# A Nearly Optimal Lower Bound on The Approximate Degree of AC<sup>0</sup>

Justin Thaler

Georgetown University

Joint work with Mark Bun, Princeton University

Boolean function 
$$f : \{-1, 1\}^n \to \{-1, 1\}$$
  
AND<sub>n</sub>(x) = 
$$\begin{cases} -1 & (\mathsf{TRUE}) & \text{if } x = (-1)^n \\ 1 & (\mathsf{FALSE}) & \text{otherwise} \end{cases}$$

• A real polynomial  $p \epsilon$ -approximates f if

$$|p(x) - f(x)| < \epsilon \quad \forall x \in \{-1, 1\}^n$$

•  $\widetilde{\deg}_{\epsilon}(f) = \text{minimum degree needed to } \epsilon\text{-approximate } f$ •  $\widetilde{\deg}(f) := \deg_{1/3}(f)$  is the approximate degree of f Upper bounds on  $\deg_{\epsilon}(f)$  yield efficient learning algorithms.

- $\epsilon \approx 1/3$ : Agnostic Learning [KKMS05]
- $\epsilon \approx 1 2^{-n^{\delta}}$ : Attribute-Efficient Learning [KS04, STT12]
- $\epsilon \to 1$  (i.e., threshold degree,  $\deg_{\pm}(f)$ ): PAC learning [KS01]

Upper bounds on  $\deg_{\epsilon}(f)$  yield efficient learning algorithms.

- $\epsilon \approx 1/3$ : Agnostic Learning [KKMS05]
- $\epsilon \approx 1 2^{-n^{\delta}}$ : Attribute-Efficient Learning [KS04, STT12]
- $\epsilon \to 1$  (i.e., threshold degree,  $\deg_{\pm}(f)$ ): PAC learning [KS01]
- Upper bounds on  $\widetilde{\deg}_{1/3}(f)$  also:
  - Imply fast algorithms for differentially private data release [TUV12, CTUW14].

Upper bounds on  $\deg_{\epsilon}(f)$  yield efficient learning algorithms.

- $\epsilon \approx 1/3$ : Agnostic Learning [KKMS05]
- $\epsilon \approx 1 2^{-n^{\delta}}$ : Attribute-Efficient Learning [KS04, STT12]
- $\epsilon \to 1$  (i.e., threshold degree,  $\deg_{\pm}(f)$ ): PAC learning [KS01]
- Upper bounds on  $deg_{1/3}(f)$  also:
  - Imply fast algorithms for differentially private data release [TUV12, CTUW14].
  - Underly the best known lower bounds on formula complexity and graph complexity [Tal2014, 2016a, 2016b]

Lower bounds on  $\widetilde{\deg}_{\epsilon}(f)$  yield lower bounds on:

- Quantum query complexity [BBCMW98, AS01, Amb03, KSW04]
- Circuit complexity [MP69, Bei93, Bei94, She08]
- Communication complexity [She08, SZ08, CA08, LS08, She12]
  - Lower bounds hold for a communication problem **related** to *f*.
  - Technique is called the Pattern Matrix Method [She08].
  - A lower bound on  $\deg_{1/3}(f)$  implies that the pattern matrix of f has high <u>quantum</u> communication complexity, even with prior entanglement.

Lower bounds on  $\widetilde{\deg}_{\epsilon}(f)$  yield lower bounds on:

- Quantum query complexity [BBCMW98, AS01, Amb03, KSW04]
- Circuit complexity [MP69, Bei93, Bei94, She08]
- Communication complexity [She08, SZ08, CA08, LS08, She12]
  - Lower bounds hold for a communication problem **related** to *f*.
  - Technique is called the Pattern Matrix Method [She08].
  - A lower bound on  $\deg_{1/3}(f)$  implies that the pattern matrix of f has high <u>quantum</u> communication complexity, even with prior entanglement.
- Lower bounds on deg(f) also yield efficient secret-sharing schemes [BIVW16] and oracle separations [Bei94, BCHTV16].

# Example 1: The Approximate Degree of $AND_n$

# Example: What is the Approximate Degree of $AND_n$ ?

 $\widetilde{\operatorname{deg}}(\operatorname{AND}_n) = \Theta(\sqrt{n}).$ 

- Upper bound: Use Chebyshev Polynomials.
- Markov's Inequality: Let G(t) be a univariate polynomial s.t.  $\deg(G) \le d$  and  $\max_{t \in [-1,1]} |G(t)| \le 1$ . Then

$$\max_{t \in [-1,1]} |G'(t)| \le d^2.$$

Chebyshev polynomials are the extremal case.



# Example: What is the Approximate Degree of $AND_n$ ?

 $\widetilde{\operatorname{deg}}(\operatorname{AND}_n) = O(\sqrt{n}).$ 

After shifting a scaling, can turn degree  $O(\sqrt{n})$  Chebyshev polynomial into a univariate polynomial Q(t) that looks like:



Define n-variate polynomial p via  $p(x) = Q(\sum_{i=1}^{n} x_i/n)$ .
Then  $|p(x) - AND_n(x)| \le 1/3 \quad \forall x \in \{-1, 1\}^n$ .

