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Choosing Movement Direction



Motivation for first part

How resource allocation affects the population dynamics of species
remains an important issue in conservation biology.

Given a fixed amount of resources, how can we determine the optimal
spatial arrangement of the favorable and unfavorable parts of the habitat
for species to survive?

This question was first addressed by Cantrell and Cosner

ut = λ∆u + m(x)u − u2 in Ω,

subject to Dirichlet, Robin, or Neumann BC
u(x , t) is the density of the species

m(x) represents the intrinsic growth rate of the species and measures the
availability of the resources.

“beneficial” means the persistence of the population or the existence of a
unique globally attracting steady state



Control resources

How does resource allocation affects population size of the species?

Population abundance is clearly a good measurement of conservation effort.

Outside manager controlling resource function m(x)

REFERENCES: Ding, Finnoti, Y. Lou, Y. Ye, Lenhart, in Nonlinear Analysis:
Real World Appl. 2010, ELLIPTIC CASE

Bintz, Finnoti, Lenhart BIOMAT Proceedings 2014, PARABOLIC CASE

The type of boundary condition and the initial condition in the parabolic case
make a difference.



Concentrating on Movement

Ecological question: Given a fixed amount of resources, how does the
species react to the habitat to be “beneficial”?

Movement: Random Diffusion and Directed Advection.

Belgacem-Cosner and Cantrell-Cosner-Lou studied the effects of the
advection along an environmental resource gradient

ut −∇ · [D∇u − αu∇m(x)] = u[m(x)− u], Ω× (0,∞)

with zero flux boundary condition.

m(x) represents the intrinsic growth rate and NOTE advection coefficient
∇m(x)



Concentrating on movement choices

The movement of a population in reaction to resources is also an important
concern in ecology.

With inhomogeneous resources, a population may tend to move along the
spatial gradient of the resource function depending on the initial conditions.
OR maybe not?



Choosing Movement

If a species could choose the direction for advection movement, how would
such a choice be made to maximize its total population?

Would the advection be related to the spatial gradient of m, the resource
function? or the spatial gradient of ln(m) ?

Population is chosing the advection direction, not an outsider manager.



Population Dynamics Model

Ω ⊂ Rn is a bounded smooth domain, QT = Ω× [0,T ] and
ST = ∂Ω× [0,T ] for some fixed T > 0.

Model with u(x , t), population density
ut −∇ · [µ∇u + u~h] = u[m − f (x , t, u)], QT ,

µ
∂u

∂ν
− u~h · ν = 0, ST ,

u(·, 0) = u0 ≥ 0, Ω.

~h : QT → Rn is the advection direction.

m = m(x , t) in L∞(QT ) measures the availability of resources.

f : QT × R→ R is non-negative and satisfies some natural smoothness
and growth conditions.

µ > 0 is fixed (diffusion coefficient).

u0 ∈ L∞(Ω) is sufficiently smooth.



Problem Formulation

Seek the advection term ~h(x , t) that maximizes the total population while
minimizing the “cost“ due to movement.

Find ~h∗ ∈ U such that

J(~h∗) = max
U

J(~h), where J(~h) =

∫
QT

[u(x , t)− B|~h(x , t)|2]dxdt.

U = {~h ∈ L2((0,T ), L2(Ω)n) : |hk | ≤ M, ∀k = 1, 2, · · · , n}.

B “cost coefficient” due to the population moving along ~h.

Denote the dependence of the state on the control by u = u(~h).

REFERENCE: H. Finotti, S. Lenhart, and T. Phan, Optimal control of
advection director for reaction-diffusion population models, Evolution
Equations and Control Theory 1 (2012), 81-107.





Introduction to Optimal Control of PDEs

After setting up a PDE with a control in a specifed set and an objective
functional, proving existence of an optimal control in an appropriate weak
solution space is a first step.

To derive the necessary conditions , we need to differentiate the map

control → objective functional

Note that the state contributes to the objective functional, so we also must
differentiate the map

control → state

The “sensitivity” is the derivative of the control-to-state map. The sensitivity
solves a PDE, which is linearized version of the state PDE.



How to find and use the adjoint function

The formal adjoint of the operator in the sensitivity PDE is found.

