the 2D Ginzburg-Landau
energy with magnetic field: vortices accumulating at minima of the Meissner field
[Sandier—Serfaty]

A slightly different scaling done by Goldman-Muratov-Serfaty on the 2D NLIP
allows for a divergent number of droplets, "Abrikosov lattice”.

The droplet interaction energy Fq is of an attractive+repulsive form which recalls
studies of flocking and other models of self-assembly. (Burchard-Choksi-Topolaglu)



Remarks, I

We may treat more general p(x): either with nondegenerate global max at the origin,
or of the form

p(x) = (p(0) = pi|x|? + o(|x|%). g > 2

In the latter case, we obtain a droplet interaction energy of the form:
fmme”fZ
\X - )9\

Droplets will converge to the max of p at the rate '/9*!

What do minimizers of Fy look like? Here are g =2 and g = 10:




