A Nearly Optimal Lower Bound on The Approximate Degree of AC^{0}

Justin Thaler
Georgetown University

Joint work with Mark Bun, Princeton University

Boolean Functions

- Boolean function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$

$$
\operatorname{AND}_{n}(x)=\left\{\begin{array}{lll}
-1 & (\text { TRUE }) & \text { if } x=(-1)^{n} \\
1 & (\text { FALSE }) & \text { otherwise }
\end{array}\right.
$$

Approximate Degree

- A real polynomial $p \epsilon$-approximates f if

$$
|p(x)-f(x)|<\epsilon \quad \forall x \in\{-1,1\}^{n}
$$

- $\widetilde{\operatorname{deg}}_{\epsilon}(f)=$ minimum degree needed to ϵ-approximate f
- $\widetilde{\operatorname{deg}(f)}:=\operatorname{deg}_{1 / 3}(f)$ is the approximate degree of f

Why Care About Approximate Degree?

Upper bounds on $\widetilde{\operatorname{deg}}_{\epsilon}(f)$ yield efficient learning algorithms.
■ $\epsilon \approx 1 / 3$: Agnostic Learning [KKMS05]
■ $\epsilon \approx 1-2^{-n^{\delta}}$: Attribute-Efficient Learning [KS04, STT12]
■ $\epsilon \rightarrow 1$ (i.e., threshold degree, $\operatorname{deg}_{ \pm}(f)$): PAC learning [KS01]

Why Care About Approximate Degree?

Upper bounds on $\widetilde{\operatorname{deg}}_{\epsilon}(f)$ yield efficient learning algorithms.

- $\epsilon \approx 1 / 3$: Agnostic Learning [KKMS05]

■ $\epsilon \approx 1-2^{-n^{\delta}}$: Attribute-Efficient Learning [KS04, STT12]
■ $\epsilon \rightarrow 1$ (i.e., threshold degree, $\operatorname{deg}_{ \pm}(f)$): PAC learning [KS01]
■ Upper bounds on $\widetilde{\operatorname{deg}}_{1 / 3}(f)$ also:

- Imply fast algorithms for differentially private data release [TUV12, CTUW14].

Why Care About Approximate Degree?

Upper bounds on $\widetilde{\operatorname{deg}}_{\epsilon}(f)$ yield efficient learning algorithms.

- $\epsilon \approx 1 / 3$: Agnostic Learning [KKMS05]

■ $\epsilon \approx 1-2^{-n^{\delta}}$: Attribute-Efficient Learning [KS04, STT12]
■ $\epsilon \rightarrow 1$ (i.e., threshold degree, $\operatorname{deg}_{ \pm}(f)$): PAC learning [KS01]

- Upper bounds on $\widetilde{\operatorname{deg}}_{1 / 3}(f)$ also:
- Imply fast algorithms for differentially private data release [TUV12, CTUW14].
- Underly the best known lower bounds on formula complexity and graph complexity [Tal2014, 2016a, 2016b]

Why Care About Approximate Degree?

Lower bounds on $\widetilde{\operatorname{deg}_{\epsilon}}(f)$ yield lower bounds on:
■ Quantum query complexity [BBCMW98, AS01, Amb03, KSW04]
■ Circuit complexity [MP69, Bei93, Bei94, She08]

- Communication complexity [She08, SZ08, CA08, LS08, She12]

■ Lower bounds hold for a communication problem related to f.

- Technique is called the Pattern Matrix Method [She08].
- A lower bound on $\widetilde{\operatorname{deg}}_{1 / 3}(f)$ implies that the pattern matrix of f has high quantum communication complexity, even with prior entanglement.

Why Care About Approximate Degree?

Lower bounds on $\widetilde{\operatorname{deg}_{\epsilon}}(f)$ yield lower bounds on:
■ Quantum query complexity [BBCMW98, AS01, Amb03, KSW04]
■ Circuit complexity [MP69, Bei93, Bei94, She08]

- Communication complexity [She08, SZ08, CA08, LS08, She12]

■ Lower bounds hold for a communication problem related to f.

- Technique is called the Pattern Matrix Method [She08].
- A lower bound on $\widetilde{\operatorname{deg}}_{1 / 3}(f)$ implies that the pattern matrix of f has high quantum communication complexity, even with prior entanglement.
- Lower bounds on $\widetilde{\operatorname{deg}}(f)$ also yield efficient secret-sharing schemes [BIVW16] and oracle separations [Bei94, BCHTV16].

Example 1: The Approximate Degree of AND_{n}

Example: What is the Approximate Degree of AND_{n} ?

$\widetilde{\operatorname{deg}}\left(\mathrm{AND}_{n}\right)=\Theta(\sqrt{n})$.

- Upper bound: Use Chebyshev Polynomials.

■ Markov's Inequality: Let $G(t)$ be a univariate polynomial s.t. $\operatorname{deg}(G) \leq d$ and $\max _{t \in[-1,1]}|G(t)| \leq 1$. Then

$$
\max _{t \in[-1,1]}\left|G^{\prime}(t)\right| \leq d^{2}
$$

■ Chebyshev polynomials are the extremal case.

Example: What is the Approximate Degree of AND_{n} ?

$$
\widetilde{\operatorname{deg}}\left(\mathrm{AND}_{n}\right)=O(\sqrt{n})
$$

- After shifting a scaling, can turn degree $O(\sqrt{n})$ Chebyshev polynomial into a univariate polynomial $Q(t)$ that looks like:

$$
Q(-1+2 / n)=2 / 3
$$

■ Define n-variate polynomial p via $p(x)=Q\left(\sum_{i=1}^{n} x_{i} / n\right)$.
■ Then $\left|p(x)-\operatorname{AND}_{n}(x)\right| \leq 1 / 3 \quad \forall x \in\{-1,1\}^{n}$.

Example: What is the Approximate Degree of AND_{n} ?

[NS92] $\widetilde{\operatorname{deg}}\left(\mathrm{AND}_{n}\right)=\Omega(\sqrt{n})$.

- Lower bound: Use symmetrization.
- Suppose $\left|p(x)-\operatorname{AND}_{n}(x)\right| \leq 1 / 3 \quad \forall x \in\{-1,1\}^{n}$.
- There is a way to turn p into a univariate polynomial $p^{\text {sym }}$ that looks like this:

- Claim 1: $\operatorname{deg}\left(p^{\text {sym }}\right) \leq \operatorname{deg}(p)$.
- Claim 2: Markov's inequality $\Longrightarrow \operatorname{deg}\left(p^{\text {sym }}\right)=\Omega\left(n^{1 / 2}\right)$.

Focus of This Talk

- Approximate degree is a key tool for understanding AC^{0}.
- At the heart of the best known bounds on the complexity of $A C^{0}$ under measures such as:
- Quantum Communication Complexity
- Approximate Rank
- Sign-rank \approx UPP ${ }^{\text {cc }}$
- Discrepancy \approx Margin complexity $\approx P^{c c}$
- Majority-of-Threshold circuit size
- Threshold-of-Majority circuit size
- and more.

Focus of This Talk

- Approximate degree is a key tool for understanding AC^{0}.
- At the heart of the best known bounds on the complexity of $A C^{0}$ under measures such as:
- Quantum Communication Complexity
- Approximate Rank
- Sign-rank \approx UPP ${ }^{\text {cc }}$
- Discrepancy \approx Margin complexity $\approx P^{c c}$
- Majority-of-Threshold circuit size
- Threshold-of-Majority circuit size
- and more.

Problem 1: Is there a function on n variables that is in AC^{0}, and has approximate degree $\Omega(n)$?

Approximate Degree of AC^{0} : Details

- Best known result: $\tilde{\Omega}\left(n^{2 / 3}\right)$ for the Element Distinctness function (Aaronson and Shi, 2004).

Approximate Degree of AC^{0} : Details

- Best known result: $\tilde{\Omega}\left(n^{2 / 3}\right)$ for the Element Distinctness function (Aaronson and Shi, 2004).
- Our result: For any constant $\delta>0$, a function in AC^{0} with approximate degree $\Omega\left(n^{1-\delta}\right)$.
- More precisely, circuit depth is $O(\log (1 / \delta))$.

Approximate Degree of AC^{0} : Details

- Best known result: $\tilde{\Omega}\left(n^{2 / 3}\right)$ for the Element Distinctness function (Aaronson and Shi, 2004).
- Our result: For any constant $\delta>0$, a function in AC^{0} with approximate degree $\Omega\left(n^{1-\delta}\right)$.
- More precisely, circuit depth is $O(\log (1 / \delta))$.
- Lower bound also applies to DNFs of polylogarithmic width (and quasipolynomial size).

Applications

- Nearly optimal $\Omega\left(n^{1-\delta}\right)$ lower bounds on quantum communication complexity of AC^{0}.
- Essentially optimal (quadratic) separation of certificate complexity and approximate degree.
■ Better secret sharing schemes with reconstruction in AC^{0}.

Prior Work: The Method of Dual Polynomials and

 the AND-OR Tree
Beyond Symmetrization

■ Symmetrization is "lossy": in turning an n-variate poly p into a univariate poly $p^{\text {sym }}$, we throw away information about p.

- Challenge Problem: What is $\widetilde{\operatorname{deg}}\left(\right.$ AND-OR $\left.{ }_{n}\right)$?

History of the AND-OR Tree

Theorem
$\widetilde{\operatorname{deg}}\left(\right.$ AND-OR $\left._{n}\right)=\Theta\left(n^{1 / 2}\right)$.

History of the AND-OR Tree

Theorem
$\widetilde{\operatorname{deg}}\left(\right.$ AND $\left.^{\prime}-\mathrm{OR}_{n}\right)=\Theta\left(n^{1 / 2}\right)$.
Tight Upper Bound of $O\left(n^{1 / 2}\right)$
[HMW03] via quantum algorithms
[She12] different proof (via robustification)

History of the AND-OR Tree

Theorem
$\widetilde{\operatorname{deg}}\left(\right.$ AND $\left.^{\prime}-\mathrm{OR}_{n}\right)=\Theta\left(n^{1 / 2}\right)$.
Tight Upper Bound of $O\left(n^{1 / 2}\right)$
[HMW03] via quantum algorithms
[She12] different proof (via robustification)
Tight Lower Bound of $\Omega\left(n^{1 / 2}\right)$
[BT13] and [She13] via the method of dual polynomials

Linear Programming Formulation of Approximate Degree

What is best error achievable by any degree d approximation of f ? Primal LP (Linear in ϵ and coefficients of p):

$$
\begin{aligned}
\min _{p, \epsilon} & \epsilon \\
\text { s.t. } & |p(x)-f(x)| \leq \epsilon \quad \text { for all } x \in\{-1,1\}^{n} \\
& \operatorname{deg} p \leq d
\end{aligned}
$$

Dual LP:

$$
\begin{aligned}
\max _{\psi} & \sum_{x \in\{-1,1\}^{n}} \psi(x) f(x) \\
\text { s.t. } & \sum_{x \in\{-1,1\}^{n}}|\psi(x)|=1 \\
& \sum_{x \in\{-1,1\}^{n}} \psi(x) q(x)=0 \quad \text { whenever } \operatorname{deg} q \leq d
\end{aligned}
$$

