Mahler measure and the Vol-Det Conjecture

Abhijit Champanerkar

College of Staten Island and The Graduate Center
City University of New York
joint work with Ilya Kofman and Matilde Lalín

BANFF, March 11-16, 2018

The Vol-Det Conjecture

Mahler measure

Dimers

Biperiodic Links

New Conjecture

The Vol-Det Conjecture

Vol-Det Conjecture (C-Kofman-Purcell '16) For any alternating hyperbolic link K,

$$
\operatorname{vol}(K)<2 \pi \log \operatorname{det}(K)
$$

The Vol-Det Conjecture

Vol-Det Conjecture (C-Kofman-Purcell '16) For any alternating hyperbolic link K,

$$
\operatorname{vol}(K)<2 \pi \log \operatorname{det}(K)
$$

Alternating: Link has an alternating diagram
Hyperbolic: $\quad S^{3}-K=\mathbb{H}^{3} / \Gamma$, finite-volume $\operatorname{vol}(K)=\quad$ Hyperbolic volume of $S^{3}-K$

$$
\begin{aligned}
\operatorname{det}(K) & =\left|\operatorname{det}\left(M+M^{T}\right)\right|, & & M=\text { Seifert matrix } \\
& =\left|V_{K}(-1)\right|=\left|\Delta_{K}(-1)\right|, & & V_{K}, \Delta_{K}=\text { Jones, Alexander poly } \\
& =\# \text { spanning trees } \tau\left(G_{K}\right), & & G_{K}=\text { Tait (checkerboard) graph }
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{det}(K) & =\left|\operatorname{det}\left(M+M^{T}\right)\right|, & & M=\text { Seifert matrix } \\
& =\left|V_{K}(-1)\right|=\left|\Delta_{K}(-1)\right|, & & V_{K}, \Delta_{K}=\text { Jones, Alexander poly } \\
& =\# \text { spanning trees } \tau\left(G_{K}\right), & & G_{K}=\text { Tait (checkerboard) graph }
\end{aligned}
$$

- Verified for all alternating knots ≤ 16 crossings $(\approx 1.7$ million knots).
- (S. Burton '17) Proved for all 2-bridge knots and alternating 3-braids.
- (C-Kofman-Purcell '16) The constant 2π is sharp.

Mahler measure and hyperbolic volume

Mahler measure of polynomial $p(z)$ is defined as

$$
\mathrm{m}(p(z))=\frac{1}{2 \pi i} \int_{S^{1}} \log |p(z)| \frac{d z}{z} \stackrel{\text { Jensen }}{=} \sum_{\alpha_{i} \text { roots of } \mathrm{p}} \max \left\{\log \left|\alpha_{i}\right|, 0\right\}
$$

Mahler measure and hyperbolic volume

Mahler measure of polynomial $p(z)$ is defined as

$$
\mathrm{m}(p(z))=\frac{1}{2 \pi i} \int_{S^{1}} \log |p(z)| \frac{d z}{z} \stackrel{\text { Jensen }}{=} \sum_{\alpha_{i} \text { roots of } \mathrm{p}} \max \left\{\log \left|\alpha_{i}\right|, 0\right\}
$$

2-variable Mahler measure:

$$
\mathrm{m}(p(z, w))=\frac{1}{(2 \pi i)^{2}} \int_{\mathbb{T}^{2}} \log |p(z, w)| \frac{d z}{z} \frac{d w}{w}
$$

2-variable Mahler measures are related to hyperbolic volume due to their relationship with dilogarithms.