Transversality Condition: final time condition λ = 0 at t = T

nonhomogeneous term
∂( integrand of J )

∂state

Differentiate the objective functional J(control) with respect to the control.

Use the adjoint problem and the sensitivity problem to simplify and obtain the
explicit characterization of an optimal control.



END OF DETOUR: Existence Solutions and Estimates

Solution space u ∈ L2((0,T ),H1(Ω)) ∩ L∞(Q) with ut ∈ L2((0,T ), (H1(Ω))∗)

Theorem

Given m ∈ L∞(QT ) and u0 be non-negative, bounded and in H1(Ω). Then, for

each ~h ∈ U, there is a unique weak solution u = u(~h) of
ut −∇ · [µ∇u + u~h] = u[m − f (x , t, u)], QT ,

µ
∂u

∂ν
− u~h · ν = 0, ST ,

u(·, 0) = u0 ≥ 0, Ω.

Moreover, there is a finite constant C > 0 such that

0 ≤ u(~h) ≤ C , ∀ (x , t) ∈ QT ,

and

sup
0≤t≤T

∫
Ω

u(x , t)2dx +

∫
QT

|∇u(x , t)|2dxdt ≤ C .



Steps in the proof

Solutions u ≥ 0 follows from Stampacchia’s truncation method (the
standard maximum principle is not applicable here).

The energy estimate

sup
0≤t≤T

∫
Ω

u(x , t)2dx +

∫
QT

|∇u(x , t)|2dxdt ≤ C .

follows by multiplying the equation with u and using Hölder’s inequality,
Sobolev embeddings.

The upper bound for u, i.e. u ≤ C is not trivial. It follows from de Giorgi’s
iteration technique.

The existence of solution follows by standard method (Galerkin’s method).



Existence of an Optimal Control

Theorem

There exists an optimal control ~h∗ ∈ U such that

J(~h∗) = max
~h∈U

∫
QT

[u(x , t)− B|~h(x , t)|2]dxdt.

Careful analysis of the convergence of maximizing sequence of controls
and corresponding states.

The a-priori estimates of the solutions u(~h) are essential.



We will show details of the necessary condtions in the system
case

The uniqueness of the optimal solutions ~h∗

The stability of the optimal solutions ~h∗ with respect to the given resource
m(x , t).

We now write
~h∗ = ~h∗(m).

Theorem

Let β > 0. There exist 0 < T1 and B1 such that if B > B1 and 0 < T < T1,
there exists a constant C = CT > 0 such that the estimate

||~h∗(m1)− ~h∗(m2)||L2(QT ) ≤ C ||m1 −m2||L2(QT ),

holds for all m1,m2 in L∞(QT ) with |m1|, |m2| ≤ β.



Movement choices with competition

With inhomogeneous resources population may tend to move along the
spatial gradient of the resource function depending on the initial
conditions. Or maybe not?
What about when there is more than one population and there is a
competition among them to survive??
Several features...confusing.... (even in German)

http://383326907.r.worldcdn.net/wp-content/uploads/2012/04/Question-Mark-Man.jpg?5c86f3



Competitive Populations: Problem formulation

In an area with two competing populations, if the populations could choose the
direction for advection movement, how would such a choice be made to
maximize its total population?
Use of optimal control of PDEs

Let u(x , t), v(x , t) be the population densities of two competing species in
a spacial domain Ω in d - dimensional space Rd , d ∈ N.

Assume Ω with smooth boundary ∂Ω and

For a given fixed time 0 < T <∞ let

Q = Ω× (0,T )

and
S = ∂Ω× (0,T )

.

collaborator: Kokum DeSilva, Tuoc Phan



The system of PDE’s describing the dynamics:

ut − d1∆u −∇ · (~h1u) = u[m − a1u]− b1uv in Q

vt − d2∆v −∇ · (~h2v) = v [m − a2v ]− b2uv in Q

d1
∂u

∂η
+ u ~h1 · η = 0 on S (1)

d2
∂v

∂η
+ v ~h2 · η = 0 on S

u(x , 0) = u0(x) ≥ 0 for x ∈ Ω

v(x , 0) = v0(x) ≥ 0 for x ∈ Ω



The optimal control problem formulation:

Control Set

U = {(~h1, ~h2) ∈ ((L∞(Q))d , (L∞(Q))d) : |(h1)i | ≤ M1, |(h2)i | ≤ M2, i = 1, ..., d}

and (u, v) = (u(~h1, ~h2), v(~h1, ~h2)) be the solution of (1) for the

corresponding (~h1, ~h2).

