# Reconstructing the power grid dynamic model from sparse measurements 

Andrey Lokhov<br>with Michael Chertkov, Deepjyoti Deka, Sidhant Misra, Marc Vuffray

Los Alamos National Laboratory

Banff, Canada

## Motivation: learning from correlated samples, or time series

Assume linear dynamics: $\dot{X}(t)=A X(t)+\xi(t)$, with $\xi(t)$ Gaussian noise

Given $N$ time series, is it possible to reconstruct the structure and parameters of $A$ ?


## Motivation: learning from correlated samples, or time series

Assume linear dynamics: $\dot{X}(t)=A X(t)+\xi(t)$, with $\xi(t)$ Gaussian noise
Given $N$ time series, is it possible to reconstruct the structure and parameters of $A$ ?


What happens if only $N_{\mathcal{O}}<N$ time series are observed? $X=X_{\mathcal{O}} \cup X_{\mathcal{H}}$

Example: graph-based anomaly detection in cyber-physical systems
Task: detect and localize attacks on CPS using physical measurements

Smart Factories \& Industry Critical Infrastructures \& Smart Grid


Self-Driving Cars and Avionics
Complex Transportation

Approach: assuming linearized dynamics, learn the normal graph and monitor changes


Setting: structure unknown, usually no hidden nodes

Example: reconstructing the power grid dynamics
State estimation and parameter learning in dynamics of the transmission power grid

$$
\dot{\theta}_{i}=f_{i}, \quad M_{i} \dot{f}_{i}+\tau_{i} f_{i}=p_{i}-\sum_{j \sim i} \beta_{i j}\left(\theta_{i}-\theta_{j}\right)+\xi_{i}(t) .
$$

Task: reconstruct parameters of generators and lines (evolve slowly, $\sim$ hours) and injections and consumptions (evolve rapidly, $\sim$ minutes) from sensor measurements


Setting: structure known, but hidden observations (sparsely located PMUs)

## Reduction to the static problem?

For stable systems: explore Lyapunov equation for the stationary covariance matrix

$$
A \Sigma+\Sigma A^{\top}+I=0
$$

[Wang, Bialek, Turitsyn 2015], [Zare, Jovanović, Georgiou 2016]
Disadvantages: requires knowledge of some part of $A$, hard to generalize to hidden case

## Subsampling independent samples:

use static Gaussian graphical model learning
Disadvantages: only stationary regime, wasting samples (desiring $\sim \log N$ samples), $\Sigma$ has less information $\left(\operatorname{supp}(A) \neq \operatorname{supp}\left(\Sigma^{-1}\right)\right)$


## In what follows

For simplicity, consider discrete-time dynamics: $X_{t+1}=A X_{t}+\xi_{t}$, with $\xi_{t}$ white noise*
Complete observations on all nodes
(a) Known graph structure: least-squares objective
(b) Unknown graph: $\ell_{1}$ and $\ell_{0}$ regularizations
$\checkmark$ Partially observed system
(a) Known graph: convex formulation, incomplete solution
(b) Unknown graph: sparsity and low-rank regularizations
(c) Non-convex EM-type algorithm

[^0]
## Complete observations: known graph structure

Assuming the uniform prior on $A, P(A \mid X, \xi) \propto \exp \left(-\sum_{t=1}^{T-1}\left\|X_{t+1}-A X_{t}\right\|^{2} / 2 \sigma^{2}\right)$

$$
\hat{A}_{\mathrm{MMSE}}=\hat{A}_{\mathrm{MAP}}=\underset{A}{\operatorname{argmin}} \sum_{t=1}^{T-1}\left\|X_{t+1}-A X_{t}\right\|^{2}
$$

For a sufficient number of samples $M \propto N$,

$$
\hat{A}=\left(\sum_{t=1}^{T-1} X_{t+1} X_{t}^{\top}\right)\left(\sum_{t=1}^{T} X_{t} X_{t}^{\top}\right)=\Sigma_{t, t+1}\left(\Sigma_{t, t}\right)^{-1}
$$



$$
A=\left[\begin{array}{cccc}
-0.5 & -0.2 & -0.3 & 0 \\
0.2 & -0.5 & -0.3 & 0 \\
0.3 & 0.3 & -0.5 & -0.4 \\
0 & 0 & 0.4 & -0.5
\end{array}\right]
$$