Dual Characterization of Approximate Degree

Theorem: $\operatorname{deg}_{\epsilon}(f)>d$ iff there exists a "dual polynomial" $\psi:\{-1,1\}^{n} \rightarrow \mathbb{R}$ with
(1) $\sum_{x \in\{-1,1\}^{n}} \psi(x) f(x)>\epsilon$
"high correlation with f "
(2) $\sum_{x \in\{-1,1\}^{n}}|\psi(x)|=1$
" L_{1}-norm 1 "
(3) $\quad \sum_{x \in\{1,1\} n} \psi(x) q(x)=0$, when $\operatorname{deg} q \leq d \quad$ "pure high degree d " $x \in\{-1,1\}^{n}$

A lossless technique. Strong duality implies any approximate degree lower bound can be witnessed by dual polynomial.

Dual Characterization of Approximate Degree

Theorem: $\operatorname{deg}_{\epsilon}(f)>d$ iff there exists a "dual polynomial" $\psi:\{-1,1\}^{n} \rightarrow \mathbb{R}$ with
(1) $\sum_{x \in\{-1,1\}^{n}} \psi(x) f(x)>\epsilon$
"high correlation with f "
(2)

$$
|\psi(x)|=1 \quad \text { " } L_{1} \text {-norm } 1 \text { " }
$$

(3) $\quad \sum \psi(x) q(x)=0$, when $\operatorname{deg} q \leq d \quad$ "pure high degree d " $x \in\{-1,1\}^{n}$

Example: $2^{-n} \cdot$ PARITY $_{n}$ witnesses the fact that $\lim _{\epsilon \rightarrow 1}{\underset{\operatorname{deg}}{\epsilon}}\left(\right.$ PARITY $\left._{n}\right)=n$.

Goal: Construct an explicit dual polynomial $\psi_{\text {AND-OR }}$ for AND-OR

Constructing a Dual Polynomial

■ By [NS92], there are dual polynomials $\psi_{\text {OUT }}$ for $\widetilde{\operatorname{deg}}\left(\operatorname{AND}_{n^{1 / 2}}\right)=\Omega\left(n^{1 / 4}\right) \quad$ and $\psi_{\text {IN }}$ for $\widetilde{\operatorname{deg}}\left(\mathrm{OR}_{n^{1 / 2}}\right)=\Omega\left(n^{1 / 4}\right)$
■ Both [She13] and [BT13] combine $\psi_{\text {OUt }}$ and $\psi_{\text {IN }}$ to obtain a dual polynomial $\psi_{\text {AND-OR }}$ for AND-OR.

- The combining method was proposed in earlier work by [SZ09, Lee09, She09].

The Combining Method [SZ09, She09, Lee09]

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(x_{1}, \ldots, x_{n^{1 / 2}}\right):=C \cdot \psi_{\mathbf{O U T}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{n^{1 / 2}}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|
$$

(C chosen to ensure $\psi_{\text {AND-OR }}$ has L_{1}-norm 1).

The Combining Method [SZ09, She09, Lee09]

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(x_{1}, \ldots, x_{n^{1 / 2}}\right):=C \cdot \psi_{\mathbf{O U T}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{n^{1 / 2}}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|
$$

(C chosen to ensure $\psi_{\text {AND-OR }}$ has L_{1}-norm 1).
Must verify:
$1 \psi_{\text {AND-OR }}$ has pure high degree $\geq n^{1 / 4} \cdot n^{1 / 4}=n^{1 / 2}$.
$2 \psi_{\text {AND-OR }}$ has high correlation with AND-OR.

The Combining Method [SZ09, She09, Lee09]

$\psi_{\mathbf{A N D}-\mathbf{O R}}\left(x_{1}, \ldots, x_{n^{1 / 2}}\right):=C \cdot \psi_{\mathbf{O U T}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{I N}}\left(x_{i}\right)\right), \ldots\right) \prod_{i=1}^{n^{1 / 2}}\left|\psi_{\mathbf{I N}}\left(x_{i}\right)\right|$
(C chosen to ensure $\psi_{\text {AND-OR }}$ has L_{1}-norm 1).
Must verify:
$1 \psi_{\text {AND-OR }}$ has pure high degree $\geq n^{1 / 4} \cdot n^{1 / 4}=n^{1 / 2} \cdot \checkmark$ [She09]
$2 \psi_{\text {AND-OR }}$ has high correlation with AND-OR. [BT13, She13]

Recent Progress on the Complexity of AC^{0} : Applying the Method of Dual Polynomials to Block-Composed Functions

(Negative) One-Sided Approximate Degree

■ Negative one-sided approximate degree is an intermediate notion between approximate degree and threshold degree.

- A real polynomial p is a negative one-sided ϵ-approximation for f if

$$
\begin{gathered}
|p(x)-1|<\epsilon \quad \forall x \in f^{-1}(1) \\
p(x) \leq-1 \quad \forall x \in f^{-1}(-1)
\end{gathered}
$$

■ $\widetilde{\text { odeg }}_{-, \epsilon}(f)=\min$ degree of a negative one-sided ϵ-approximation for f.
■ Examples: $\widetilde{\text { odeg }}_{-, 1 / 3}\left(\mathrm{AND}_{n}\right)=\Theta(\sqrt{n})$; $\widetilde{\text { odeg }}-, 1 / 3\left(\mathrm{OR}_{n}\right)=1$.