# Example: What is the Approximate Degree of $AND_n$ ?

[NS92]  $\widetilde{\operatorname{deg}}(\operatorname{AND}_n) = \Omega(\sqrt{n}).$ 

- Lower bound: Use symmetrization.
- Suppose  $|p(x) AND_n(x)| \le 1/3$   $\forall x \in \{-1, 1\}^n$ .
- There is a way to turn p into a <u>univariate</u> polynomial p<sup>sym</sup> that looks like this:



- Claim 1:  $\deg(p^{sym}) \leq \deg(p)$ .
- Claim 2: Markov's inequality  $\Longrightarrow \deg(p^{sym}) = \Omega(n^{1/2}).$

# Focus of This Talk

- Approximate degree is a key tool for understanding AC<sup>0</sup>.
- At the heart of the best known bounds on the complexity of AC<sup>0</sup> under measures such as:
  - Quantum Communication Complexity
  - Approximate Rank
  - Sign-rank  $\approx UPP^{cc}$
  - Discrepancy  $\approx$  Margin complexity  $\approx$  PP<sup>cc</sup>
  - Majority-of-Threshold circuit size
  - Threshold-of-Majority circuit size
  - and more.

# Focus of This Talk

- Approximate degree is a key tool for understanding AC<sup>0</sup>.
- At the heart of the best known bounds on the complexity of AC<sup>0</sup> under measures such as:
  - Quantum Communication Complexity
  - Approximate Rank
  - Sign-rank  $\approx UPP^{cc}$
  - Discrepancy  $\approx$  Margin complexity  $\approx$  PP<sup>cc</sup>
  - Majority-of-Threshold circuit size
  - Threshold-of-Majority circuit size
  - and more.

**Problem 1**: Is there a function on n variables that is in AC<sup>0</sup>, and has approximate degree  $\Omega(n)$ ?

Best known result:  $\tilde{\Omega}(n^{2/3})$  for the Element Distinctness function (Aaronson and Shi, 2004).

- Best known result:  $\tilde{\Omega}(n^{2/3})$  for the Element Distinctness function (Aaronson and Shi, 2004).
- Our result: For any constant  $\delta > 0$ , a function in AC<sup>0</sup> with approximate degree  $\Omega(n^{1-\delta})$ .

• More precisely, circuit depth is  $O(\log(1/\delta))$ .

- Best known result:  $\tilde{\Omega}(n^{2/3})$  for the Element Distinctness function (Aaronson and Shi, 2004).
- Our result: For any constant  $\delta > 0$ , a function in AC<sup>0</sup> with approximate degree  $\Omega(n^{1-\delta})$ .
  - More precisely, circuit depth is  $O(\log(1/\delta))$ .
  - Lower bound also applies to DNFs of polylogarithmic width (and quasipolynomial size).

# Applications

- Nearly optimal  $\Omega(n^{1-\delta})$  lower bounds on quantum communication complexity of AC<sup>0</sup>.
- Essentially optimal (quadratic) separation of certificate complexity and approximate degree.
- Better secret sharing schemes with reconstruction in AC<sup>0</sup>.

# Prior Work: The Method of Dual Polynomials and the AND-OR Tree

# Beyond Symmetrization

- Symmetrization is "lossy": in turning an *n*-variate poly *p* into a univariate poly *p*<sup>sym</sup>, we throw away information about *p*.
- Challenge Problem: What is  $deg(AND-OR_n)$ ?



# History of the AND-OR Tree

### Theorem

 $\widetilde{\operatorname{deg}}(\operatorname{AND-OR}_n) = \Theta(n^{1/2}).$ 

### Theorem

 $\widetilde{\operatorname{deg}}(\operatorname{AND-OR}_n) = \Theta(n^{1/2}).$ 

Tight Upper Bound of  ${\cal O}(n^{1/2})$ 

[HMW03] via quantum algorithms[She12] different proof (via robustification)

#### Theorem

 $\widetilde{\operatorname{deg}}(\operatorname{AND-OR}_n) = \Theta(n^{1/2}).$ 

Tight Upper Bound of  ${\cal O}(n^{1/2})$ 

[HMW03] via quantum algorithms [She12] different proof (via robustification)

Tight Lower Bound of  $\Omega(n^{1/2})$ 

[BT13] and [She13] via the method of dual polynomials

What is best error achievable by **any** degree d approximation of f? Primal LP (Linear in  $\epsilon$  and coefficients of p):

$$\begin{array}{ll} \min_{p,\epsilon} & \epsilon \\ \text{s.t.} & |p(x)-f(x)| \leq \epsilon \\ & \deg p \leq d \end{array} \qquad \qquad \text{for all } x \in \{-1,1\}^n \\ \end{array}$$

Dual LP:

$$\begin{split} \max_{\psi} & \sum_{x \in \{-1,1\}^n} \psi(x) f(x) \\ \text{s.t.} & \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1 \\ & \sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0 \qquad \text{whenever } \deg q \leq d \end{split}$$

**Theorem:** deg<sub> $\epsilon$ </sub>(f) > d iff there exists a "dual polynomial"  $\psi \colon \{-1,1\}^n \to \mathbb{R}$  with

- $\begin{array}{ll} \mbox{(1)} & \sum_{x \in \{-1,1\}^n} \psi(x) f(x) > \epsilon & \mbox{``high correlation with } f'' \\ \mbox{(2)} & \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1 & \mbox{``L}_1 \text{-norm 1''} \\ \mbox{(3)} & \sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0, \mbox{ when } \deg q \leq d & \mbox{``pure high degree } d'' \\ \end{array}$ 
  - A **lossless** technique. Strong duality implies any approximate degree lower bound can be witnessed by dual polynomial.