## Unknown graph and high-dimensional regime

Regularized least-squares:

$$
\hat{A}=\underset{A}{\operatorname{argmin}}\left(\sum_{t=1}^{T-1}\left\|X_{t+1}-A X_{t}\right\|^{2}+\lambda\|A\|_{1}\right)
$$

Reconstructs graph structure with $M \propto \log N$ samples under incoherence condition and assumptions on ( $\lambda_{\min }, \lambda_{\max }$ ) of covariance matrix

Open question: similarly to the Gaussian GM selection, assumptions-free algorithm? Candidate: non-convex $\ell_{0}$ sparsity constraint [Misra, Vuffray, AL, Chertkov 2017]

## Partial observations: convex formulation

Likelihood of observations:

$$
P\left(\tilde{A}_{\mathcal{O}} \mid X, \xi\right)=\int_{X_{\mathcal{H}}} d X_{\mathcal{H}} P(A \mid X, \xi), \quad \tilde{A}_{\mathcal{O}}=A_{\mathcal{O}}-A_{\mathcal{O H}} A_{\mathcal{H}}^{-1} A_{\mathcal{H} O} \equiv A_{\mathcal{O}}+L
$$

## Partial observations: convex formulation

Likelihood of observations:

$$
P\left(\tilde{A}_{\mathcal{O}} \mid X, \xi\right)=\int_{X_{\mathcal{H}}} d X_{\mathcal{H}} P(A \mid X, \xi), \quad \tilde{A}_{\mathcal{O}}=A_{\mathcal{O}}-A_{\mathcal{O H}} A_{\mathcal{H}}^{-1} A_{\mathcal{H} O} \equiv A_{\mathcal{O}}+L
$$

Leads to a convex "Lasso" type formulation for small $|\mathcal{H}|$ :

$$
\left(\hat{A}_{\mathcal{O}}, \hat{L}\right)=\underset{A_{\mathcal{O}}, L}{\operatorname{argmin}}\left[\sum_{t=1}^{T-1}\left\|X_{t+1}^{\mathcal{O}}-\left(A_{\mathcal{O}}+L\right) X_{t}^{\mathcal{O}}\right\|^{2}+\lambda_{1}\left\|A_{\mathcal{O}}\right\|_{1}+\lambda_{2}\|L\|_{*}\right]
$$

Adaptation of [Giraud and Tsybakov 2012], [Jalali, Sanghavi 2012]
$M \propto \log N$ under incoherence assumption. If the graph is known, one could further attempt to decompose the matrix $L$ into sparse factors, see e.g. [Witten, Tibshirani, Hastie 2009].

## Partial observations: convex formulation

Likelihood of observations:

$$
P\left(\tilde{A}_{\mathcal{O}} \mid X, \xi\right)=\int_{X_{\mathcal{H}}} d X_{\mathcal{H}} P(A \mid X, \xi), \quad \tilde{A}_{\mathcal{O}}=A_{\mathcal{O}}-A_{\mathcal{O H}} A_{\mathcal{H}}^{-1} A_{\mathcal{H} O} \equiv A_{\mathcal{O}}+L
$$

Leads to a convex "Lasso" type formulation for small $|\mathcal{H}|$ :

$$
\left(\hat{A}_{\mathcal{O}}, \hat{L}\right)=\underset{A_{\mathcal{O}}, L}{\operatorname{argmin}}\left[\sum_{t=1}^{T-1}\left\|X_{t+1}^{\mathcal{O}}-\left(A_{\mathcal{O}}+L\right) X_{t}^{\mathcal{O}}\right\|^{2}+\lambda_{1}\left\|A_{\mathcal{O}}\right\|_{1}+\lambda_{2}\|L\|_{*}\right]
$$

Adaptation of [Giraud and Tsybakov 2012], [Jalali, Sanghavi 2012]
$M \propto \log N$ under incoherence assumption. If the graph is known, one could further attempt to decompose the matrix $L$ into sparse factors, see e.g. [Witten, Tibshirani, Hastie 2009].