Recent Theorems

Theorem (BT13, She13)
Let f be a Boolean function with odeg-,1/2 $(f) \geq d$. Let $F=\mathrm{OR}_{t}(f, \ldots, f)$. Then $\widetilde{\operatorname{deg}}_{1 / 2}(F) \geq d \cdot \sqrt{t}$.

Recent Theorems

Theorem (BT13, She13)

Let f be a Boolean function with odeg-,1/2 $(f) \geq d$. Let $F=\mathrm{OR}_{t}(f, \ldots, f)$. Then $\widetilde{\operatorname{deg}}_{1 / 2}(F) \geq d \cdot \sqrt{t}$.

Theorem (BT14)

Let f be a Boolean function with odeg ${ }_{-, 1 / 2}(f) \geq d$. Let $F=\operatorname{OR}_{t}(f, \ldots, f)$. Then $\widetilde{\operatorname{deg}}_{1-2^{-t}}(F) \geq d$.

Recent Theorems

Theorem (BT13, She13)

Let f be a Boolean function with odeg-,1/2 $(f) \geq d$. Let $F=\mathrm{OR}_{t}(f, \ldots, f)$. Then $\widetilde{\operatorname{deg}}_{1 / 2}(F) \geq d \cdot \sqrt{t}$.

Theorem (BT14)

Let f be a Boolean function with odeg ${ }_{-, 1 / 2}(f) \geq d$. Let $F=\operatorname{OR}_{t}(f, \ldots, f)$. Then $\widetilde{\operatorname{deg}}_{1-2^{-t}}(F) \geq d$.

Theorem (She14)

Let f be a Boolean function with odeg ${ }_{-, 1 / 2}(f) \geq d$. Let $F=\operatorname{OR}_{t}(f, \ldots, f)$. Then $\operatorname{deg}_{ \pm}(F)=\Omega(\min \{d, t\})$.

Recent Theorems

Theorem (BT13, She13)

Let f be a Boolean function with odeg ${ }_{-, 1 / 2}(f) \geq d$. Let $F=\operatorname{OR}_{t}(f, \ldots, f)$. Then $\widetilde{\operatorname{deg}}_{1 / 2}(F) \geq d \cdot \sqrt{t}$.

Theorem (BT14)

Let f be a Boolean function with $\widetilde{\text { odeg }}_{-, 1 / 2}(f) \geq d$. Let $F=\mathrm{OR}_{t}(f, \ldots, f)$. Then $\widetilde{\operatorname{deg}}_{1-2^{-t}}(F) \geq d$.

Theorem (She14)

Let f be a Boolean function with odeg ${ }_{-, 1 / 2}(f) \geq d$. Let $F=\mathrm{OR}_{t}(f, \ldots, f)$. Then $\operatorname{deg}_{ \pm}(F)=\Omega(\min \{d, t\})$.

Theorem (BCHTV16)

Let f be a Boolean function with $\operatorname{deg}_{1 / 2}(f) \geq d$. Let $F=\operatorname{GAPMAJ}_{t}(f, \ldots, f)$. Then $\operatorname{deg}_{ \pm}(F) \geq \Omega(\min \{d, t\})$.

Reminder

Problem 1: Is there a function on n variables that is in AC^{0}, and has approximate degree $\Omega(n)$?

Our Techniques

Approximate Degree of AC^{0} : Details

■ Major technical obstacle to progress on lower bounds: By Robustification [She12]:

$$
\widetilde{\operatorname{deg}}(f(g, \ldots, g)) \leq O(\widetilde{\operatorname{deg}}(f) \cdot \widetilde{\operatorname{deg}}(g))
$$

- i.e., the approximate degree of $f_{M} \circ g_{N}$ (as a function of the number of inputs $M \cdot N$) is never larger than that of f or g individually.

Approximate Degree of AC^{0} : Details

■ Major technical obstacle to progress on lower bounds: By Robustification [She12]:

$$
\widetilde{\operatorname{deg}}(f(g, \ldots, g)) \leq O(\widetilde{\operatorname{deg}}(f) \cdot \widetilde{\operatorname{deg}}(g))
$$

- i.e., the approximate degree of $f_{M} \circ g_{N}$ (as a function of the number of inputs $M \cdot N$) is never larger than that of f or g individually.
- So must move beyond block-composed functions to make progress on Problem 1.

A General Hardness Amplification Result

Theorem (Main Theorem)
Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\widetilde{\operatorname{deg}}(f)=d$. Then f can be transformed into a function g on $O\left(n \log ^{4} n\right)$ variables with

$$
\widetilde{\operatorname{deg}}(g) \geq n^{1 / 3} \cdot d^{2 / 3}
$$

A General Hardness Amplification Result

Theorem (Main Theorem)

Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\widetilde{\operatorname{deg}}(f)=d$. Then f can be transformed into a function g on $O\left(n \log ^{4} n\right)$ variables with

$$
\widetilde{\operatorname{deg}}(g) \geq n^{1 / 3} \cdot d^{2 / 3}
$$

- f computed by circuit of depth $d \Longrightarrow$ g computed by circuit of depth $d+3$.

A General Hardness Amplification Result

Theorem (Main Theorem)

Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\widetilde{\operatorname{deg}}(f)=d$. Then f can be transformed into a function g on $O\left(n \log ^{4} n\right)$ variables with

$$
\widetilde{\operatorname{deg}}(g) \geq n^{1 / 3} \cdot d^{2 / 3}
$$

- f computed by circuit of depth $d \Longrightarrow$ g computed by circuit of depth $d+3$.
- f computed by monotone circuit of depth $d \Longrightarrow$ g computed by monotone circuit of depth $d+2$.