Then, for A,B,C ,D ≥ 0 we find (~h1, ~h2) ∈ U such that

J((~h1, ~h2)∗) = sup
(~h1,~h2)∈U

J(~h1, ~h2)

where, J(~h1, ~h2) is the objective functional given by,

J(~h1, ~h2) =

∫
Q

[
Au + Bv − C |~h1|2 − D|~h2|2

]
dxdt (2)

subject to the PDE system (1).

We maximize a weighted combination of the two populations while
minimizing the cost due to the movements of the populations.

The cost is due to the “risk” of movements.



Existence and positivity of the state solution and the existence of an
optimal control

Solution space u, v ∈ L2((0,T ),H1(Ω)) ∩ L∞(Q) with
ut , vt ∈ L2((0,T ), (H1(Ω))∗)

Theorem

Given m ∈ L∞(Q), u0, v0 non-negative, L∞(Q) bounded and in H1(Ω). Then,

for each (~h1, ~h2) ∈ U, there is a unique positive weak solution

(u, v) = (u(~h1, ~h2), v(~h1, ~h2)) of the state system (1).

Theorem

There exists an optimal control (~h1, ~h2)∗ maximizing the functional J(~h1, ~h2)
over U. i.e.

J(~h1, ~h2)∗ = sup
(~h1,~h2)∈U

J(~h1, ~h2) .



Derivation of the optimality system

To derive the necessary conditions, we need to differentiate the map

We differentiate the (~h1, ~h2)→ J(~h1, ~h2) map and the

(~h1, ~h2)→ (u, v)(~h1, ~h2) map with respect to the controls ~h1 and ~h2.

The derivatives of this (~h1, ~h2)→ (u, v)(~h1, ~h2) map are the sensitivity
functions ψ1 and ψ2



The sensitivity PDE’s

For a given control (~h1, ~h2) ∈ U , consider another control

(~h1, ~h2)ε = (~h1 + ε~l1, ~h2 + ε~l2)

s.t. (~h1, ~h2) + ε(~l1, ~l2) ∈ U for all sufficiently small ε > 0 with

(~l1, ~l2) ∈ ((L∞(Ω))d , (L∞(Ω))d) and

uε = u(~h1 + ε~l1, ~h2 + ε~l2) and v ε = v(~h1 + ε~l1, ~h2 + ε~l2)

We can obtain

uε ⇀ u , v ε ⇀ v , uεt ⇀ ut , v εt ⇀ vt

uε − u

ε
⇀ ψ1 and

vε − v

ε
⇀ ψ2 in L2((0,T),H1(Ω))



Sensitivity PDE’s

(ψ1)t − d1∆ψ1 −∇ · (~h1ψ1 + ~l1u) = mψ1 − 2a1uψ1 − b1vψ1 − b1uψ2 in Q

(ψ2)t − d2∆ψ2 −∇ · (~h2ψ2 + ~l2v) = mψ2 − 2a2vψ2 − b2vψ1 − b2uψ2 in Q

d1
∂ψ1

∂η
+ ψ1

~h1 · η = −u~l1 · η on S (3)

d2
∂ψ2

∂η
+ ψ2

~h2 · η = −v~l2 · η on S

ψ1(x , 0) = 0 for x ∈ Ω

ψ2(x , 0) = 0 for x ∈ Ω .



The adjoint functions:

To characterize the optimal control, we will use the sensitivity function
together with adjoint function to differentiate (~h1, ~h2)→ J(~h1, ~h2) map.

The adjoint functions show how the states u, v affect the goal

So, we find the formal adjoint of the operator in the sensitivity PDE s.t.