Open question: is it possible to devise assumptions-free algorithm?
Candidate: non-convex explicit rank constraint $\operatorname{rank}(L) \leq|\mathcal{H}|$ [Yuan \& Lauritzen, Meinshausen 2012] together with an $\ell_{0}$ sparsity constraint [Misra, Vuffray, AL, Chertkov 2017]

## Partial observations: alternative convex formulation

Likelihood $P(A \mid X, \xi)$ can be rewritten in the static form over the trajectories:

$$
P(A \mid X, \xi) \propto \sqrt{\operatorname{det} B} \exp \left(-\vec{X}^{\top} B \vec{X}\right), \quad \vec{X} \equiv\left[X_{t=1}, \ldots, X_{t=T}\right]
$$

$$
B=\left[\begin{array}{ccccc}
\boldsymbol{A}^{\top} \boldsymbol{A} & \boldsymbol{A} & & & \\
\boldsymbol{A}^{\top} & 1+\boldsymbol{A}^{\top} \boldsymbol{A} & \boldsymbol{A} & & \\
& \boldsymbol{A}^{\top} & 1+\boldsymbol{A}^{\top} \boldsymbol{A} & \boldsymbol{A} & \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
& & & 1+\boldsymbol{A}^{\top} \boldsymbol{A} & \boldsymbol{A} \\
& & & \boldsymbol{A}^{\top} & \mathbf{1}
\end{array}\right]
$$

## Partial observations: alternative convex formulation

Likelihood $P(A \mid X, \xi)$ can be rewritten in the static form over the trajectories:

$$
\begin{aligned}
P(A \mid X, \xi) & \propto \sqrt{\operatorname{det} B} \exp \left(-\vec{X}^{\top} B \vec{X}\right), \quad \vec{X} \equiv\left[X_{t=1}, \ldots, X_{t=T}\right], \\
B & =\left[\begin{array}{ccccc}
A^{\top} A & A & & \\
A^{\top} & 1+A^{\top} A & A & A^{\top} & 1+A^{\top} A \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
& & & 1+A^{\top} A & A \\
A^{\top} & 1
\end{array}\right]
\end{aligned}
$$

Likelihood of observations:

$$
P\left(\tilde{B}_{\mathcal{O}} \mid X, \xi\right)=\int_{X_{\mathcal{H}}} d X_{\mathcal{H}} P(B \mid X, \xi), \quad \tilde{B}_{\mathcal{O}}=B_{\mathcal{O}}-B_{\mathcal{O H}} B_{\mathcal{H}}^{-1} B_{\mathcal{H O}}
$$

Leads to a "Graph Lasso" type convex formulation for $B_{\mathcal{O}}-L \succ 0$ and $L \succeq 0$ :

$$
\left(\hat{B}_{\mathcal{O}}, \hat{L}\right)=\underset{B_{\mathcal{O}}, L}{\operatorname{argmin}}\left[\operatorname{tr}\left(\Sigma\left(B_{\mathcal{O}}-L\right)\right)-\log \operatorname{det}\left(B_{\mathcal{O}}-L\right)+\lambda_{1}\left\|B_{\mathcal{O}}\right\|_{1}+\lambda_{2} \operatorname{tr}(L)\right]
$$

## Partial observations: Expectation-Maximization approach

Given initial guess $A^{(s=0)}$, iterate until convergence:
Expectation: compute $Q\left(A, A^{(s)}\right)=\mathbb{E}\left[P\left(A \mid X_{\mathcal{O}} \cup X_{\mathcal{H}}, \xi\right) \mid X_{\mathcal{O}}, A^{(s)}\right]$
Maximization: update $A^{(s+1)}=\operatorname{argmax} Q\left(A, A^{(s)}\right)$
A
The closest reference [Shumway, Stoffer 1982]

Not widely considered (hard to analyse), but natural choice if the graph is known

## Path forward

$\checkmark$ Theoretical analysis of the algorithms
$\checkmark$ Establishing best algorithms in practice (using modern solvers, EM)
$\checkmark$ Application to the power grid and cyberphysical data sets


[^0]:    * Remark: Intuitively and rigorously [Bento et al., 2010], in the case of continuous equations, there exists an optimal discretization step $\Delta t$