A General Hardness Amplification Result

Theorem (Main Theorem)

 transformed into a function g on $O\left(n \log ^{4} n\right)$ variables with

$$
\widetilde{\operatorname{deg}}(g) \geq n^{1 / 3} \cdot d^{2 / 3}
$$

- f computed by circuit of depth $d \Longrightarrow$ g computed by circuit of depth $d+3$.
- f computed by monotone circuit of depth $d \Longrightarrow$ g computed by monotone circuit of depth $d+2$.
■ f computed by monotone DNF of width $w \Longrightarrow$ g computed by monotone DNF of width $O\left(w \cdot \log ^{2} n\right)$.

A General Hardness Amplification Result

Theorem (Main Theorem)

Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\operatorname{deg}(f)=d$. Then f can be transformed into a function g on $O\left(n \log ^{4} n\right)$ variables with

$$
\widetilde{\operatorname{deg}}(g) \geq n^{1 / 3} \cdot d^{2 / 3}
$$

- f computed by circuit of depth $d \Longrightarrow$ g computed by circuit of depth $d+3$.
- f computed by monotone circuit of depth $d \Longrightarrow$ g computed by monotone circuit of depth $d+2$.
■ f computed by monotone DNF of width $w \Longrightarrow$ g computed by monotone DNF of width $O\left(w \cdot \log ^{2} n\right)$.
- AC^{0} results obtained by recursively applying Main Theorem, starting with f equal to OR_{n}.

Idea of the Hardness Amplification Construction

Idea of the Hardness-Amplifying Construction

- Consider the function SURJECTIVITY: $\{-1,1\}^{n} \rightarrow\{-1,1\}$.
- Let $n=N \log R$. SURJ interprets its input x as a list of N numbers $\left(x_{1}, \ldots, x_{N}\right)$ from a range $[R]$.
- $\operatorname{SURJ}(x)=-1$ if and only if every element of the range $[R]$ appears at least once in the list.
■ When we apply Main Theorem to $f=\mathrm{AND}_{R}$, the "harder" function g is precisely SURJ.

Getting to Know SURJECTIVITY

■ It is known that $\widetilde{\operatorname{deg}}(\mathrm{SURJ})=\tilde{\Omega}\left(n^{2 / 3}\right)$ for $R=N / 2$ [AS04].

- Best known upper bound on $\widetilde{\operatorname{deg}}(\mathrm{SURJ})$ is trivial $O(n)$.

Getting to Know SURJECTIVITY

■ It is known that $\widetilde{\operatorname{deg}}(\mathrm{SURJ})=\tilde{\Omega}\left(n^{2 / 3}\right)$ for $R=N / 2$ [AS04].

- Best known upper bound on $\widetilde{\operatorname{deg}}($ SURJ) is trivial $O(n)$.
- An instructive way to achieve this trivial upper bound:
- Let

$$
y_{i j}=\left\{\begin{array}{l}
-1 \text { if } x_{j}=i \\
+1 \text { otherwise }
\end{array}\right.
$$

- Then
$\operatorname{SURJ}(x)=\operatorname{AND}_{R}\left(\operatorname{OR}_{N}\left(y_{1,1}, \ldots, y_{1, N}\right), \ldots, \operatorname{OR}_{N}\left(y_{R, 1} \ldots, y_{R, N}\right)\right)$.

Getting to Know SURJECTIVITY

■ It is known that $\widetilde{\operatorname{deg}}(\mathrm{SURJ})=\tilde{\Omega}\left(n^{2 / 3}\right)$ for $R=N / 2$ [AS04].

- Best known upper bound on $\widetilde{\operatorname{deg}}($ SURJ) is trivial $O(n)$.
- An instructive way to achieve this trivial upper bound:
- Let

$$
y_{i j}=\left\{\begin{array}{l}
-1 \text { if } x_{j}=i \\
+1 \text { otherwise }
\end{array}\right.
$$

- Then
$\operatorname{SURJ}(x)=\operatorname{AND}_{R}\left(\operatorname{OR}_{N}\left(y_{1,1}, \ldots, y_{1, N}\right), \ldots, \operatorname{OR}_{N}\left(y_{R, 1} \ldots, y_{R, N}\right)\right)$.
- Let p be a degree $O(\sqrt{R \cdot N})=O(N)$ polynomial approximating $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$.
- Can construct p via robustification.
- Then $p\left(y_{1,1}, \ldots, y_{1, N}, \ldots, y_{R, 1}, \ldots, y_{R, N}\right)$ approximates SURJ, and has degree $O(\operatorname{deg}(p) \cdot \log R)=O(n)$.

SURJ Illustrated $(R=3, N=6)$

SURJ Illustrated $(R=3, N=6)$

First Attempt: Amplifying Hardness of $f:\{-1,1\}^{R} \rightarrow\{-1,1\} \quad(R=3, N=6)$

Hardness-Amplifying Construction: Second Attempt

■ First attempt at handling general f fails when $f=\mathrm{OR}$.
■ $g(x)=\mathrm{OR}_{R}\left(\mathrm{OR}_{N}\left(y_{1,1}, \ldots, y_{1, N}\right), \ldots, \mathrm{OR}_{N}\left(y_{R, 1} \ldots, y_{R, N}\right)\right)$ has (exact) degree 1.