Examples

$\operatorname{vol}($ (0) $)=2 v_{t e t}=2.0298 \ldots$
$\left(\right.$ Smyth '81) $\operatorname{vol}(\otimes)=2 \pi \mathrm{~m}(1+x+y)=\frac{2 \sqrt{3}}{2} L\left(\chi_{-3}, 2\right)$
(Boyd '00) $\operatorname{vol}(@)=\pi \mathrm{m}(A(L, M))$

$$
\begin{aligned}
= & \pi \mathrm{m}\left(M^{4}+L\left(1-M^{2}-2 M^{4}-M^{6}+M^{8}\right)\right. \\
& \left.-L^{2} M^{4}\right)
\end{aligned}
$$

(Kenyon '00) vol(@) $=\frac{2 \pi}{5} \mathrm{~m}(p(z, w))$

$$
=\frac{2 \pi}{5} \mathrm{~m}\left(6-w-\frac{1}{w}-z-\frac{1}{z}-\frac{z}{w}-\frac{w}{z}\right)
$$

Dimers

A dimer covering of a graph G is a set of edges that covers every vertex exactly once, i.e. a perfect matching.

The dimer model is the study of the set of dimer coverings of G. Let $Z(G)=\#$ dimer coverings of G.

Dimers

A dimer covering of a graph G is a set of edges that covers every vertex exactly once, i.e. a perfect matching.

The dimer model is the study of the set of dimer coverings of G. Let $Z(G)=\#$ dimer coverings of G.

Theorem (Kasteleyn '63) If G is a balanced bipartite graph,

$$
Z(G)=\operatorname{det}(\kappa)
$$

where k is a Kasteleyn matrix.

Dimers and Spanning trees

For any finite plane graph G, overlay G and its dual G^{*}, delete a vertex of G and G^{*} (in the unbounded face) and delete all incident edges to get balanced bipartite graph G^{b}.

G

$G \cup G^{*}$

G^{b}

A dimer on G^{b}

Theorem (Burton-Pemantle '93, Propp '02) $\tau(G)=Z\left(G^{b}\right)$.

Toroidal dimer model

Let G^{b} be a finite balanced bipartite toroidal graph.
Kasteleyn matrix $k(z, w)$ for toroidal dimer model on G^{b} is defined by:

1. Choose Kasteleyn weighting (signs on edges), such that each face with 0 mod 4 edges has odd \# of signs.
2. Choose oriented scc's γ_{z}, γ_{w} on T^{2} that are basis of $H_{1}\left(T^{2}\right)$.
3. Orient each edge e from black to white. Let

$$
\mu_{e}=z^{\gamma_{z} \cdot e} w^{\gamma_{w} \cdot e} .
$$

4. Order the black and white vertices.

Then $\kappa(z, w)$ is the $|B| \times|W|$ adjacency matrix with entries $\pm \mu_{e}$.

Toroidal dimer model

Let \mathcal{G}^{b} be a biperiodic balanced bipartite planar graph, i.e. invariant under translations by 2-dim lattice Λ.

The characteristic polynomial of the toroidal dimer model on \mathcal{G}^{b} is

$$
p(z, w)=\operatorname{det} k(z, w)
$$

Theorem (Kenyon-Okounkov-Sheffield '06) Let \mathcal{G}^{b} be biperiodic balanced bipartite graph, and $G_{n}=\mathcal{G}^{b} / n \wedge$ be a toroidal exhaustion of \mathcal{G}^{b}. Then the partition function satisfies:

$$
\log Z\left(\mathcal{G}^{b}\right):=\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \log Z\left(G_{n}\right)=m(p(z, w))
$$

Example

$k(z, w)=\left[\begin{array}{cc}-1-1 / z & 1+w \\ 1+1 / w & 1+z\end{array}\right], p(z, w)=-\left(4+\frac{1}{w}+w+\frac{1}{z}+z\right)$.
(Boyd '98) $\pi \mathrm{m}(p(z, w))=\operatorname{vol}($ (y) $) v_{\text {oct }}=4 C=3.6638 \ldots$ where $v_{\text {oct }}=$ hyperbolic volume of regular ideal octahedron and $C=$ Catalan's constant.

