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Many one-dimensional quantum systems have massless low-energy
excitations described by Conformal Field Theory

Examples: carbon nanotubes, electrons or cold atoms trapped in

1d potential wells, quantum Hall edge currents, XXZ spin chains




e 1+1-D CFT describes the low temperature equilibrium physics of such

systems but also some of nonequilibrium situations as

e the “partitioning protocol” after two halves of a system prepared

in different equilibrium states are joined together (reviewed by
Bernard-Doyon in J. Stat. Mech. (2016), 064005, see also
Hollands-Longo, CMP 357 (2018))
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® 'The purpose of this talk is to show how CFT describes the dynamics
of states with a preimposed smooth temperature profile

Based on joint work with E. Langmann and P. Moosavi, J. Stat. Phys.
172 (2018), 353-378, and on my ongoing research




Inspired by the paper by Lebowitz-Langmann-Mastropietro-Moosavi,
Phys. Rev. B 95 (2017)

LLIMM studied in the Luttinger model of interacting 1d electrons
the time evolution of the nonequilibrium state
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w’(A) = TTf(eG)) for G = /5(1‘)8(0,1‘) dx

where S(t, :C) is the energy density and B(w) is a smooth inverse-
temperature profile with the values 8y and () far on the left (right)
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e By resuming the perturbation series in powers of (3, — y), LLMM
showed that for the model with local interactions (which is a CFT)

w'(E(t, x)) (F(z — vt) + F(z + vt))
WY T (t,x)) (F(z — vt) — F(z + vt))

where j(t, aj) is the heat current, v is the effective Fermi velocity, and
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e They noticed that Sg(x) is the Schwarzian derivative
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and {f(a:), aj} appears in the CFT formula for the transformation of

the energy-momentum tensor suggesting a CF'T origin of their result

The formulae of LLMM imply that
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but also shows a nontrivial evolution of the nonequilibrium

expectations of £(t,x) and J(t,x) with traveling heat waves
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Evolution of the mean energy density minus £y (left)

and of the mean heat current (right)




e General theory

+

e Set = = x = vt. The conformal transformations in 1-+1-D spacetime

are:

(z7,27) = (fy(z7), f-(=T))




e In a CFT the infinitesimal action of conformal symmetries in

the Hilbert space H of states is generated by the components
T _(z~) and T, (:B+) of the energy-momentum tensor s.t.

(T-_ (x), T-— (2')] = F2i6'(z — 913/)TJ_FJ_r (') £id(z — 2T _ (z')
++

4+ c 8" (x — x')
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where ¢ is the central charge of the theory

e The energy density and heat current in a CFT are

o(T__(27)+ T, (=1))
T (t,x) = v? (T__(xz7)—T,, (™))




e It is convenient to work in a finite box [—3 L, &+ L] with the boundary
conditions that guarantee that 7' _(z7) = T (z%) for =z =+1L

t

e There is then only one independent component of the energy-moment.
tensor T__(z7)=T__(x~ +2L) with T (z7) =T__ (xt £ L)

O

T ()= "5 > oTCHEN(L, - 2 = T(a)

n=0c0

where L, satisfy the Virasoro algebra:




o T' generates a unitary projective representation f — U, of DiffyS?t
for f(x +2L) = f(x) + 2L with f’(x) > 0 such that

U, T(2) U7 = f@)PT(f(@) - 5o {f(@),)

o If fs is the flow of a vector field —((x)0; with ((x+2L) = ((x), i.e.
Os fs(x) = —C(fs(x)), fo(z) ==

U, =exp [13/1{(3:) T(x) da:]




e For L big enough let 81, (x) = Br(x + 2L) be defined by

1
e Consider for G, = ff B(x)£0,x)dxr = v
L

)
the finite-box nonequilibrium state

T (e_GL A)
Tr (e_GL)




o lLet f — fL & D’I,ff+Sl be such that f’L(w) — ;I?—ii) with 50,L

fixed by the requirement that fr(z + 2L) = x + 2L. Then
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Bo,LHr + const.

— the conjugation by UfL flattens the temperature profile !!!




e This allows to compare the non-equilibrium and equilibrium finite-volume
states:

ne e —1
e 1(A) = wﬁg’L,L(UfLA UfL )

e That relation may be applied to A = HZ T (:Ez_) Hj T++ (a:j_) for
which one has the identity

Uy, T- @F) Ut = (522 )’ T (fr(e™) — 5o {fo (), 2T}

++ Br (x7T) ++

e The thermodynamic limit L. — oo is easily controlled using standard CFT
techniques leading to the infinite-volume relations
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o H (%T%L(f@(xi)) — — {f,e(wj)>$j})>

B(xj)

where fﬁ( ): fox 5(53?,) dx’ with arbitrary ﬁo




e For 1-point functions of 7 _ (xT) the above relations together with

++
the infinite-volume CF'T identity OJZ% (TJ_rJ_r (:13$)) = 12(17;0)2 give

neq :F . mwe o (& :F :F
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extending the result of LLIMIM about the nonequilibrium expectations

of the energy density and the heat current to any unitary CFT

e The 1-point expressions are the simplest example of the general relations
that hold for the nonequilibrium expectations in any CFT model

e The expectations with insertions of primary fields may be treated

similarly leading to analogous infinite-volume identities




e Full counting statistics for the heat transfer

e For the profile states, one may obtain an exact expression for the full

counting statistics (FCS) of the heat transfers across the kink in
a [(x)-profile

