

Networked Feedback Control for a Smart Power Distribution Grid

Saverio Bolognani

Future power distribution grids

- It delivers power from the transmission grid to the consumers.
- Very little sensing, monitoring, actuation.
- The "easy" part of the grid: conventionally fit-and-forget design.

New challenges

- Distributed microgenerators (conventional and renewable sources)
- Electric mobility (large flexible demand, spatio-temporal patterns).

$\begin{array}{l} \mbox{Physical grid limits} \rightarrow \\ \mbox{grid congestion} \end{array}$

Fit-and-forget \rightarrow unsustainable grid reinforcement

Virtual grid reinforcement

- Virtual grid reinforcement
 - same infrastructure
 - more sensors
 - controlled grid = stronger grid
 - distributed ancillary services
 - accomodate active power flows "transparently"

OVERVIEW

- 1. A feedback control perspective on power system operation
- 2. A tractable power grid model for feedback control design
- 3. Control design example: voltage regulation
 - Distributed "model-free" control
 - Centralized chance-constrained decision

A FEEDBACK CONTROL PERSPECTIVE ON POWER SYSTEM OPERATION

Power distribution grid model

Grid model

Nonlinear complex valued power flow equations

$$diag(u)\overline{Yu} = s$$

where

- $u_h = v_h e^{j\theta_h}$ complex bus voltages
- $s_h = p_h + jq_h$ complex bus powers

Actuation

- Tap changer v₀
- Reactive power compensators q_h
- Active power management p_h

Sensing

- Voltage meters v_h (sometimes θ_h)
- Line currents, transformer loading, ...
- Underdetermined: few sensors

A control perspective on distributed grid operation

Ancillary services: voltage regulation / reactive power compensation / economic re-dispatch / loss minimization / line congestion control / energy balancing / ...

Control objective

Drive the system to a target state $x^* = \begin{bmatrix} v^* & \theta^* & p^* \end{bmatrix}$ subject to

- soft constraints $x^* = \operatorname{argmin}_x J(x)$
- hard constraints $x \in \mathcal{X}$
- chance constraints $\mathbb{P}[x \notin \mathcal{X}] < \epsilon$

Feedforward control

Conventional approach

- Core tool: Optimal Power Flow
- Fast OPF solvers in radial networks
- Many variants, including distributed implementations

However:

- Requires full state measurement full communication
- Heavily model based

Feedback control

Control theory answer

- Disturbance rejection = grid state regulated despite demand/generation
- Model-free design
- Robustness against uncertainty
- Output feedback

A TRACTABLE POWER GRID MODEL FOR FEEDBACK CONTROL DESIGN

Power flow manifold

Set of all states that satisfy the grid equations $diag(u)\overline{Yu} = s$

 \rightarrow power flow manifold $\mathcal{M} := \{x \mid F(x) = 0\}$

Best linear approximant

Tangent plane at a nominal power flow solution $x^* \in \mathcal{M}$

$$A_{x^*}(x-x^*) = 0 \qquad A_{x^*} := \left. \frac{\partial F(x)}{\partial x} \right|_{x=x^*}$$

- Implicit No input/outputs (not a disadvantage)
- **Sparse** The matrix A_{x*} has the sparsity pattern of the grid graph
- Structure preserving Elements of A_{x*} depend on local parameters

 \rightarrow Bolognani & Dörfler (2015)

"Fast power system analysis via implicit linearization of the power flow manifold"

CONTROL DESIGN EXAMPLE: VOLTAGE REGULATION

Case 1: hard constraints

- Inputs: reactive power q_h of microgenerators
- Outputs: voltage measurement v_h at the microgenerators
- Control objective:
 - Soft constraints

minimize $v^T L v$ (voltage drops on the lines)

- Hard constraints

 $\underline{V} \leq v_h \leq \overline{V}$ at all sensors $\underline{q}_h \leq q_h \leq \overline{q}_h$ at all actuators

Case 1: hard constraints

linear approximant

1. Modeling assumption

г ¬

Modeling assumption

- on the parameters: constant R/X ratio ρ .
- on the structure: Kron reduction to controllable nodes

$$A_{x^*}(x-x^*)=0 \qquad \rightarrow \qquad \begin{bmatrix} \rho L & -L & | & -I & 0 \\ -L & -\rho L & | & 0 & -I \end{bmatrix} \begin{bmatrix} v \\ \theta \\ p \\ q \end{bmatrix} = 0$$

