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Boolean Functions

Boolean function f : {−1, 1}n → {−1, 1}

ANDn(x) =

{
−1 (TRUE) if x = (−1)n

1 (FALSE) otherwise



Approximate Degree

A real polynomial p ε-approximates f if

|p(x)− f(x)| < ε ∀x ∈ {−1, 1}n

d̃egε(f) = minimum degree needed to ε-approximate f

d̃eg(f) := deg1/3(f) is the approximate degree of f



Why Care About Approximate Degree?

Upper bounds on d̃egε(f) yield efficient learning algorithms.

ε ≈ 1/3: Agnostic Learning [KKMS05]

ε ≈ 1− 2−n
δ
: Attribute-Efficient Learning [KS04, STT12]

ε→ 1 (i.e., threshold degree, deg±(f)): PAC learning [KS01]

Upper bounds on d̃eg1/3(f) also:

Imply fast algorithms for differentially private data release
[TUV12, CTUW14].
Underly the best known lower bounds on formula complexity
and graph complexity [Tal2014, 2016a, 2016b]
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Why Care About Approximate Degree?

Lower bounds on d̃egε(f) yield lower bounds on:

Quantum query complexity [BBCMW98, AS01, Amb03, KSW04]

Circuit complexity [MP69, Bei93, Bei94, She08]

Communication complexity [She08, SZ08, CA08, LS08, She12]

Lower bounds hold for a communication problem related to f .
Technique is called the Pattern Matrix Method [She08].

A lower bound on d̃eg1/3(f) implies that the pattern matrix of
f has high quantum communication complexity, even with
prior entanglement.

Lower bounds on d̃eg(f) also yield efficient secret-sharing
schemes [BIVW16] and oracle separations [Bei94, BCHTV16].



Why Care About Approximate Degree?

Lower bounds on d̃egε(f) yield lower bounds on:

Quantum query complexity [BBCMW98, AS01, Amb03, KSW04]

Circuit complexity [MP69, Bei93, Bei94, She08]

Communication complexity [She08, SZ08, CA08, LS08, She12]

Lower bounds hold for a communication problem related to f .
Technique is called the Pattern Matrix Method [She08].

A lower bound on d̃eg1/3(f) implies that the pattern matrix of
f has high quantum communication complexity, even with
prior entanglement.

Lower bounds on d̃eg(f) also yield efficient secret-sharing
schemes [BIVW16] and oracle separations [Bei94, BCHTV16].



Example 1: The Approximate Degree of ANDn



Example: What is the Approximate Degree of ANDn?

d̃eg(ANDn) = Θ(
√
n).

Upper bound: Use Chebyshev Polynomials.

Markov’s Inequality: Let G(t) be a univariate polynomial s.t.
deg(G) ≤ d and maxt∈[−1,1] |G(t)| ≤ 1. Then

max
t∈[−1,1]

|G′(t)| ≤ d2.

Chebyshev polynomials are the extremal case.



Example: What is the Approximate Degree of ANDn?

d̃eg(ANDn) = O(
√
n).

After shifting a scaling, can turn degree O(
√
n) Chebyshev

polynomial into a univariate polynomial Q(t) that looks like:

!"#$%&'()*+*&',*

Define n-variate polynomial p via p(x) = Q(
∑n

i=1 xi/n).

Then |p(x)−ANDn(x)| ≤ 1/3 ∀x ∈ {−1, 1}n.



Example: What is the Approximate Degree of ANDn?

[NS92] d̃eg(ANDn) = Ω(
√
n).

Lower bound: Use symmetrization.

Suppose |p(x)−ANDn(x)| ≤ 1/3 ∀x ∈ {−1, 1}n.

There is a way to turn p into a univariate polynomial psym

that looks like this:

!"#$%&'()*+*&',*

Claim 1: deg(psym) ≤ deg(p).

Claim 2: Markov’s inequality =⇒ deg(psym) = Ω(n1/2).



Focus of This Talk

Approximate degree is a key tool for understanding AC0.

At the heart of the best known bounds on the complexity of
AC0 under measures such as:

Quantum Communication Complexity
Approximate Rank
Sign-rank ≈ UPPcc

Discrepancy≈Margin complexity≈PPcc

Majority-of-Threshold circuit size
Threshold-of-Majority circuit size
and more.