**Theorem:** deg<sub> $\epsilon$ </sub>(f) > d iff there exists a "dual polynomial"  $\psi \colon \{-1,1\}^n \to \mathbb{R}$  with

$$\begin{array}{ll} \mbox{(1)} & \sum_{x \in \{-1,1\}^n} \psi(x) f(x) > \epsilon & \mbox{``high correlation with } f'' \\ \mbox{(2)} & \sum_{x \in \{-1,1\}^n} |\psi(x)| = 1 & \mbox{``}L_1 \text{-norm 1''} \\ \mbox{(3)} & \sum_{x \in \{-1,1\}^n} \psi(x) q(x) = 0, \mbox{ when } \deg q \leq d & \mbox{``pure high degree } d'' \\ \end{array}$$

Example:  $2^{-n} \cdot \mathsf{PARITY}_n$  witnesses the fact that  $\lim_{\epsilon \to 1} \widetilde{\deg}_{\epsilon}(\mathsf{PARITY}_n) = n.$ 

# Goal: Construct an explicit dual polynomial $\psi_{\rm AND-OR}$ for AND-OR

- By [NS92], there are dual polynomials  $\psi_{\text{OUT}}$  for  $\widetilde{\text{deg}}(\text{AND}_{n^{1/2}}) = \Omega(n^{1/4})$  and  $\psi_{\text{IN}}$  for  $\widetilde{\text{deg}}(\text{OR}_{n^{1/2}}) = \Omega(n^{1/4})$
- Both [She13] and [BT13] combine ψ<sub>OUT</sub> and ψ<sub>IN</sub> to obtain a dual polynomial ψ<sub>AND-OR</sub> for AND-OR.
- The combining method was proposed in earlier work by [SZ09, Lee09, She09].

# The Combining Method [SZ09, She09, Lee09]

$$\psi_{\mathsf{AND-OR}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\mathsf{IN}}(x_i)|$$

(C chosen to ensure  $\psi_{\text{AND-OR}}$  has  $L_1$ -norm 1).



# The Combining Method [SZ09, She09, Lee09]

$$\psi_{\mathsf{AND-OR}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\mathsf{IN}}(x_i)|$$

(C chosen to ensure  $\psi_{\text{AND-OR}}$  has  $L_1$ -norm 1).

Must verify:

- **1**  $\psi_{\text{AND-OR}}$  has pure high degree  $\geq n^{1/4} \cdot n^{1/4} = n^{1/2}$ .
- **2**  $\psi_{\text{AND-OR}}$  has high correlation with AND-OR.

# The Combining Method [SZ09, She09, Lee09]

$$\psi_{\mathsf{AND-OR}}(x_1,\ldots,x_{n^{1/2}}) := C \cdot \psi_{\mathsf{OUT}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{IN}}(x_i)),\ldots) \prod_{i=1}^{n^{1/2}} |\psi_{\mathsf{IN}}(x_i)|$$

(C chosen to ensure  $\psi_{\text{AND-OR}}$  has  $L_1$ -norm 1).

Must verify:

**1**  $\psi_{\text{AND-OR}}$  has pure high degree  $\geq n^{1/4} \cdot n^{1/4} = n^{1/2} \cdot \checkmark [\text{She09}]$ 

**2**  $\psi_{\text{AND-OR}}$  has high correlation with AND-OR. [BT13, She13]

Recent Progress on the Complexity of AC<sup>0</sup>: Applying the Method of Dual Polynomials to Block-Composed Functions

- Negative one-sided approximate degree is an intermediate notion between approximate degree and threshold degree.
- A real polynomial p is a negative one-sided  $\epsilon\text{-approximation}$  for f if

$$|p(x) - 1| < \epsilon \quad \forall x \in f^{-1}(1)$$
$$p(x) \le -1 \quad \forall x \in f^{-1}(-1)$$

- $\operatorname{odeg}_{-,\epsilon}(f) = \min \text{ degree of a negative one-sided} \\ \epsilon \operatorname{-approximation for } f.$
- Examples:  $\widetilde{\operatorname{odeg}}_{-,1/3}(AND_n) = \Theta(\sqrt{n}); \widetilde{\operatorname{odeg}}_{-,1/3}(OR_n) = 1.$

## **Recent Theorems**

## Theorem (BT13, She13)

Let f be a Boolean function with  $\widetilde{\text{odeg}}_{-,1/2}(f) \ge d$ . Let  $F = OR_t(f, \dots, f)$ . Then  $\widetilde{\text{deg}}_{1/2}(F) \ge d \cdot \sqrt{t}$ .

## **Recent Theorems**

## Theorem (BT13, She13)

Let f be a Boolean function with  $\widetilde{\text{odeg}}_{-,1/2}(f) \ge d$ . Let  $F = OR_t(f, \dots, f)$ . Then  $\widetilde{\deg}_{1/2}(F) \ge d \cdot \sqrt{t}$ .