Hardness-Amplifying Construction: Second Attempt

■ First attempt at handling general f fails when $f=\mathrm{OR}$.
■ $g(x)=\mathrm{OR}_{R}\left(\mathrm{OR}_{N}\left(y_{1,1}, \ldots, y_{1, N}\right), \ldots, \mathrm{OR}_{N}\left(y_{R, 1} \ldots, y_{R, N}\right)\right)$ has (exact) degree 1.
■ Let $R^{\prime}=R \log R$. For $f:\{-1,1\}^{R} \rightarrow\{-1,1\}$, the real* definition of g is:
$g(x)=\left(f \circ \mathrm{AND}_{\log R}\right)\left(\mathrm{OR}_{N}\left(y_{1,1}, \ldots, y_{1, N}\right), \ldots, \mathrm{OR}_{N}\left(y_{R^{\prime}, 1}, \ldots, y_{R^{\prime}, N}\right)\right)$
*This is still a slight simplification.

Idea of the Analysis for SURJECTIVITY

Idea of the Analysis for SURJECTIVITY

■ Let $n=N \log R$.

- Recall: to approximate SURJ: $\{-1,1\}^{n} \rightarrow\{-1,1\}$, it is sufficient to approximate the block-composed function $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$ on $N \cdot R$ bits.
■ Goal is to show this approximation method is close to optimal.

Idea of the Analysis for SURJECTIVITY

■ Let $n=N \log R$.
■ Recall: to approximate SURJ: $\{-1,1\}^{n} \rightarrow\{-1,1\}$, it is sufficient to approximate the block-composed function $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$ on $N \cdot R$ bits.

- Goal is to show this approximation method is close to optimal.
- Step 1: Show that to approximate $\operatorname{SURJ}(x)$, it is necessary to approximate $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$, under the promise that the input has Hamming weight at most N.
- Follows from a symmetrization argument (Ambainis 2003).

Idea of the Analysis for SURJECTIVITY

■ Let $n=N \log R$.
■ Recall: to approximate SURJ: $\{-1,1\}^{n} \rightarrow\{-1,1\}$, it is sufficient to approximate the block-composed function $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$ on $N \cdot R$ bits.

- Goal is to show this approximation method is close to optimal.
- Step 1: Show that to approximate $\operatorname{SURJ}(x)$, it is necessary to approximate $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$, under the promise that the input has Hamming weight at most N.
- Follows from a symmetrization argument (Ambainis 2003).
- Step 2: Prove that for some $N=\tilde{O}(R)$, this promise problem requires degree $\gtrsim \Omega\left(R^{2 / 3}\right)$.

Idea of the Analysis for SURJECTIVITY

■ Let $n=N \log R$.
■ Recall: to approximate SURJ: $\{-1,1\}^{n} \rightarrow\{-1,1\}$, it is sufficient to approximate the block-composed function $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$ on $N \cdot R$ bits.

- Goal is to show this approximation method is close to optimal.
- Step 1: Show that to approximate $\operatorname{SURJ}(x)$, it is necessary to approximate $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$, under the promise that the input has Hamming weight at most N.
- Follows from a symmetrization argument (Ambainis 2003).
- Step 2: Prove that for some $N=\tilde{O}(R)$, this promise problem requires degree $\gtrsim \Omega\left(R^{2 / 3}\right)$.
- Builds on the "dual combining technique" used earlier to analyze AND-OR ${ }_{n}$ (with no promise).

Overview of Step 2

Prove That For Some $N=\tilde{O}(R)$, Approximating $\mathrm{AND}_{R} \circ \mathrm{OR}_{N}$ Under the Promise That The Input Has Hamming Weight At Most N Requires Degree $\gtrsim R^{2 / 3}$.

Attempt 1

- For some $N=\tilde{O}(R)$, want a dual witness for $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$ that only places mass on inputs of Hamming weight at most N.

Attempt 1

- For some $N=\tilde{O}(R)$, want a dual witness for $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$ that only places mass on inputs of Hamming weight at most N.
- Attempt 1: Use the dual witness for $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$ from prior work [She09, Lee09, BT13, She13].

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(y_{1}, \ldots, y_{R}\right):=C \cdot \psi_{\mathbf{A N D}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{O R}}\left(y_{j}\right)\right), \ldots\right) \prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|
$$

(C chosen to ensure $\psi_{\text {AND-OR }}$ has L_{1}-norm 1).

Attempt 1

- For some $N=\tilde{O}(R)$, want a dual witness for $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$ that only places mass on inputs of Hamming weight at most N.
- Attempt 1: Use the dual witness for $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$ from prior work [She09, Lee09, BT13, She13].

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(y_{1}, \ldots, y_{R}\right):=C \cdot \psi_{\mathbf{A N D}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{O R}}\left(y_{j}\right)\right), \ldots\right) \prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|
$$

(C chosen to ensure $\psi_{\text {AND-OR }}$ has L_{1}-norm 1).
Must verify:
$1 \psi_{\text {AND-OR }}$ has pure high degree $\geq R^{1 / 2} \cdot N^{1 / 2}=\Omega(N)$.
$2 \psi_{\text {AND-OR }}$ well-correlated with AND-OR.
$3 \psi_{\text {AND-OR }}$ places mass only on inputs of Hamming weight $\leq N$.

Attempt 1

- For some $N=\tilde{O}(R)$, want a dual witness for $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$ that only places mass on inputs of Hamming weight at most N.
■ Attempt 1: Use the dual witness for $\mathrm{AND}_{R}\left(\mathrm{OR}_{N}, \ldots, \mathrm{OR}_{N}\right)$ from prior work [She09, Lee09, BT13, She13].

