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Motivation: learning from correlated samples, or time series

Assume linear dynamics: Ẋ (t) = AX (t) + ξ(t), with ξ(t) Gaussian noise

Given N time series, is it possible to reconstruct the structure and parameters of A?
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What happens if only NO < N time series are observed? X = XO ∪ XH



Example: graph-based anomaly detection in cyber-physical systems

Task: detect and localize attacks on CPS using physical measurements

Smart Factories & Industry Critical Infrastructures & Smart Grid

Self-Driving Cars and Avionics Complex Transportation

SCADA

Attacked nodes

Approach: assuming linearized dynamics,
learn the normal graph and monitor changes

Normal operation Fault or attack

Setting: structure unknown, usually no hidden nodes



Example: reconstructing the power grid dynamics
State estimation and parameter learning in dynamics of the transmission power grid

θ̇i = fi , Mi ḟi + τi fi = pi −
∑
j∼i

βij(θi − θj) + ξi (t).

Task: reconstruct parameters of generators and lines (evolve slowly, ∼ hours) and
injections and consumptions (evolve rapidly, ∼ minutes) from sensor measurements
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Setting: structure known, but hidden observations (sparsely located PMUs)



Reduction to the static problem?

For stable systems: explore Lyapunov equation for the stationary covariance matrix

AΣ + ΣA> + I = 0

[Wang, Bialek, Turitsyn 2015], [Zare, Jovanović, Georgiou 2016]

Disadvantages: requires knowledge of some part of A, hard to generalize to hidden case

Subsampling independent samples:
use static Gaussian graphical model learning

Disadvantages: only stationary regime,
wasting samples (desiring ∼ logN samples),
Σ has less information (supp(A) 6= supp(Σ−1))
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In what follows

For simplicity, consider discrete-time dynamics: Xt+1 = AXt + ξt , with ξt white noise∗

! Complete observations on all nodes

(a) Known graph structure: least-squares objective

(b) Unknown graph: `1 and `0 regularizations

! Partially observed system

(a) Known graph: convex formulation, incomplete solution

(b) Unknown graph: sparsity and low-rank regularizations

(c) Non-convex EM-type algorithm

∗ Remark: Intuitively and rigorously [Bento et al., 2010], in the case of continuous equations, there exists an optimal discretization step ∆t



Complete observations: known graph structure

Assuming the uniform prior on A, P(A | X , ξ) ∝ exp(−
T−1∑
t=1
‖Xt+1 − AXt‖2/2σ2)

ÂMMSE = ÂMAP = argmin
A

T−1∑
t=1

‖Xt+1 − AXt‖2

For a sufficient number of samples M ∝ N,

Â =

(
T−1∑
t=1

Xt+1X>t

)(
T∑

t=1

XtX>t

)
= Σt,t+1 (Σt,t)−1
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Unknown graph and high-dimensional regime

Regularized least-squares: [Bento, Ibrahimi, Montanari 2010]

Â = argmin
A

(
T−1∑
t=1

‖Xt+1 − AXt‖2 + λ‖A‖1

)

Reconstructs graph structure with M ∝ logN samples under incoherence condition and
assumptions on (λmin, λmax) of covariance matrix

Open question: similarly to the Gaussian GM selection, assumptions-free algorithm?
Candidate: non-convex `0 sparsity constraint [Misra, Vuffray, AL, Chertkov 2017]



Partial observations: convex formulation
Likelihood of observations:

P(ÃO | X , ξ) =

∫
XH

dXHP(A | X , ξ), ÃO = AO − AOHA−1
H AHO ≡ AO + L

Leads to a convex “Lasso” type formulation for small |H|:

(ÂO, L̂) = argmin
AO,L

[ T−1∑
t=1

‖XOt+1 − (AO + L)XOt ‖2 + λ1‖AO‖1 + λ2‖L‖∗
]

Adaptation of [Giraud and Tsybakov 2012], [Jalali, Sanghavi 2012]

M ∝ logN under incoherence assumption. If the graph is known, one could further
attempt to decompose the matrix L into sparse factors, see e.g. [Witten, Tibshirani, Hastie 2009].
Open question: is it possible to devise assumptions-free algorithm?

Candidate: non-convex explicit rank constraint rank(L) ≤ |H| [Yuan & Lauritzen, Meinshausen

2012] together with an `0 sparsity constraint [Misra, Vuffray, AL, Chertkov 2017]
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Partial observations: alternative convex formulation
Likelihood P(A | X , ξ) can be rewritten in the static form over the trajectories:

P(A | X , ξ) ∝
√
detB exp

(
−~X>B ~X

)
, ~X ≡ [Xt=1, . . . ,Xt=T ],

B =



A>A A
A> 1 + A>A A

A> 1 + A>A A
. . . . . . . . . . . . . . .

1 + A>A A
A> 1


Likelihood of observations:

P(B̃O | X , ξ) =

∫
XH

dXHP(B | X , ξ), B̃O = BO − BOHB−1
H BHO

Leads to a “Graph Lasso” type convex formulation for BO − L � 0 and L � 0:

(B̂O, L̂) = argmin
BO,L

[
tr(Σ(BO − L))− log det(BO − L) + λ1‖BO‖1 + λ2tr(L)

]
Adaptation of [Chandrasekaran, Parillo and Willsky 2012]
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Partial observations: Expectation-Maximization approach

Given initial guess A(s=0), iterate until convergence:

Expectation: compute Q(A,A(s)) = E
[
P(A | XO ∪ XH, ξ) | XO,A(s)

]
Maximization: update A(s+1) = argmax

A
Q(A,A(s))

The closest reference [Shumway, Stoffer 1982]

Not widely considered (hard to analyse), but natural choice if the graph is known



Path forward

! Theoretical analysis of the algorithms

! Establishing best algorithms in practice (using modern solvers, EM)

! Application to the power grid and cyberphysical data sets