## Theorem (BT14)

Let f be a Boolean function with  $\widetilde{\text{odeg}}_{-,1/2}(f) \ge d$ . Let  $F = OR_t(f, \dots, f)$ . Then  $\widetilde{\deg}_{1-2^{-t}}(F) \ge d$ .

## Recent Theorems

## Theorem (BT13, She13)

Let f be a Boolean function with  $\widetilde{\text{odeg}}_{-,1/2}(f) \ge d$ . Let  $F = OR_t(f, \dots, f)$ . Then  $\widetilde{\deg}_{1/2}(F) \ge d \cdot \sqrt{t}$ .

## Theorem (BT14)

Let f be a Boolean function with  $\widetilde{\text{odeg}}_{-,1/2}(f) \ge d$ . Let  $F = OR_t(f, \dots, f)$ . Then  $\widetilde{\deg}_{1-2^{-t}}(F) \ge d$ .

### Theorem (She14)

Let f be a Boolean function with  $odeg_{-,1/2}(f) \ge d$ . Let  $F = OR_t(f, \ldots, f)$ . Then  $\deg_{\pm}(F) = \Omega(\min\{d, t\})$ .

#### Recent Theorems

#### Theorem (BT13, She13)

Let f be a Boolean function with  $\widetilde{\text{odeg}}_{-,1/2}(f) \ge d$ . Let  $F = OR_t(f, \dots, f)$ . Then  $\widetilde{\deg}_{1/2}(F) \ge d \cdot \sqrt{t}$ .

#### Theorem (BT14)

Let f be a Boolean function with  $\widetilde{\text{odeg}}_{-,1/2}(f) \ge d$ . Let  $F = OR_t(f, \dots, f)$ . Then  $\widetilde{\deg}_{1-2^{-t}}(F) \ge d$ .

#### Theorem (She14)

Let f be a Boolean function with  $\widetilde{\text{odeg}}_{-,1/2}(f) \ge d$ . Let  $F = OR_t(f, \dots, f)$ . Then  $\deg_{\pm}(F) = \Omega(\min\{d, t\})$ .

#### Theorem (BCHTV16)

Let f be a Boolean function with  $\deg_{1/2}(f) \ge d$ . Let  $F = GAPMAJ_t(f, \ldots, f)$ . Then  $\deg_{\pm}(F) \ge \Omega(\min\{d, t\})$ .

# **Problem 1**: Is there a function on n variables that is in AC<sup>0</sup>, and has approximate degree $\Omega(n)$ ?

## **Our Techniques**

 Major technical obstacle to progress on lower bounds: By Robustification [She12]:

$$\widetilde{\operatorname{deg}}(f(g,\ldots,g)) \leq O(\widetilde{\operatorname{deg}}(f) \cdot \widetilde{\operatorname{deg}}(g)).$$

• i.e., the approximate degree of  $f_M \circ g_N$  (as a function of the number of inputs  $M \cdot N$ ) is never larger than that of f or g individually.

 Major technical obstacle to progress on lower bounds: By Robustification [She12]:

$$\widetilde{\operatorname{deg}}(f(g,\ldots,g)) \leq O(\widetilde{\operatorname{deg}}(f) \cdot \widetilde{\operatorname{deg}}(g)).$$

- i.e., the approximate degree of  $f_M \circ g_N$  (as a function of the number of inputs  $M \cdot N$ ) is never larger than that of f or g individually.
- So must move beyond block-composed functions to make progress on Problem 1.

#### A General Hardness Amplification Result

#### Theorem (Main Theorem)

Let  $f: \{-1,1\}^n \to \{-1,1\}$  with  $\deg(f) = d$ . Then f can be transformed into a function g on  $O(n \log^4 n)$  variables with

 $\widetilde{\deg}(g) \ge n^{1/3} \cdot d^{2/3}.$ 

Let  $f: \{-1,1\}^n \to \{-1,1\}$  with  $\deg(f) = d$ . Then f can be transformed into a function g on  $O(n \log^4 n)$  variables with  $\widetilde{\deg}(g) \ge n^{1/3} \cdot d^{2/3}$ .

• f computed by circuit of depth  $d \Longrightarrow$ g computed by circuit of depth d + 3.

Let  $f: \{-1,1\}^n \to \{-1,1\}$  with  $\deg(f) = d$ . Then f can be transformed into a function g on  $O(n \log^4 n)$  variables with  $\widetilde{\deg}(g) \ge n^{1/3} \cdot d^{2/3}$ .

- f computed by circuit of depth  $d \Longrightarrow$ g computed by circuit of depth d + 3.
- f computed by monotone circuit of depth  $d \Longrightarrow g$  computed by monotone circuit of depth d + 2.

Let  $f: \{-1,1\}^n \to \{-1,1\}$  with  $\deg(f) = d$ . Then f can be transformed into a function g on  $O(n \log^4 n)$  variables with  $\widetilde{\deg}(g) \ge n^{1/3} \cdot d^{2/3}$ .

- f computed by circuit of depth  $d \Longrightarrow$ g computed by circuit of depth d + 3.
- f computed by monotone circuit of depth  $d \Longrightarrow$ g computed by monotone circuit of depth d + 2.
- f computed by monotone DNF of width  $w \Longrightarrow$ g computed by monotone DNF of width  $O(w \cdot \log^2 n)$ .