Problem 1: Is there a function on n variables that
is in AC0, and has approximate degree Ω(n)?
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Approximate Degree of AC0: Details

Best known result: Ω̃(n2/3) for the Element Distinctness
function (Aaronson and Shi, 2004).

Our result: For any constant δ > 0, a function in AC0 with
approximate degree Ω(n1−δ).

More precisely, circuit depth is O(log(1/δ)).
Lower bound also applies to DNFs of polylogarithmic width
(and quasipolynomial size).
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Applications

Nearly optimal Ω(n1−δ) lower bounds on quantum
communication complexity of AC0.

Essentially optimal (quadratic) separation of certificate
complexity and approximate degree.

Better secret sharing schemes with reconstruction in AC0.



Prior Work: The Method of Dual Polynomials and
the AND-OR Tree



Beyond Symmetrization

Symmetrization is “lossy”: in turning an n-variate poly p into
a univariate poly psym, we throw away information about p.

Challenge Problem: What is d̃eg(AND-ORn)?

1/2

1/2

1/2



History of the AND-OR Tree

Theorem

d̃eg(AND-ORn) = Θ(n1/2).

Tight Upper Bound of O(n1/2)

[HMW03] via quantum algorithms
[She12] different proof (via robustification)

Tight Lower Bound of Ω(n1/2)

[BT13] and [She13] via the method of dual polynomials
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Linear Programming Formulation of Approximate Degree

What is best error achievable by any degree d approximation of f?
Primal LP (Linear in ε and coefficients of p):

minp,ε ε

s.t. |p(x)− f(x)| ≤ ε for all x ∈ {−1, 1}n

deg p ≤ d

Dual LP:

maxψ
∑

x∈{−1,1}n
ψ(x)f(x)

s.t.
∑

x∈{−1,1}n
|ψ(x)| = 1

∑
x∈{−1,1}n

ψ(x)q(x) = 0 whenever deg q ≤ d



Dual Characterization of Approximate Degree

Theorem: degε(f) > d iff there exists a “dual polynomial”
ψ : {−1, 1}n → R with

(1)
∑

x∈{−1,1}n
ψ(x)f(x) > ε “high correlation with f”

(2)
∑

x∈{−1,1}n
|ψ(x)| = 1 “L1-norm 1”

(3)
∑

x∈{−1,1}n
ψ(x)q(x) = 0, when deg q ≤ d “pure high degree d”

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.

Example: 2−n · PARITYn witnesses the fact that
limε→1 d̃egε(PARITYn) = n.
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Goal: Construct an explicit dual polynomial
ψAND-OR for AND-OR



Constructing a Dual Polynomial

By [NS92], there are dual polynomials

ψOUT for d̃eg (ANDn1/2) = Ω(n1/4) and

ψIN for d̃eg (ORn1/2) = Ω(n1/4)

Both [She13] and [BT13] combine ψOUT and ψIN to obtain a
dual polynomial ψAND-OR for AND-OR.

The combining method was proposed in earlier work by [SZ09,
Lee09, She09].



The Combining Method [SZ09, She09, Lee09]

ψAND-OR(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

n1/2∏
i=1

|ψIN(xi)|

(C chosen to ensure ψAND-OR has L1-norm 1).

Must verify:

1 ψAND-OR has pure high degree ≥ n1/4 · n1/4 = n1/2.

2 ψAND-OR has high correlation with AND-OR.

1/2

1/2

1/2
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Must verify:

1 ψAND-OR has pure high degree ≥ n1/4 · n1/4 = n1/2.X[She09]
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1/2
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1/2



Recent Progress on the Complexity of AC0:
Applying the Method of Dual Polynomials to

Block-Composed Functions



(Negative) One-Sided Approximate Degree

Negative one-sided approximate degree is an intermediate
notion between approximate degree and threshold degree.

A real polynomial p is a negative one-sided ε-approximation
for f if

|p(x)− 1| < ε ∀x ∈ f−1(1)

p(x) ≤ −1 ∀x ∈ f−1(−1)

õdeg−,ε(f) = min degree of a negative one-sided
ε-approximation for f .

Examples: õdeg−,1/3(ANDn) = Θ(
√
n); õdeg−,1/3(ORn) = 1.



Recent Theorems

Theorem (BT13, She13)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then d̃eg1/2(F ) ≥ d ·

√
t.

Theorem (BT14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then d̃eg1−2−t(F ) ≥ d.

Theorem (She14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then deg±(F ) = Ω(min{d, t}).