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(y_{1}, \ldots, y_{R}\right):=C \cdot \psi_{\mathbf{A N D}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{O R}}\left(y_{j}\right)\right), \ldots\right) \prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|
$$

(C chosen to ensure $\psi_{\text {AND-OR }}$ has L_{1}-norm 1).
Must verify:
$11 \psi_{\text {AND-OR }}$ has pure high degree $\geq R^{1 / 2} \cdot N^{1 / 2}=\Omega(N) \cdot \checkmark[$ She09]
$2 \psi_{\text {AND-or }}$ well-correlated with AND-OR. \checkmark [BT13, She13]
$3 \psi_{\text {AND-OR }}$ places mass only on inputs of Hamming weight $\leq N$.X

Patching Attempt 1

■ Goal: Fix Property 3 without destroying Properties 1 or 2.

Patching Attempt 1

■ Goal: Fix Property 3 without destroying Properties 1 or 2.

- Fact (cf. Razborov and Sherstov 2008): Suppose

$$
\sum_{|y|>N}\left|\psi_{\mathbf{A N D}-\mathbf{O R}}(y)\right| \ll R^{-D}
$$

- Then we can "post-process" $\psi_{\text {AND-OR }}$ to "zero out" any mass it places it inputs of Hamming weight larger than N.
- While ensuring that the resulting dual witness still has pure high degree $\min \left\{D, \operatorname{PHD}\left(\psi_{\text {AND-OR }}\right)\right\}$.

Patching Attempt 1

- New Goal: Show that, for $D \approx R^{2 / 3}$,

$$
\begin{equation*}
\sum_{|y|>N}\left|\psi_{\mathbf{A N D}-\mathbf{O R}}(y)\right| \ll R^{-D} \tag{1}
\end{equation*}
$$

- Recall:

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(y_{1}, \ldots, y_{R}\right):=C \cdot \psi_{\mathbf{A N D}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{O R}}\left(y_{j}\right)\right), \ldots\right) \prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|
$$

Patching Attempt 1

- New Goal: Show that, for $D \approx R^{2 / 3}$,

$$
\begin{equation*}
\sum_{|y|>N}\left|\psi_{\text {AND-OR }}(y)\right| \ll R^{-D} \tag{1}
\end{equation*}
$$

- Recall:

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(y_{1}, \ldots, y_{R}\right):=C \cdot \psi_{\mathbf{A N D}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{O R}}\left(y_{j}\right)\right), \ldots\right) \prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|
$$

- Intuition:
- A dual witness $\psi_{\text {OR }}$ for OR can be made "weakly" biased toward low Hamming weight inputs.
- Specifically: $\sum_{\left|y_{i}\right|=t}\left|\psi_{\mathbf{O R}}\left(y_{i}\right)\right| \leq t^{-2}$.

Patching Attempt 1

- New Goal: Show that, for $D \approx R^{2 / 3}$,

$$
\begin{equation*}
\sum_{|y|>N}\left|\psi_{\text {AND-OR }}(y)\right| \ll R^{-D} \tag{1}
\end{equation*}
$$

- Recall:

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(y_{1}, \ldots, y_{R}\right):=C \cdot \psi_{\mathbf{A N D}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{O R}}\left(y_{j}\right)\right), \ldots\right) \prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|
$$

- Intuition:
- A dual witness $\psi_{\text {OR }}$ for OR can be made "weakly" biased toward low Hamming weight inputs.
- Specifically: $\sum_{\left|y_{i}\right|=t}\left|\psi_{\mathbf{O R}}\left(y_{i}\right)\right| \leq t^{-2}$.
- $\left|\psi_{\text {AND-OR }}\left(y_{1}, \ldots, y_{R}\right)\right|$ "resembles" the product distribution $\prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|$.
- So it is exponentially more biased toward low Hamming weight inputs than $\psi_{\mathbf{O R}}$ itself.

Patching Attempt 1 (Slightly Loose Analysis)

- New Goal: Show that, for $D \approx R^{2 / 3}$,

$$
\begin{equation*}
\sum_{y \mid>2 R^{1.01}}\left|\psi_{\text {AND-OR }}(y)\right| \ll R^{-D} \tag{2}
\end{equation*}
$$

Patching Attempt 1 (Slightly Loose Analysis)

- New Goal: Show that, for $D \approx R^{2 / 3}$,

$$
\begin{equation*}
\sum_{y \mid>2 R^{1.01}}\left|\psi_{\text {AND-OR }}(y)\right| \ll R^{-D} \tag{2}
\end{equation*}
$$

- Recall:

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(y_{1}, \ldots, y_{R}\right):=C \cdot \psi_{\mathbf{A N D}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{O R}}\left(y_{j}\right)\right), \ldots\right) \prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|
$$

Patching Attempt 1 (Slightly Loose Analysis)

- New Goal: Show that, for $D \approx R^{2 / 3}$,

$$
\begin{equation*}
\sum_{y \mid>2 R^{1.01}}\left|\psi_{\text {AND-OR }}(y)\right| \ll R^{-D} \tag{2}
\end{equation*}
$$

- Recall:

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(y_{1}, \ldots, y_{R}\right):=C \cdot \psi_{\mathbf{A N D}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{O R}}\left(y_{j}\right)\right), \ldots\right) \prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|
$$

■ We need to modify $\psi_{\mathbf{O R}}$ to ensure that Equation (2) holds.

Patching Attempt 1 (Slightly Loose Analysis)

- New Goal: Show that, for $D \approx R^{2 / 3}$,

$$
\begin{equation*}
\sum_{y \mid>2 R^{1.01}}\left|\psi_{\text {AND-OR }}(y)\right| \ll R^{-D} \tag{2}
\end{equation*}
$$

- Recall:

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(y_{1}, \ldots, y_{R}\right):=C \cdot \psi_{\mathbf{A N D}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{O R}}\left(y_{j}\right)\right), \ldots\right) \prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|
$$

■ We need to modify $\psi_{\mathbf{O R}}$ to ensure that Equation (2) holds.
1 Modify $\psi_{\text {OR }}$ to place no mass whatsoever on inputs of Hamming weight more than $R^{1 / 3}$.