Let  $f: \{-1,1\}^n \to \{-1,1\}$  with  $\deg(f) = d$ . Then f can be transformed into a function g on  $O(n \log^4 n)$  variables with  $\widetilde{\deg}(g) \ge n^{1/3} \cdot d^{2/3}$ .

- f computed by circuit of depth  $d \Longrightarrow$ g computed by circuit of depth d + 3.
- f computed by monotone circuit of depth  $d \Longrightarrow$ g computed by monotone circuit of depth d + 2.
- f computed by monotone DNF of width  $w \Longrightarrow$ g computed by monotone DNF of width  $O(w \cdot \log^2 n)$ .
- AC<sup>0</sup> results obtained by recursively applying Main Theorem, starting with f equal to  $OR_n$ .

## Idea of the Hardness Amplification Construction

#### Idea of the Hardness-Amplifying Construction

- Consider the function SURJECTIVITY:  $\{-1,1\}^n \rightarrow \{-1,1\}$ .
  - Let  $n = N \log R$ . SURJ interprets its input x as a list of N numbers  $(x_1, \ldots, x_N)$  from a range [R].
  - SURJ(x) = -1 if and only if every element of the range [R] appears at least once in the list.
- When we apply Main Theorem to  $f = AND_R$ , the "harder" function g is precisely SURJ.

## Getting to Know SURJECTIVITY

It is known that deg(SURJ) = Ω(n<sup>2/3</sup>) for R = N/2 [AS04].
 Best known upper bound on deg(SURJ) is trivial O(n).

## Getting to Know SURJECTIVITY

- It is known that  $\widetilde{\operatorname{deg}}(\operatorname{SURJ}) = \widetilde{\Omega}(n^{2/3})$  for R = N/2 [AS04].
- Best known upper bound on  $\widetilde{\operatorname{deg}}(\mathsf{SURJ})$  is trivial O(n).
- An instructive way to achieve this trivial upper bound:
   Let

$$y_{ij} = \begin{cases} -1 \text{ if } x_j = i \\ +1 \text{ otherwise} \end{cases}$$

Then

 $\mathsf{SURJ}(x) = \operatorname{AND}_R(\operatorname{OR}_N(y_{1,1},\ldots,y_{1,N}),\ldots,\operatorname{OR}_N(y_{R,1}\ldots,y_{R,N})).$ 

## Getting to Know SURJECTIVITY

- It is known that  $\widetilde{\operatorname{deg}}(\operatorname{SURJ}) = \widetilde{\Omega}(n^{2/3})$  for R = N/2 [AS04].
- Best known upper bound on  $\widetilde{\operatorname{deg}}(\mathsf{SURJ})$  is trivial O(n).
- An instructive way to achieve this trivial upper bound:
   Let

$$y_{ij} = \begin{cases} -1 \text{ if } x_j = i \\ +1 \text{ otherwise} \end{cases}$$

Then

 $\mathsf{SURJ}(x) = \mathsf{AND}_R(\mathsf{OR}_N(y_{1,1},\ldots,y_{1,N}),\ldots,\mathsf{OR}_N(y_{R,1}\ldots,y_{R,N})).$ 

- Let p be a degree  $O(\sqrt{R \cdot N}) = O(N)$  polynomial approximating  $AND_R(OR_N, \dots, OR_N)$ .
  - Can construct *p* via robustification.
- Then  $p(y_{1,1}, \ldots, y_{1,N}, \ldots, y_{R,1}, \ldots, y_{R,N})$  approximates SURJ, and has degree  $O(\deg(p) \cdot \log R) = O(n)$ .

SURJ Illustrated 
$$(R = 3, N = 6)$$



SURJ Illustrated 
$$(R = 3, N = 6)$$



First Attempt: Amplifying Hardness of  $f:\{-1,1\}^R \rightarrow \{-1,1\}$  (R=3,N=6)



■ First attempt at handling general f fails when f = OR.
 ■ g(x) = OR<sub>R</sub>(OR<sub>N</sub>(y<sub>1,1</sub>,...,y<sub>1,N</sub>),...,OR<sub>N</sub>(y<sub>R,1</sub>...,y<sub>R,N</sub>)) has (exact) degree 1.

- First attempt at handling general f fails when f = OR.
   g(x) = OR<sub>R</sub>(OR<sub>N</sub>(y<sub>1,1</sub>,..., y<sub>1,N</sub>),..., OR<sub>N</sub>(y<sub>R,1</sub>..., y<sub>R,N</sub>))
  - has (exact) degree 1.
- Let  $R' = R \log R$ . For  $f : \{-1, 1\}^R \to \{-1, 1\}$ , the real\* definition of g is:

 $g(x) = (f \circ \text{AND}_{\log R})(\text{OR}_N(y_{1,1}, \dots, y_{1,N}), \dots, \text{OR}_N(y_{R',1}, \dots, y_{R',N}))$ 

\*This is still a slight simplification.

• Let  $n = N \log R$ .

- Recall: to approximate SURJ:  $\{-1,1\}^n \rightarrow \{-1,1\}$ , it is sufficient to approximate the block-composed function  $AND_R(OR_N, \dots, OR_N)$  on  $N \cdot R$  bits.
- Goal is to show this approximation method is close to optimal.

• Let  $n = N \log R$ .