Left hand sides of weak forms of sensitivity equations

with adjoints as test functions

= Left hand sides of weak forms of the adjoint equations

with sensitivities as test functions

The non-homogeneous terms on the RHS of the adjoint equations are
obtained as, A

B

 =

 ∂(Integrand ofJ)
∂u

∂(Integrand ofJ)
∂v

 =

 ∂(Au+Bv−C |~h1|2−D|~h2|2)
∂u

∂(Au+Bv−C |~h1|2−D|~h2|2)
∂v





The adjoint PDE’s

− (λ1)t − d1∆λ1 + ~h1 · ∇λ1 −mλ1 + 2a1uλ1 + b1vλ1 + b2vλ2 = A in Q

−(λ2)t − d2∆λ2 + ~h2 · ∇λ2 −mλ2 + 2a2vλ2 + b1uλ1 + b2uλ2 = B in Q

∂λ1

∂η
= 0 on S (4)

∂λ2

∂η
= 0 on S

λ1(x ,T ) = 0 for x ∈ Ω

λ2(x ,T ) = 0 for x ∈ Ω .



Characterizing the optimal control ~h∗

Suppose there exist an optimal control (~h1, ~h2)∗ ∈ U with the corresponding

states u∗, v∗ and compute the directional derivative of the function J(~h1, ~h2)∗

with respect to (~h1, ~h2)∗ in the direction (~l1, ~l2) at u∗, v∗.

Since, J(~h1, ~h2)∗ is the maximum value for the J(~h1, ~h2) we have

0 ≥ lim
ε→0+

J((~h1, ~h2)∗ + ε(~l1, ~l2))− J((~h1, ~h2)∗)

ε

=

∫
Q

(Aψ1 + Bψ2 − 2C ~h1
∗
· ~l1 − 2D ~h2

∗
· ~l2) dxdt



Characterizing the optimal control ~h∗

Note that,

∫
Q

(Aψ1 + Bψ2) dxdt

=Sum of the LHS of weak forms of λ1, λ2 PDE’s with test functions ψ1, ψ2

=Sum of the LHS of weak forms of ψ1, ψ2 PDE’s with test functions λ1, λ2

=−
∫
Q

(~l1, ~l2) · (u∇λ1 + 2C ~h1
∗
, v∇λ2 + 2D ~h2

∗
) dxdt



Characterizing the optimal control ~h∗

Hence, for any (~l1, ~l2) we have

0 ≥ −
∫
Q

(~l1, ~l2) · (u∇λ1 + 2C ~h1
∗
, v∇λ2 + 2D ~h2

∗
) dxdt

Using cases of (h1, h2)∗i and the sign of variation (l1, l2)i ,

(h1)∗i = min

(
M1,max

(
−u(λ1)xi

2C
,−M1

))
(h2)∗i = min

(
M2,max

(
−v(λ2)xi

2D
,−M2

))
(5)

Theorem

For sufficiently small T , the solution to the optimality system is unique.



Numerical results

We consider a one spatial dimensional problem:

ut − d1uxx − (h1u)x = u[m − a1u]− b1uv on (0, L)× (0,T )

vt − d2vxx − (h2v)x = v [m − a2v ]− b2uv on (0, L)× (0,T )

d1ux · ν + uh1 · ν = 0 for x = 0 or L and t ∈ (0,T )

d2vx · ν + uh1 · ν = 0 for x = 0 or L and t ∈ (0,T )

u(x , 0) = u0(x) ≥ 0 for x ∈ (0, L)

v(x , 0) = v0(x) ≥ 0 for x ∈ (0, L)

h∗1 = min

(
M1,max

(
−u(λ1)x

2C
,−M1

))
h∗2 = min

(
M2,max

(
−v(λ2)x

2D
,−M2

))
.



We used a finite difference scheme to solve the PDE problem and the
advection term was modeled using the upwind method.

When, the advection control h(i,j) is positive, we used the forward
difference for space variable to represent the advection term.
When, the advection control h(i,j) is negative, we used the backward
difference for space variable to represent the advection term.

We used the forward backward sweep method to solve the optimal control
problem.

First, numerical Illustration, with one population

First an example with

µ = 0.1, T = 2, B = 0.5, and logistic growth

With our notation for the sign of advection terms, hi being negative (positive)
represents movement to right (left).