Theorem (BCHTV16)

Let f be a Boolean function with d̃eg1/2(f) ≥ d. Let
F = GAPMAJt(f, . . . , f). Then deg±(F ) ≥ Ω(min{d, t}).
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Reminder

Problem 1: Is there a function on n variables that
is in AC0, and has approximate degree Ω(n)?



Our Techniques



Approximate Degree of AC0: Details

Major technical obstacle to progress on lower bounds: By
Robustification [She12]:

d̃eg(f(g, . . . , g))≤O(d̃eg(f) · d̃eg(g)).

i.e., the approximate degree of fM ◦ gN (as a function of the
number of inputs M ·N) is never larger than that of f or g
individually.

So must move beyond block-composed functions to make
progress on Problem 1.
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A General Hardness Amplification Result

Theorem (Main Theorem)

Let f : {−1, 1}n → {−1, 1} with d̃eg(f) = d. Then f can be
transformed into a function g on O(n log4 n) variables with

d̃eg(g) ≥ n1/3 · d2/3.

f computed by circuit of depth d =⇒
g computed by circuit of depth d+ 3.

f computed by monotone circuit of depth d =⇒
g computed by monotone circuit of depth d+ 2.

f computed by monotone DNF of width w =⇒
g computed by monotone DNF of width O(w · log2 n).

AC0 results obtained by recursively applying Main Theorem,
starting with f equal to ORn.
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Idea of the Hardness-Amplifying Construction

Consider the function SURJECTIVITY : {−1, 1}n → {−1, 1}.
Let n = N logR. SURJ interprets its input x as a list of N
numbers (x1, . . . , xN ) from a range [R].
SURJ(x) = −1 if and only if every element of the range [R]
appears at least once in the list.

When we apply Main Theorem to f = ANDR, the “harder”
function g is precisely SURJ.



Getting to Know SURJECTIVITY

It is known that d̃eg(SURJ) = Ω̃(n2/3) for R = N/2 [AS04].

Best known upper bound on d̃eg(SURJ) is trivial O(n).

An instructive way to achieve this trivial upper bound:

Let

yij =

{
−1 if xj = i

+1 otherwise

Then

SURJ(x)=ANDR(ORN (y1,1, . . . , y1,N ), . . . ,ORN (yR,1 . . . , yR,N )).

Let p be a degree O(
√
R ·N) = O(N) polynomial

approximating ANDR(ORN , . . . ,ORN ).

Can construct p via robustification.

Then p(y1,1, . . . , y1,N , . . . , yR,1, . . . , yR,N ) approximates
SURJ, and has degree O(deg(p) · logR) = O(n).
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SURJ Illustrated (R = 3, N = 6)

x1	 x2	 x3	 x4	 x5	 x6	

y11	 y12	 y13	 y14	 y15	 y16	 y21	 y22	 y23	 y24	 y25	 y26	 y31	 y32	 y33	 y34	 y35	 y36	

AND	

OR	 OR	 OR	

(Each	xj	in	[R])	



SURJ Illustrated (R = 3, N = 6)

2	 1	 2	 1	 3	 3	

1	 -1	 1	 -1	 1	 1	 -1	 1	 -1	 1	 1	 1	 1	 1	 1	 1	 -1	 -1	

AND	

OR	 OR	 OR	



First Attempt: Amplifying Hardness of
f:{−1, 1}R→{−1, 1} (R=3,N=6)

x1	 x2	 x3	 x4	 x5	 x6	

y11	 y12	 y13	 y14	 y15	 y16	 y21	 y22	 y23	 y24	 y25	 y26	 y31	 y32	 y33	 y34	 y35	 y36	

f	

OR	 OR	 OR	

(Each	xj	in	[R])	



Hardness-Amplifying Construction: Second Attempt

First attempt at handling general f fails when f = OR.

g(x) = ORR(ORN (y1,1, . . . , y1,N ), . . . ,ORN (yR,1 . . . , yR,N ))
has (exact) degree 1.

Let R′ = R logR. For f : {−1, 1}R → {−1, 1}, the real∗

definition of g is:

g(x)=(f◦ANDlogR)(ORN (y1,1,. . . ,y1,N ),. . . ,ORN (yR′,1,. . ., yR′,N ))

∗This is still a slight simplification.
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Idea of the Analysis for SURJECTIVITY

Let n = N logR.

Recall: to approximate SURJ : {−1, 1}n → {−1, 1}, it is
sufficient to approximate the block-composed function
ANDR(ORN , . . . ,ORN ) on N ·R bits.