Biperiodic links

A biperiodic link \mathcal{L} is a link projection which can be isotoped to be invariant under translations by 2-dim lattice Λ.
$\mathcal{L} / \Lambda=L \subset \mathbb{R}^{3} / \Lambda=T^{2} \times I=S^{3}-$ Hopf link
$\Longrightarrow L \cup$ Hopf link $\subset S^{3}$

Biperiodic links

A biperiodic link \mathcal{L} is a link projection which can be isotoped to be invariant under translations by 2-dim lattice Λ.
$\mathcal{L} / \Lambda=L \subset \mathbb{R}^{3} / \Lambda=T^{2} \times I=S^{3}-$ Hopf link $\Longrightarrow L \cup$ Hopf link $\subset S^{3}$

Theorem (C-Kofman-Purcell '18) Let L be a link in $T^{2} \times I$ with a weakly prime alternating diagram on $T^{2} \times\{0\}$ with no bigons. If L has no cycle of tangles, then $\left(T^{2} \times I\right)-L$ is hyperbolic.

We will assume L is a toroidal link as above.

Examples

Square Weave

Triaxial link

RhombiTriHexagonal Link

Figure from Gauss's
1794 notebook

Diagrammatic convergence

We say that a sequence of alternating links K_{n} F \varnothing Iner converges almost everywhere to the biperiodic alternating link \mathcal{L}, denoted by $K_{n} \xrightarrow{\mathrm{~F}} \mathcal{L}$, if the respective projection graphs $\left\{G\left(K_{n}\right)\right\}$ and $G(\mathcal{L})$ satisfy the following: There are subgraphs $G_{n} \subset G\left(K_{n}\right)$ such that

1. $G_{n} \subset G_{n+1}$, and $\bigcup G_{n}=G(\mathcal{L})$,
2. $\lim _{n \rightarrow \infty}\left|\partial G_{n}\right| /\left|G_{n}\right|=0$, where $|\cdot|$ denotes number of vertices, and $\partial G_{n} \subset G(\mathcal{L})$ consists of the vertices of G_{n} that share an edge in $G(\mathcal{L})$ with a vertex not in G_{n},
3. $G_{n} \subset G(\mathcal{L}) \cap(n \Lambda)$, where $n \wedge$ represents n^{2} copies of the Λ-fundamental domain for the lattice Λ such that $L=\mathcal{L} / \Lambda$,
4. $\lim _{n \rightarrow \infty}\left|G_{n}\right| / c\left(K_{n}\right)=1$.

We denote this as $K_{n} \xrightarrow{\mathrm{~F}} \mathcal{L}$.

Dimers and Determinant Density Convergence

Theorem (C-Kofman '16) Let \mathcal{L} be a biperiodic alternating link, with toroidally alternating quotient link L. Let $p(z, w)$ be the characteristic polynomial of the associated toroidal dimer model on $\mathcal{G}_{\mathcal{L}}^{b}$. Let $\left\{K_{n}\right\}$ be a sequence of alternating links, then

$$
K_{n} \xrightarrow{\mathrm{~F}} \mathcal{L} \Longrightarrow \lim _{n \rightarrow \infty} \frac{\log \operatorname{det}\left(K_{n}\right)}{c\left(K_{n}\right)}=\frac{\mathrm{m}(p(z, w))}{c(L)} .
$$

Example: Infinite square weave \mathcal{W}

$\mathcal{W} \& L$

$\mathcal{G}_{\mathcal{W}}^{b} \& G_{L}^{b}$
$\operatorname{vol}\left(T^{2} \times I-L\right)=2 v_{\text {oct }}=7.32772 \ldots$
$p(z, w)=-(4+1 / w+w+1 / z+z)$.
(Boyd '98) $2 \pi \mathrm{~m}(p(z, w))=2 v_{\text {oct }}$

$$
\lim _{n \rightarrow \infty} \frac{2 \pi \log \operatorname{det}\left(K_{n}\right)}{c\left(K_{n}\right)}=\frac{2 \pi \mathrm{~m}(p(z, w))}{2}=v_{o c t}=\frac{\operatorname{vol}\left(T^{2} \times I-L\right)}{c(L)}
$$