One population, effects of variation in IC, Kokum DeSilva

(a) (b)

(c) (d)

Figure 1: OC for u with m = x/5 and lower IC at top and higher IC at bottom. With
higher IC, the OC not driven only by gradient of m



Two population case

Parameter values:
a1 = 1 a2 = 1

A = 1 B = 1 C = 0.5 D = 0.5

Diffusion Coefficients
d1 = 0.2 d2 = 0.2

Control limits
maximum hi = 4 minimum hi = −4

Domain:

spatial length: 5 units and time length: 2



Different initial conditions

(a) (b) (c)

Figure 2: Different initial conditions

2(a)– Smaller initial populations at middle (both same)

2(b)– Larger initial populations at middle (both same)

2(c)– Two smaller initial populations overlapping in the middle



Two populations with resource in middle and different small ICs

(a) Optimal control h1 (b) Population distribution of u

(c) Optimal control h2 (d) Population distribution of v

Figure 3: Populations and optimal control with different small ICs and
m = sin(πx/5), Different OCs due to ICs and same competition, movement happens
to avoid competition, going towards boundary not to resources



Two populations with different competition rates: b1 = 4 , b2 = 0.5

(a) Optimal control h1 (b) Population distribution of u

(c) Optimal control h2 (d) Population distribution of v

Figure 4: Population dynamics and optimal control with same small ICs and
m = sin(πx/5), Effect of different competition rates, better competitor v moves
towards resources



Conclusions of first part

With numerical simulations for one population only, we were able to show
the population does not always choose the advection direction to move
toward increasing resources.

When the initial condition has a sufficiently high population with some
variation, the movement may be chosen to move to level the population,
instead of moving toward increasing resources.

In the systems case, the level of the competition coefficients can also
influence the choice of movement direction.

Advective directions depend on the initial conditions, diffusion effects,
competition rates, and resources.

Currently working on PDE generalizations including other types of
interactions besides competition.

Collaborators: Kokum DeSilva and Tuoc Phan paper appeared in DCDS B
2016



Second Part

Optimal Control for the Sugarscape ABM
via a PDE model

Agent-based model (ABM)

Collaborators: Scott Christley,University of Chicago

Matt Oremland,Mathematical Biosciences Institute

Rene Salinas,Appalachian State University

Rachael Neilan,Duquesne University

PAPER: 2016 in Optimal control: applications and methods

Perspective PAPER on optimal control and optimization on ABM: above
collaborators and Fitzpatrick, Laubenbacher, An, Kanarek, Federico, Xiong,
and Yong, Bulletin of Math Biology 2017



NIMBioS Working Group: Optimal Control for Agent-based Models

National institute for Mathematical and Biological Synthesis

Objective: Explore optimization frameworks for wide range of agent-based
models (ABMs)

Identify prototype ABMs for testing

Apply different optimization tools to prototype ABMs and evaluate
relative success



Outline of Method

Protoype ABM: Sugarscape ABM with control

Goal: Identify control values that steer ABM towards specified objective

Optimization Method

1 Approximate spatio-temporal dynamics of ABM with system of partial
differential equations (PDEs)

2 Define objective functional for PDE model

3 Derive optimal control for PDE model using mathematical theory

4 Numerically solve optimality system

5 Discretize optimal control from PDE model and apply it to ABM



Sugarscape ABM

(modified version of Sugarscape in NetLogo (FREE SOFTWARE)

Landscape is 48× 48 grid with four
vertical regions defining sugar

available to agents.

Each agent gains as much sugar as
the patch contains per time step.

Sugar in patch is not depleted.

Agents cannot cross left and right boundaries. Wrap-around movement allowed
on top and bottom.



Sugarscape ABM

Agents traverse landscape, accumulating or losing sugar.
Agents die when they run out of sugar.

Vision: Each agent can see either 1 or 6 patches up, down, left, and right.
Agents move each time step to cell in vision with highest sugar.

Low Vision High Vision

Low or High Metabolism: Each agent burns 2 or 4 sugar per time step.



Sugarscape ABM

Initialization

4500 agents are placed on a random patch and given a random initial
sugar between 0.25− 10.

Agents are given metabolism and vision values, chosen randomly. These
do not change over the course of the simulation.

Simulations demonstrate wealth inequality over time.

Agents with high vision, low metabolism are able to move to region with high
sugar intake and accumulate wealth.