- Recall: to approximate SURJ:  $\{-1,1\}^n \rightarrow \{-1,1\}$ , it is **sufficient** to approximate the block-composed function AND<sub>R</sub>(OR<sub>N</sub>,...,OR<sub>N</sub>) on  $N \cdot R$  bits.
- Goal is to show this approximation method is close to optimal.
- Step 1: Show that to approximate SURJ(x), it is **necessary** to approximate AND<sub>R</sub>(OR<sub>N</sub>,...,OR<sub>N</sub>), under the promise that the input has Hamming weight **at most** N.
  - Follows from a symmetrization argument (Ambainis 2003).

• Let  $n = N \log R$ .

- Recall: to approximate SURJ:  $\{-1,1\}^n \rightarrow \{-1,1\}$ , it is **sufficient** to approximate the block-composed function AND<sub>R</sub>(OR<sub>N</sub>,...,OR<sub>N</sub>) on  $N \cdot R$  bits.
- Goal is to show this approximation method is close to optimal.
- Step 1: Show that to approximate SURJ(x), it is **necessary** to approximate AND<sub>R</sub>(OR<sub>N</sub>,...,OR<sub>N</sub>), under the promise that the input has Hamming weight **at most** N.

Follows from a symmetrization argument (Ambainis 2003).

Step 2: Prove that for some  $N = \tilde{O}(R)$ , this promise problem requires degree  $\gtrsim \Omega(R^{2/3})$ .

• Let  $n = N \log R$ .

- Recall: to approximate SURJ:  $\{-1,1\}^n \rightarrow \{-1,1\}$ , it is sufficient to approximate the block-composed function  $AND_R(OR_N, ..., OR_N)$  on  $N \cdot R$  bits.
- Goal is to show this approximation method is close to optimal.
- Step 1: Show that to approximate SURJ(x), it is **necessary** to approximate AND<sub>R</sub>(OR<sub>N</sub>,...,OR<sub>N</sub>), under the promise that the input has Hamming weight **at most** N.

Follows from a symmetrization argument (Ambainis 2003).

- Step 2: Prove that for some  $N = \tilde{O}(R)$ , this promise problem requires degree  $\gtrsim \Omega(R^{2/3})$ .
  - Builds on the "dual combining technique" used earlier to analyze AND-OR<sub>n</sub> (with no promise).

#### Overview of Step 2

Prove That For Some  $N = \tilde{O}(R)$ , Approximating  $AND_R \circ OR_N$ Under the Promise That The Input Has Hamming Weight **At Most** N Requires Degree  $\gtrsim R^{2/3}$ .

■ For some N = Õ(R), want a dual witness for AND<sub>R</sub>(OR<sub>N</sub>,...,OR<sub>N</sub>) that only places mass on inputs of Hamming weight at most N.



For some  $N = \tilde{O}(R)$ , want a dual witness for AND<sub>R</sub>(OR<sub>N</sub>,...,OR<sub>N</sub>) that only places mass on inputs of Hamming weight at most N.

■ Attempt 1: Use the dual witness for AND<sub>R</sub>(OR<sub>N</sub>,...,OR<sub>N</sub>) from prior work [She09, Lee09, BT13, She13].

R

 $\psi_{\mathsf{AND-OR}}(y_1,\ldots,y_R) := C \cdot \psi_{\mathsf{AND}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{OR}}(y_j)),\ldots) \prod_{j=1} |\psi_{\mathsf{OR}}(y_j)|$ 

(C chosen to ensure  $\psi_{\text{AND-OR}}$  has  $L_1$ -norm 1).

- For some  $N = \tilde{O}(R)$ , want a dual witness for  $AND_R(OR_N, \dots, OR_N)$  that only places mass on inputs of Hamming weight at most N.
- Attempt 1: Use the dual witness for AND<sub>R</sub>(OR<sub>N</sub>,...,OR<sub>N</sub>) from prior work [She09, Lee09, BT13, She13].

 $\psi_{\mathsf{AND-OR}}(y_1,\ldots,y_R) := C \cdot \psi_{\mathsf{AND}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{OR}}(y_j)),\ldots) \prod_{j=1} |\psi_{\mathsf{OR}}(y_j)|$ 

(C chosen to ensure  $\psi_{\text{AND-OR}}$  has  $L_1$ -norm 1). Must verify:

1  $\psi_{\text{AND-OR}}$  has pure high degree  $\geq R^{1/2} \cdot N^{1/2} = \Omega(N)$ .

**2**  $\psi_{\text{AND-OR}}$  well-correlated with AND-OR.

**3**  $\psi_{\text{AND-OR}}$  places mass only on inputs of Hamming weight  $\leq N$ .

- For some  $N = \tilde{O}(R)$ , want a dual witness for AND<sub>R</sub>(OR<sub>N</sub>,...,OR<sub>N</sub>) that only places mass on inputs of Hamming weight at most N.
- Attempt 1: Use the dual witness for AND<sub>R</sub>(OR<sub>N</sub>,...,OR<sub>N</sub>) from prior work [She09, Lee09, BT13, She13].