Example: Triaxial link \mathcal{L}

$\operatorname{vol}\left(T^{2} \times I-L\right)=10 v_{t e t}=10.14941 \ldots$
$p(z, w)=6-1 / w-w-1 / z-z-w / z-z / w$.
(Boyd '98) $2 \pi \mathrm{~m}(p(z, w))=10 v_{\text {tet }}$
$\lim _{n \rightarrow \infty} \frac{2 \pi \log \operatorname{det}\left(K_{n}\right)}{c\left(K_{n}\right)}=\frac{2 \pi \mathrm{~m}(p(z, w))}{3}=\frac{10 v_{\text {tet }}}{3}=\frac{\operatorname{vol}\left(T^{2} \times I-L\right)}{c(L)}$

Example: Rhombitrihexagonal link \mathcal{L}

$G(\mathcal{L})$

L

$G_{\mathcal{L}}^{b}$

$$
\operatorname{vol}\left(T^{2} \times I-L\right)=10 v_{\text {tet }}+3 v_{\text {oct }}=21.14100 \ldots
$$

$$
p(z, w)=6(6-1 / w-w-1 / z-z-w / z-z / w)
$$

$$
2 \pi \mathrm{~m}(p(z, w))=2 \pi \log 6+10 v_{\text {tet }}=21.40737 \ldots>\operatorname{vol}\left(T^{2} \times I-L\right)
$$

Mahler measure and the Vol-Det Conjecture

Vol-Det Conjecture: For any alternating hyperbolic link K,

$$
\operatorname{vol}(K)<2 \pi \log \operatorname{det}(K)
$$

Idea: Use biperiodic alternating links to obtain infinite families of links satisfying the Vol-Det Conjecture.

1. Prove using explicit Mahler measure computation that $\operatorname{vol}\left(T^{2} \times I-L\right)<\mathrm{m}(p(z, w))$.
2. Use Determinant Density Convergence and geometry of links in $T^{2} \times I$ to prove that if $K_{n} \xrightarrow{\mathrm{~F}} \mathcal{L}$, then K_{n} satisfies the Vol-Det Conjecture for almost all n.
e.g. Rhombitrihexagonal link \mathcal{L}.

Bipyramid Volume

Let B_{n} denote the hyperbolic regular ideal bipyramid whose link polygons at the two coning vertices are regular n-gons. The hyperbolic volume of B_{n} is given by
$\operatorname{vol}\left(B_{n}\right)=n\left(\int_{0}^{2 \pi / n}-\log |2 \sin (\theta)| d \theta+2 \int_{0}^{\pi(n-2) / 2 n}-\log |2 \sin (\theta)| d \theta\right)$
E.g. $B_{4}=$ regular ideal octahedron

Let L be an alternating link in $T^{2} \times I$. For a face f of L, let $|f|$ denote the degree of the face. Define the bipyramid volume of L as

$$
\operatorname{vol}^{\diamond}(L)=\sum_{f \in\{\text { faces of } L\}} \operatorname{vol}\left(B_{|f|}\right) .
$$

Theorem (C-Kofman-Purcell '18) Let L be an alternating link in $T^{2} \times I$. Then

$$
\operatorname{vol}\left(T^{2} \times I-L\right) \leq \operatorname{vol}^{\diamond}(L)
$$

Note: This is a sharp upper bound for volume of links in the thickened torus e.g. Square weave and the Triaxial link attain this upper bound!

New Conjecture

Conjecture 1 (C-Kofman-Lalín '18) Let \mathcal{L} be a biperiodic alternating link, $L=\mathcal{L} / \Lambda$ and let $p(z, w)$ be the characteristic polynomial for the toridal dimer model on $\mathcal{G}_{\mathcal{L}}^{b}$. Then

$$
\operatorname{vol}^{\diamond}\left(T^{2} \times I-L\right) \leq 2 \pi \mathrm{~m}(p(z, w))
$$

Theorem (C-Kofman-Lalín '18) Let \mathcal{L} satisfy Conjecture 1 and let $K_{n} \xrightarrow{\mathrm{~F}} \mathcal{L}$. Then K_{n} satisfies the Vol-Det Conjecture for almost all n.

New Examples

We have explicit Mahler measure computations which verify Conjecture 1 for more examples:

Work in progress

Thank you