Sugarscape ABM

Control: Taxation

All agents are taxed a percentage of their sugar at the end of every time
step.

Tax rates can vary each time step.

Tax rates can vary based on vision, metabolism, location, and current
sugar held by agent.

Optimization Problem

What tax structure should be implemented to maximize tax collected while
minimizing death over T = 20 time steps ?



PDE Model

PDE Model

Population divided into four classes of agents based on

Metabolism: 2 (low) or 4 (high)

Vision: 1 (low) or 6 (high)

State Variables
For i = 1, 2, 3, 4...
Ni (x , s, t) = density of class i agents in location x with sugar s at time t

Domain

Q = Ω× (0,T )× (o, s̄)

where Ω = (0, 48)× (0, 48) and s̄ is
upper bound on the possible sugar
obtained during time [0,T] Ω 

1  
sugar 

0 12 36 48 0 

48 

24 

2  
sugars 

3  
sugars 

4  
sugars 

S(x) = sugar available at location x



PDE Model

PDE Model

Control Variables: For i = 1, 2, 3, 4...

ui (x , t, s) = proportion of sugar removed from class i agents with sugar s
in location x at time t

Set of admissible controls: U = {ui ∈ L∞(Q) | ui : Q → [0, 1]}

State PDEs: For i = 1, 2, 3, 4...

∂Ni

∂t
− ai

2∑
j=1

∂2Ni

∂x2
j

+
2∑

j=1

bij(x)
∂Ni

∂xj
+

∂

∂s
(Ri (x , s, t)Ni ) = 0 (6)

where

ai is spatial diffusion coefficient for class i agents

bij(x) is spatial advection coefficient for class i agents

Ri (x , s, t) = S(x)−mi − ui (x , s, t)s is sugar advection coefficient for class
i agents with metabolism mi and S(x) rate of agents gain sugar



PDE Model

PDE Model

State Boundary Conditions
Uniform spatial distribution of agents among sugar levels 0.25 - 10:

Ni (x , s, 0) = N̄i (x , s) (7)

Wrap-around movement in vertical direction:

Ni (x1, 0, s, t) = Ni (x1, 48, s, t)
∂Ni (x1, 0, s, t)

∂x2
=
∂Ni (x1, 48, s, t)

∂x2
(8)

No-flux movement in horizontal direction:

∂Ni (0, x2, s, t)

∂x1
= 0

∂Ni (48, x2, s, t)

∂x1
= 0 (9)

Death when sugar is depleted:

Ni (x , 0, t) = 0 if Ri (x , 0, t) ≥ 0 (10)

Restricted sugar growth at upper bound:

Ni (x , s̄, t) = 0 if Ri (x , s̄, t) < 0 (11)



PDE Model

Optimal Control Problem for PDE system

Optimization Problem

What tax structure should be implemented to maximize tax collected while
minimizing death over T = 20 units of time?

Objective Functional

max
ui∈U

4∑
i=1

∫ T

0

∫
Ω

∫ s̄

0

(BNi + Aui sNi − εu2
i ) ds dx dt

subject to state PDE (6) and boundary conditions (7-11).

Coefficients B, A, and ε balance the importance of maximizing population
size (Ni ) and taxes collected (ui sNi ) with minimizing impact of high
taxation rates (u2

i ).



PDE Model

Optimality System

Adjoint PDEs: For i = 1, 2, 3, 4...

− ∂Pi

∂t
− ai

2∑
j=1

∂2Pi

∂x2
j

−
2∑

j=1

∂(bijPi )

∂xj
− Ri (x , s, t)

∂Pi

∂s
= 1 + Aui s (12)

Adjoint Boundary Conditions

Pi (x , s,T ) = 0 (13)

Pi (x1, 0, s, t) = Pi (x1, 48, s, t) (14)

ai
Pi (x1, 0, s, t)

dx2
+ bi2Pi (x1, 0, s, t) = ai

Pi (x1, 48, s, t)

dx2
+ bi2Pi (x1, 48, s, t) (15)

ai
Pi (0, x2, s, t)

dx1
+ bi2Pi (0, x2, s, t) = 0 ai

Pi (48, x2, s, t)

dx1
+ bi2Pi (48, x2, s, t) = 0

(16)
Pi (x , 0, t) = 0 if Ri (x , s̄, t) > 0 (17)

Pi (x , s̄, t) = 0 if Ri (x , s̄, t) ≤ 0 (18)



PDE Model

Optimality Condition

Optimal Control Characterization
For i = 1, 2, 3, 4...

u∗i =
1

2ε
[−sNi

∂Pi

∂s
+ AsN∗i ] (19)

subject to upper and lower bounds, 0 ≤ u∗i (x , s, t) ≤ 1.