Case 1: hard constraints

- 1. Modeling assumption
- 2. Equilibrium

Equilibrium: Saddle point of the Lagrangian

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{\lambda},\boldsymbol{\eta}) = \boldsymbol{v}^T \boldsymbol{L} \boldsymbol{v} + \boldsymbol{\lambda}^T (\boldsymbol{v}-\overline{\boldsymbol{v}}) + \boldsymbol{\eta}^T (\boldsymbol{q}-\boldsymbol{q}) + \dots$$

Stable for the discrete-time trajectories in which we alternate

- exact minimization in the primal variable x
- **projected gradient ascent** in the dual variables λ, η

Case 1: hard constraints

- 1. Modeling assumption
- 2. Equilibrium
- 3. Trajectory

Search directions: By projecting each possible direction δq on the linear manifold ker A_{x^*} , we obtain feasible search directions in the state space.

$$\delta x = \begin{bmatrix} -\frac{1}{1+\rho^2} L^{\dagger} \delta q \\ -\frac{\rho}{1+\rho^2} L^{\dagger} \delta q \\ 0 \\ \delta q \end{bmatrix}$$

Case 1: hard constraints

- 1. Modeling assumption
- 2. Equilibrium
- 3. Trajectory
- 4. Feedback law

Primal minimization step: we determine the step δx such that

$$\frac{\partial \mathcal{L}}{\partial x} = \begin{bmatrix} 2Lv + \lambda \\ 0 \\ 0 \\ -\eta \end{bmatrix} \text{ and } \delta x = \begin{bmatrix} -\frac{1}{1+\rho^2}L^{\dagger}\delta q \\ -\frac{\rho}{1+\rho^2}L^{\dagger}\delta q \\ 0 \\ \delta q \end{bmatrix} \text{ satisfy } \frac{\partial \mathcal{L}}{\partial x}(x + \delta x, \lambda, \eta)^{T}\delta x = 0$$

Case 1: hard constraints

- 1. Modeling assumption
- 2. Equilibrium
- 3. Trajectory
- 4. Feedback law

Output feedback control law

$$\begin{array}{l} q \leftarrow q + (1 + \rho^2) \left(Lv + \lambda \right) + (1 + \rho^2)^2 L\eta \qquad \text{primal minimization} \\ \lambda_h \leftarrow \left[\lambda_h + \alpha (v_h - \overline{v}) \right]_{\geq 0} \\ \eta_h \leftarrow \left[\eta_h + \beta (\underline{q}_h - q_h) \right]_{> 0} \end{array} \right\} \text{dual ascent (integral action)}$$

Lv, $L\eta$ Diffusion terms that requires nearest-neighbor communication.

Case 1: hard constraints

Output feedback control law

- convergence to OPF solution
- no demand or generation measurement
- limited model knowledge
- no power flow solver
- interleaved sensing and actuation
- Proof of mean square convergence (with randomized async updates)

 \rightarrow S. Bolognani, R. Carli, G. Cavraro, & S. Zampieri (2015) "Distributed reactive power feedback control for voltage regulation and loss minimization"

Communication is necessary:

No local strategy can guarantee convergence to a feasible voltage profile.

 \rightarrow G. Cavraro, S. Bolognani, R. Carli, & S. Zampieri (2016) "The value of communication in the voltage regulation problem"

Case 2: chance constraints

- Inputs: active power p_h of microgenerators
- Outputs: total grid demand $y = \sum_{h} p_{h}$
- Control objective:
 - Soft constraints

maximize
$$\sum_{\text{generators } h} p_h$$

(minimize curtailment)

Chance constraint

$$\underline{V} \leq \mathsf{v}_h \leq \overline{V}$$
 for all buses, with high probability

Case 2: chance constraints

Scenario approach

Convert stochastic constraint into large set of determistic ones

 $\mathbb{P}\left[x \notin \mathbb{X}(w)\right] < \epsilon \qquad \rightarrow \qquad x \in \mathbb{X}(w^{(i)}), \quad i = 1, \dots, N$

Two sources of information on the unknown w

- Historical samples w⁽ⁱ⁾ of the prior distribution
- Online measurements *y* = *Hw* from the system

Scenario approach based on conditional distribution

- High computational demand
- Large memory footprint
- \rightarrow Not suited for real-time feedback control

Case 2: chance constraints

Two-phase algorithm

- Express posterior distribution as a projection: ŵ_y = w + K(y Hw)
- Construct a feasible region parametrized in y offline
- Compute the conditional feasible polytope online