 $\psi_{\mathsf{AND-OR}}(y_1,\ldots,y_R) := C \cdot \psi_{\mathsf{AND}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{OR}}(y_j)),\ldots) \prod_{j=1}^{n} |\psi_{\mathsf{OR}}(y_j)|$ 

(C chosen to ensure  $\psi_{\text{AND-OR}}$  has  $L_1$ -norm 1). Must verify:

- 1  $\psi_{\text{AND-OR}}$  has pure high degree  $\geq R^{1/2} \cdot N^{1/2} = \Omega(N) \cdot \sqrt{[\text{She09}]}$
- **2**  $\psi_{\text{AND-OR}}$  well-correlated with AND-OR.  $\checkmark$  [BT13, She13]
- **3**  $\psi_{\text{AND-OR}}$  places mass only on inputs of Hamming weight  $\leq N.X$

#### • Goal: Fix Property 3 without destroying Properties 1 or 2.

Goal: Fix Property 3 without destroying Properties 1 or 2.Fact (cf. Razborov and Sherstov 2008): Suppose

$$\sum_{y|>N} |\psi_{\mathsf{AND-OR}}(y)| \ll R^{-D}.$$

- Then we can "post-process"  $\psi_{\text{AND-OR}}$  to "zero out" any mass it places it inputs of Hamming weight larger than N.
- While ensuring that the resulting dual witness still has pure high degree min{D, PHD(ψ<sub>AND-OR</sub>)}.

#### Patching Attempt 1

• New Goal: Show that, for  $D \approx R^{2/3}$ ,

$$\sum_{|y|>N} |\psi_{\mathsf{AND-OR}}(y)| \ll R^{-D}.$$
 (1)

Recall:

 $\psi_{\text{AND-OR}}(y_1,\ldots,y_R) := C \cdot \psi_{\text{AND}}(\ldots,\operatorname{sgn}(\psi_{\text{OR}}(y_j)),\ldots) \prod_{j=1}^R |\psi_{\text{OR}}(y_j)|$ 

#### Patching Attempt 1

• New Goal: Show that, for  $D \approx R^{2/3}$ ,

$$\sum_{|y|>N} |\psi_{\mathsf{AND-OR}}(y)| \ll R^{-D}.$$
 (1)

Recall:

 $\psi_{\mathsf{AND-OR}}(y_1,\ldots,y_R) := C \cdot \psi_{\mathsf{AND}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{OR}}(y_j)),\ldots) \prod_{j=1}^R |\psi_{\mathsf{OR}}(y_j)|$ 

#### Intuition:

 A dual witness \u03c6<sub>OR</sub> for OR can be made "weakly" biased toward low Hamming weight inputs.

• Specifically:  $\sum_{|y_i|=t} |\psi_{OR}(y_i)| \le t^{-2}$ .

## Patching Attempt 1

• New Goal: Show that, for  $D \approx R^{2/3}$ ,

$$\sum_{|y|>N} |\psi_{\mathsf{AND-OR}}(y)| \ll R^{-D}.$$
 (1)

Recall:

 $\psi_{\mathsf{AND-OR}}(y_1,\ldots,y_R) := C \cdot \psi_{\mathsf{AND}}(\ldots,\operatorname{sgn}(\psi_{\mathsf{OR}}(y_j)),\ldots) \prod_{j=1}^R |\psi_{\mathsf{OR}}(y_j)|$ 

Intuition:

 A dual witness \u03c6<sub>OR</sub> for OR can be made "weakly" biased toward low Hamming weight inputs.

• Specifically:  $\sum_{|y_i|=t} |\psi_{OR}(y_i)| \le t^{-2}$ .

- $|\psi_{\text{AND-OR}}(y_1, \dots, y_R)|$  "resembles" the product distribution  $\prod_{j=1}^{R} |\psi_{\text{OR}}(y_j)|.$
- So it is exponentially more biased toward low Hamming weight inputs than  $\psi_{\rm OR}$  itself.

• New Goal: Show that, for  $D \approx R^{2/3}$ ,

$$\sum_{|y|>2R^{1.01}} |\psi_{\text{AND-OR}}(y)| \ll R^{-D}.$$
 (2)

New Goal: Show that, for 
$$D \approx R^{2/3}$$
,  

$$\sum_{|y|>2R^{1.01}} |\psi_{\text{AND-OR}}(y)| \ll R^{-D}.$$
(2)

Recall:  $\psi_{\text{AND-OR}}(y_1, \dots, y_R) := C \cdot \psi_{\text{AND}}(\dots, \operatorname{sgn}(\psi_{\text{OR}}(y_j)), \dots) \prod_{j=1}^R |\psi_{\text{OR}}(y_j)|$ 

New Goal: Show that, for 
$$D \approx R^{2/3}$$
,  

$$\sum_{|y|>2R^{1.01}} |\psi_{\text{AND-OR}}(y)| \ll R^{-D}.$$
(2)

Recall:  $\psi_{\text{AND-OR}}(y_1, \dots, y_R) := C \cdot \psi_{\text{AND}}(\dots, \operatorname{sgn}(\psi_{\text{OR}}(y_j)), \dots) \prod_{j=1}^R |\psi_{\text{OR}}(y_j)|$ 

• We need to modify  $\psi_{OR}$  to ensure that Equation (2) holds.