Patching Attempt 1 (Slightly Loose Analysis)

- New Goal: Show that, for $D \approx R^{2 / 3}$,

$$
\begin{equation*}
\sum_{|y|>2 R^{1.01}}\left|\psi_{\text {AND-OR }}(y)\right| \ll R^{-D} \tag{2}
\end{equation*}
$$

- Recall:

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(y_{1}, \ldots, y_{R}\right):=C \cdot \psi_{\mathbf{A N D}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{O R}}\left(y_{j}\right)\right), \ldots\right) \prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|
$$

■ We need to modify $\psi_{\text {OR }}$ to ensure that Equation (2) holds.
1 Modify $\psi_{\text {OR }}$ to place no mass whatsoever on inputs of Hamming weight more than $R^{1 / 3}$.
2 Suppose $\psi_{\text {OR }}$ also satisfies the following "low Hamming weight bias" condition.

- $\sum_{\left|y_{i}\right|>R^{0.01}}\left|\psi_{\mathrm{OR}}\left(y_{i}\right)\right| \leq R^{-40}$.

Patching Attempt 1 (Slightly Loose Analysis)

- New Goal: Show that, for $D \approx R^{2 / 3}$,

$$
\begin{equation*}
\sum_{|y|>2 R^{1.01}}\left|\psi_{\text {AND-OR }}(y)\right| \ll R^{-D} \tag{2}
\end{equation*}
$$

- Recall:

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(y_{1}, \ldots, y_{R}\right):=C \cdot \psi_{\mathbf{A N D}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{O R}}\left(y_{j}\right)\right), \ldots\right) \prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|
$$

■ We need to modify $\psi_{\text {OR }}$ to ensure that Equation (2) holds.
1 Modify $\psi_{\text {OR }}$ to place no mass whatsoever on inputs of Hamming weight more than $R^{1 / 3}$.
2 Suppose $\psi_{\text {OR }}$ also satisfies the following "low Hamming weight bias" condition.

- $\sum_{\left|y_{i}\right|>R^{0.01}}\left|\psi_{\mathrm{OR}}\left(y_{i}\right)\right| \leq R^{-40}$.

■ Condition $(1) \Longrightarrow\left(|y|>2 R^{1.01} \Longrightarrow\left|\left\{i:\left|y_{i}\right|>R^{0.01}\right\}\right|>R^{2 / 3}\right)$

Patching Attempt 1 (Slightly Loose Analysis)

- New Goal: Show that, for $D \approx R^{2 / 3}$,

$$
\begin{equation*}
\sum_{|y|>2 R^{1.01}}\left|\psi_{\text {AND-OR }}(y)\right| \ll R^{-D} \tag{2}
\end{equation*}
$$

- Recall:

$$
\psi_{\mathbf{A N D}-\mathbf{O R}}\left(y_{1}, \ldots, y_{R}\right):=C \cdot \psi_{\mathbf{A N D}}\left(\ldots, \operatorname{sgn}\left(\psi_{\mathbf{O R}}\left(y_{j}\right)\right), \ldots\right) \prod_{j=1}^{R}\left|\psi_{\mathbf{O R}}\left(y_{j}\right)\right|
$$

■ We need to modify $\psi_{\text {OR }}$ to ensure that Equation (2) holds.
1 Modify $\psi_{\text {OR }}$ to place no mass whatsoever on inputs of Hamming weight more than $R^{1 / 3}$.
2 Suppose $\psi_{\text {OR }}$ also satisfies the following "low Hamming weight bias" condition.

$$
\text { ■ } \sum_{\left|y_{i}\right|>R^{0.01}}\left|\psi_{\mathrm{OR}}\left(y_{i}\right)\right| \leq R^{-40} .
$$

■ Condition $(1) \Longrightarrow\left(|y|>2 R^{1.01} \Longrightarrow\left|\left\{i:\left|y_{i}\right|>R^{0.01}\right\}\right|>R^{2 / 3}\right)$
■ Condition (2) + product-like nature of $\psi_{\text {AND-OR }} \Longrightarrow$ total mass $\psi_{\text {AND-OR }}$ places on such inputs is $\ll R^{-R^{2 / 3}}$.

Completing The Analysis

■ Fact: Both properties from previous slide are satisfied by a dual witness $\psi_{\text {OR }}$ for OR of pure high degree $\approx R^{1 / 6}$.

- This ensures $\psi_{\text {AND-OR }}$ has pure high degree
$\gtrsim R^{1 / 2} \cdot R^{1 / 6}=R^{2 / 3}$. \square

Future Directions

- An $\Omega(n)$ lower bound on the approximate degree of AC^{0} ?
- Extend our $\Omega\left(n^{1-\delta}\right)$ degree lower bound from polylogarithmic width DNFs to polynomial size DNFs?
- Extend our bounds on $\operatorname{deg}_{\epsilon}(f)$ from $\epsilon=1 / 3$ to ϵ much closer to 1 ?
- We believe our techniques can extend to give:
- A function f in AC^{0} with $\widetilde{\operatorname{deg}}_{\epsilon}(f) \geq n^{1-\delta}$, for $\epsilon=1-2^{-n^{1-\delta}}$.
- New threshold degree lower bounds for $A C^{0}$.

Thank you!