	Computation time					
	Offline	$\begin{array}{l} \mbox{Compute Σ and K} \\ \mbox{Construct augmented polytope $\hat{\mathcal{P}}$} \\ \mbox{Compute minimal representation of $\hat{\mathcal{P}}$} \end{array}$				
		Total offline computation time	55 min			
	Online	Slice $\hat{\mathcal{P}}$ at $y = y^{\text{meas}}$ to obtain $\hat{\mathcal{P}}_y$ Solve LP defined on $\hat{\mathcal{P}}_y$				
		Total online computation time	1.8 ms			
Memory footprint						
	Offline	Augmented polytope \hat{P}	48620 constraints			

Onnie	Auginenieu polytope /-	40020 00131141113	
Online	Minimal representation of $\hat{\mathcal{P}}$	12 constraints	19

CONCLUSIONS

Conclusions

- A tractable linear model
 - structure preserving
 - computationally efficient
- Ancillary services via feedback control
 - model-free and robust
 - limited measurement
 - need for communication

Next step

- Feedback on the power flow manifold

 \rightarrow A. Hauswirth, A. Zanardi, S. Bolognani, F. Dörfler, & G. Hug (2017) "Online Optimization in Closed Loop on the Power Flow Manifold"

Saverio Bolognani

http://control.ee.ethz.ch/~bsaverio

bsaverio@ethz.ch

THE VALUE OF COMMUNICATION IN VOLTAGE REGULATION

Simulations and comparison

2 sets of constraints:

 $\left\{ egin{array}{l} \mathsf{voltage limits } \mathsf{v}_h \leq \overline{\mathsf{v}} \ \mathsf{power converter limits } \underline{q}_h \leq q_h \end{array}
ight.$

Simulations and comparison

Fully decentralized, proportional controller.

 $q_h(t) = -f(v_h(t))$

- Latest grid code draft
- Turitsyn (2011)
- Low (2012)

- Aliprantis (2013)
- Hiskens (2013)
- Kekatos (2015)

Simulations and comparison

Fully decentralized, integral controller.

 $q_h(t+1) = q_h(t) - f(v_h(t))$

Li (2014)

Farivar (2015)

Simulations and comparison

Networked feedback control (neighbor-to-neighbor communication)

$$\lambda_{h} \leftarrow [\lambda_{h} + \alpha(\mathbf{v}_{h} - \overline{\mathbf{v}})]_{\geq 0}$$

$$\eta_{h} \leftarrow [\eta_{h} + \beta(\underline{q}_{h} - q_{h})]_{\geq 0}$$

$$q \leftarrow q - \gamma \nabla J(q) - \lambda - \tilde{L}\eta_{h}$$

FEEDBACK OPTIMIZATION ON THE POWER FLOW MANIFOLD

Gradient descent on the power flow manifold

Target state

 $x^* = \arg\min_{x \in \mathcal{M}} J(x)$

local minimizer on the power flow manifold

Continuous time trajectory on the power flow manifold

- **1.** $\nabla J(x)$: gradient of the cost function (soft constraints) in ambient space
- **2.** $\Pi_x \nabla J(x)$: projection of the gradient on the linear approximant in *x*
- **3.** Flow on the manifold: $\dot{x} = \gamma \Pi_x \nabla J(x)$

Gradient descent on the power flow manifold

 $X = \begin{bmatrix} X_{\text{exo}} \\ X_{\text{endo}} \end{bmatrix}$

Exogenous variables Inputs/disturbances

Reactive power injection q_i

Endogenous variables

Determined by the physics of the grid.

Voltage v_i

From gradient descent flow to discrete-time feedback control:

- **1.** Compute $\prod_x \nabla J(x)$
- **2.** Actuate system based on $\delta x = \gamma \Pi \nabla J$ (exogeneous variables / inputs)
- **3.** Retraction step $x(t + 1) = R_{x(t)}(\delta x) \Rightarrow x(t + 1) \in \mathcal{M}$.

Hard constraints: need for a new theory

Feasible input region

- Not a smooth manifold
- Projected gradient descent
- Retraction preserves feasibility

→ A. Hauswirth, S. Bolognani, G. Hug, & F. Dörfler (2016) "Projected Gradient Descent on Riemannian Manifolds with Applications to Online Power System Optimization"

Output constraints

- No barrier function (backtracking not allowed)
- No time-varying penalty (persistent feedback control)
- Dualization: saddle / primal-dual trajectories on manifolds

Feedback optimization on the power flow manifold

 \rightarrow A. Hauswirth, A. Zanardi, S. Bolognani, F. Dörfler, & G. Hug (2017) "Online Optimization in Closed Loop on the Power Flow Manifold"29