PDE Model

Implementation of optimal controls in ABM

Discretization of Space, Time, and Sugar
Numerical solutions of optimal control were found using dx1 = 1, dx2 = 1,
ds = 0.25, dt = 0.01.

Spatial discretizations of ABM and optimal control matched.

Optimal control at sugar value s was applied to all agents in ABM with
sugar between s and s + ds.

Average value of optimal control between (t, t + 1] was applied to ABM at
each time t + 1.

Continuous vs. Discrete Rates
Tax collected in ABM from agent class i at time t + 1 is

(e−ut)(sugar at time t) +
(

1−e−u

u

)
(sugar gained between t and t + 1)



Results

Results

No control: ui (x , s, t) = 0 ∀(x , s, t) ∈ Q

Optimal Control: u∗i for B = 1,A = 1, ε = 1

Average optimal control: ui (x , s, t) = ū∗i ∀(x , s, t) ∈ Q



Results

Optimal Control

u∗i at t = 0

Met = 2, Vis = 1 Met = 4, Vis = 1 

Met = 2, Vis = 6 Met = 4, Vis = 6 

Apply tax to select agents with maximum initial sugar.



Results

Optimal Control

u∗i at t = 0

Met = 2, Vis = 1 Met = 4, Vis = 1 

Met = 2, Vis = 6 Met = 4, Vis = 6 

Apply high tax to agents with greatest wealth potential 

Apply tax to select agents with maximum initial sugar.



Results

Optimal Control

u∗i at t = 0

Met = 2, Vis = 1 Met = 4, Vis = 1 

Met = 2, Vis = 6 Met = 4, Vis = 6 

Apply moderate tax to agents with no wealth potential 

Apply tax to select agents with maximum initial sugar.



Results

Optimal Control

u∗i at t = 0

Met = 2, Vis = 1 Met = 4, Vis = 1 

Met = 2, Vis = 6 Met = 4, Vis = 6 

Do not tax those with possibility of improving wealth potential. 

Apply tax to select agents with maximum initial sugar.



Results

Optimal Control

u∗i at t = 7

Met = 2, Vis = 1 Met = 4, Vis = 1 

Met = 2, Vis = 6 Met = 4, Vis = 6 

During intermediate times, taxation rates decrease and policy becomes highly
selective among remaining agents.



Results

Optimal Control

u∗i at t = 7

Met = 2, Vis = 1 Met = 4, Vis = 1 

Met = 2, Vis = 6 Met = 4, Vis = 6 

Apply moderate tax to all agents  

During intermediate times, taxation rates decrease and policy becomes highly
selective among remaining agents.



Results

Optimal Control

u∗i at t = 7

Met = 2, Vis = 1 Met = 4, Vis = 1 

Met = 2, Vis = 6 Met = 4, Vis = 6 

Very specific taxation of agents 

During intermediate times, taxation rates decrease and policy becomes highly
selective among remaining agents.
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Optimal Control: Death
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Despite differences in taxation, the two models show similar deaths.
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Objective Functional Value

∫ T

0

∫
Ω

∫ s̄

0
(BNi + Aui sNi − εu2

i ) ds dx dt

Calculate value for no control (ui = 0), optimal control (u∗i ), and
average optimal control (ui = ū∗i ).
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Optimal control always performs better than (or the same as) constant controls
in the ABM.
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Conclusions of second part

PDE system approximates well the average ABM movement, sugar
accumulation, and death in the absence of control.

Optimal control for PDE system can be highly variable among spatial
locations and sugar levels.

Variability in continuous optimal control from PDE system is challenging
to translate accurately back to discrete ABM.

Implementation of discretized optimal control in the ABM is often better
than using a constant control.
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and Thank You...!
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