Goal is to show this approximation method is close to optimal.

Step 1: Show that to approximate SURJ(x), it is necessary
to approximate ANDR(ORN , . . . ,ORN ), under the promise
that the input has Hamming weight at most N .

Follows from a symmetrization argument (Ambainis 2003).

Step 2: Prove that for some N = Õ(R), this promise problem
requires degree & Ω(R2/3).

Builds on the “dual combining technique” used earlier to
analyze AND-ORn (with no promise).
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Overview of Step 2

Prove That For Some N = Õ(R), Approximating ANDR ◦ORN

Under the Promise That The Input Has Hamming Weight At
Most N Requires Degree & R2/3.



Attempt 1

For some N = Õ(R), want a dual witness for
ANDR(ORN , . . . ,ORN ) that only places mass on inputs
of Hamming weight at most N .

Attempt 1: Use the dual witness for ANDR(ORN , . . . ,ORN )
from prior work [She09, Lee09, BT13, She13].

ψAND-OR(y1, . . . , yR) := C · ψAND(. . . , sgn(ψOR(yj)), . . . )

R∏
j=1

|ψOR(yj)|

(C chosen to ensure ψAND-OR has L1-norm 1).

Must verify:

1 ψAND-OR has pure high degree≥R1/2 ·N1/2 =Ω(N).

2 ψAND-OR well-correlated with AND-OR.

3 ψAND-OR places mass only on inputs of Hamming weight ≤ N .
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Patching Attempt 1

Goal: Fix Property 3 without destroying Properties 1 or 2.

Fact (cf. Razborov and Sherstov 2008): Suppose∑
|y|>N

|ψAND-OR(y)| � R−D.

Then we can “post-process” ψAND-OR to “zero out” any mass
it places it inputs of Hamming weight larger than N .
While ensuring that the resulting dual witness still has pure
high degree min{D,PHD(ψAND-OR)}.
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Patching Attempt 1

New Goal: Show that, for D ≈ R2/3,∑
|y|>N

|ψAND-OR(y)| � R−D. (1)

Recall:

ψAND-OR(y1, . . . , yR) := C · ψAND(. . . , sgn(ψOR(yj)), . . . )

R∏
j=1

|ψOR(yj)|

Intuition:
A dual witness ψOR for OR can be made “weakly” biased
toward low Hamming weight inputs.

Specifically:
∑
|yi|=t |ψOR(yi)| ≤ t−2.

|ψAND-OR(y1, . . . , yR)| “resembles” the product distribution∏R
j=1 |ψOR(yj)|.

So it is exponentially more biased toward low Hamming weight
inputs than ψOR itself.
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Patching Attempt 1 (Slightly Loose Analysis)

New Goal: Show that, for D ≈ R2/3,∑
|y|>2R1.01

|ψAND-OR(y)| � R−D. (2)

Recall:

ψAND-OR(y1, . . . , yR) := C · ψAND(. . . , sgn(ψOR(yj)), . . . )

R∏
j=1

|ψOR(yj)|

We need to modify ψOR to ensure that Equation (2) holds.
1 Modify ψOR to place no mass whatsoever on inputs of

Hamming weight more than R1/3.
2 Suppose ψOR also satisfies the following “low Hamming weight

bias” condition.∑
|yi|>R0.01 |ψOR(yi)| ≤ R−40.

Condition (1) =⇒ (|y|>2R1.01=⇒
∣∣{i : |yi|>R0.01}

∣∣>R2/3)

Condition (2) + product-like nature of ψAND-OR =⇒
total mass ψAND-OR places on such inputs is � R−R

2/3
.
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Completing The Analysis

Fact: Both properties from previous slide are satisfied by a
dual witness ψOR for OR of pure high degree ≈ R1/6.

This ensures ψAND-OR has pure high degree
& R1/2 ·R1/6 = R2/3.



Future Directions

An Ω(n) lower bound on the approximate degree of AC0?

Extend our Ω(n1−δ) degree lower bound from polylogarithmic
width DNFs to polynomial size DNFs?

Extend our bounds on degε(f) from ε = 1/3 to ε much closer
to 1?

We believe our techniques can extend to give:

A function f in AC0 with d̃egε(f) ≥ n1−δ, for ε = 1− 2−n
1−δ

.
New threshold degree lower bounds for AC0.



Thank you!