• New Goal: Show that, for 
$$D pprox R^{2/3}$$
,

$$\sum_{|y|>2R^{1.01}} |\psi_{\text{AND-OR}}(y)| \ll R^{-D}.$$
 (2)

Recall:  $\psi_{\text{AND-OR}}(y_1, \dots, y_R) := C \cdot \psi_{\text{AND}}(\dots, \operatorname{sgn}(\psi_{\text{OR}}(y_j)), \dots) \prod_{j=1}^R |\psi_{\text{OR}}(y_j)|$ 

We need to modify \u03c6<sub>OR</sub> to ensure that Equation (2) holds.
 Modify \u03c6<sub>OR</sub> to place no mass whatsoever on inputs of Hamming weight more than R<sup>1/3</sup>.

• New Goal: Show that, for  $D \approx R^{2/3}$ ,

$$\sum_{|y|>2R^{1.01}} |\psi_{\text{AND-OR}}(y)| \ll R^{-D}.$$
 (2)

Recall:  $\psi_{\text{AND-OR}}(y_1, \dots, y_R) := C \cdot \psi_{\text{AND}}(\dots, \operatorname{sgn}(\psi_{\text{OR}}(y_j)), \dots) \prod_{j=1}^R |\psi_{\text{OR}}(y_j)|$ 

- We need to modify  $\psi_{\mathbf{OR}}$  to ensure that Equation (2) holds.
  - 1 Modify  $\psi_{OR}$  to place no mass whatsoever on inputs of Hamming weight more than  $R^{1/3}$ .
  - 2 Suppose  $\psi_{\rm OR}$  also satisfies the following "low Hamming weight bias" condition.

$$\sum_{|y_i| > R^{0.01}} |\psi_{\mathsf{OR}}(y_i)| \le R^{-40}$$

• New Goal: Show that, for  $D \approx R^{2/3}$ ,

$$\sum_{|y|>2R^{1.01}} |\psi_{\text{AND-OR}}(y)| \ll R^{-D}.$$
 (2)

Recall:  $\psi_{\text{AND-OR}}(y_1, \dots, y_R) := C \cdot \psi_{\text{AND}}(\dots, \operatorname{sgn}(\psi_{\text{OR}}(y_j)), \dots) \prod_{j=1}^R |\psi_{\text{OR}}(y_j)|$ 

- We need to modify  $\psi_{\mathbf{OR}}$  to ensure that Equation (2) holds.
  - 1 Modify  $\psi_{OR}$  to place <u>no mass whatsoever</u> on inputs of Hamming weight more than  $R^{1/3}$ .
  - 2 Suppose  $\psi_{\text{OR}}$  also satisfies the following "low Hamming weight bias" condition.

$$\sum_{|y_i| > R^{0.01}} |\psi_{\mathsf{OR}}(y_i)| \le R^{-40}$$

• Condition (1)  $\Longrightarrow$  ( $|y| > 2R^{1.01} \Longrightarrow |\{i: |y_i| > R^{0.01}\}| > R^{2/3}$ )

• New Goal: Show that, for  $D \approx R^{2/3}$ ,

$$\sum_{|y|>2R^{1.01}} |\psi_{\text{AND-OR}}(y)| \ll R^{-D}.$$
 (2)

Recall:  $\psi_{\text{AND-OR}}(y_1, \dots, y_R) := C \cdot \psi_{\text{AND}}(\dots, \operatorname{sgn}(\psi_{\text{OR}}(y_j)), \dots) \prod_{j=1}^R |\psi_{\text{OR}}(y_j)|$ 

- We need to modify  $\psi_{\mathbf{OR}}$  to ensure that Equation (2) holds.
  - 1 Modify  $\psi_{OR}$  to place no mass whatsoever on inputs of Hamming weight more than  $R^{1/3}$ .
  - 2 Suppose  $\psi_{\rm OR}$  also satisfies the following "low Hamming weight bias" condition.

$$\sum_{|y_i| > R^{0.01}} |\psi_{\mathsf{OR}}(y_i)| \le R^{-40}$$

• Condition (1)  $\Longrightarrow$  ( $|y| > 2R^{1.01} \Longrightarrow |\{i: |y_i| > R^{0.01}\}| > R^{2/3}$ )

• Condition (2) + product-like nature of  $\psi_{\text{AND-OR}} \Longrightarrow$ total mass  $\psi_{\text{AND-OR}}$  places on such inputs is  $\ll R^{-R^{2/3}}$ .

## Completing The Analysis

- Fact: Both properties from previous slide are satisfied by a dual witness ψ<sub>OR</sub> for OR of pure high degree ≈ R<sup>1/6</sup>.
- This ensures  $\psi_{\text{AND-OR}}$  has pure high degree  $\gtrsim R^{1/2} \cdot R^{1/6} = R^{2/3}$ . □

- An  $\Omega(n)$  lower bound on the approximate degree of AC<sup>0</sup>?
- Extend our  $\Omega(n^{1-\delta})$  degree lower bound from polylogarithmic width DNFs to polynomial size DNFs?
- Extend our bounds on  $\deg_\epsilon(f)$  from  $\epsilon=1/3$  to  $\epsilon$  much closer to 1?
  - We believe our techniques can extend to give:
    - A function f in  $AC^0$  with  $\widetilde{\deg}_{\epsilon}(f) \ge n^{1-\delta}$ , for  $\epsilon = 1 2^{-n^{1-\delta}}$ .
    - New threshold degree lower bounds for AC<sup>0</sup>.

## Thank you!