Consider a CFT on [—34 L, 3 L] with the boundary conditions as
before. If the kink in [3(x) i is narrow then

]
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G, = B(x) E(0,z)dxr = BeEy + BrEr

where F/y and I/, are the energies to the left and to the right
of the kink, respectively

e One gets access to the FCS of the heat transfers by performing two
measurement of (G; in the nonequilibrium state wgeq separated by

time ¥




e By spectral decomposition

Gr = Zgipia GL(t) = ML Gre L = Zgip

2I1d

If the 1° measurement gives the value ¢; and the one the value g;

then the transfer of the energy across the kink in time © is

gdj — 9i

AE = E.(t) — E-(0) = —(E,(t) — E»(0)) AD

where AL = B, — By
e By the QM rules the probability of getting the results (g@', gj) is
pij = wy (P’ipj (t))

giving for the PDF of the energy transfers

pi,1(AE) Zé(AE—g” ) W (PiP;(2))




The characteristic function of the probability distribution of AFE is

Fui) = [ X4 p L (AB)

A5 (95—94) neq(PP (t )) _ w26q<e X\BG g—ABGL(t))
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Since H, =

L

1
Tr(e2mims(Fo=3) U, ) | is o[y (82(@)=Br@D) {1 (@)} da
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for s = AAB’ Te = (I_Z)LBO’L, and fs € DiffiS' solving the flow

equation equation Js fs (y) — _Ct,L(fs (y)) , Jo (y) —Y

: c
e One usually views the denominator IT (eQWIT(LO_ﬂ>) as the character

of the Virasoro algebra representation in the space of states of CFT

. C
e Similarly, the numerator Ir (e f) may be viewed as the

character of the corresponding representation of D ffy (Sl)




Characters of Diff. (S!)

e The characters of Diffy(S') may be reduced to those of the respective
Virasoro representation (this did not seem to exist in the literature)

. C
2miT(Lo—54) Uf is proportional to

According to . Segal, the operator e
the chiral Euclidian CFT amplitude of the complex annulus

A = {z| ™| < 2] <1}

with the boundary components parameterized by

1

pi(z) = e2™Te " TF@  po(z)=e LT

Characters are class functions invariant under
the adjoint action. What it means here is that
(up to a scalar factor) Ir e2mi7(Lo—37) Uf>
depends only on the torus %,f obtained from
AT,f by gluing its parameterized boundaries




e Indeed, IT (e2WiT(LO_ﬁ) Uf> is proportional to the CFT amplitude

of the torus %,f with its natural complex structure

The complex torus 7’57f is isomorphic to 7}_7f0 for fo(x) =z and

AN

some 7 in the upper half plane. This implies the relation

£

Ty (esz(LO—ﬁ) Uf) = C.; Tr(e%i?(Lo—M))

where on the right-hand-side is the trace of the CFT amplitude of the
annulus ‘A?,fo and CT,f is a complex number due to the projective

character of the chiral CFT amplitudes

The constant CT,f may be expressed in terms of determinants of
Fredholm operators on LQ([— 31,1L]) = H that appear in the context
of a Riemann-Hilbert-type problem on the torus 7:-,]0

AN

7 may be obtained by solving a related Fredholm equation



¢ The Riemann-Hilbert problem on 7. ¢

e Given a function X € H one searches for a holomorphic function X
on AT,f such that

X = X1 — Xo for X; = X op;

jump of a holomorphic function X
prescribed along the gluing line

e Let P~ and P~ be the orthogonal projectors in H on the subspaces
7T 1
spanned by functions e~ L " with n > 0 and n < 0, respectively

o Let Qr ¢ :Ho — Ho, for Ho C H composed of functions with
vanishing integral, be the operator

Qr,
(P> + P<)(X1 — X2) T PuXy — PeXo




e (- s is a traceclass. Explicitly
Qr; = (K11 +Ki2—K21)(I— K11 — Ki12—Ko21) "' (P< — K12) — K12

where K;; : H — H have smooth kernels
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dp1(y) dp2(y) )

(K1 X)(z) = X (- -

y) —pi1(z) p2(y) — p2(x)

(K12X)(x)

(K21X)(x)

and as such are traceclass




e The theory of determinant bundles of Quillen and Segal implies that

(e y)) = (Gaiean s ) (o[ o) Tx(emiThe )

\ >4
“/”

Cr.f

where <O‘ Uf }O> is the vacuum expectation of Uy

e That reduces the characters of Diffi (S') to the more standard ones

of the Virasoro algebra

e In particular, this permits to reduce to the latter the formula for the FCS
: C
characteristic function F', ¢(\) in which Tr (eQmT(LO_ﬂ) Ufs) was

the only nonexplicit entry




e FCS for the heat transfer in the thermodynamic limit

e T'he formula for characteristic function of the FCS heat transfer

simplifies in the limit L — oo giving
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Ft(A) = Lli—>moo FL,t(A) = €

it 5 [ (28(@) =BT +B(T)) (£ ()2} da

where operators O in L2 (R) are related to the integral operators /Cij
obtained in the L — 0o limit from K

Qi correspond to f(y) = fas(Ey) for Osfis(+y)=F(at(frs(Fy))

B(f7 Y (w)tvt)
with = v B
C+¢(y) = vBo )

(right- and left-movers contributions)




Operators R;%S are obtained from
R = P><I>fP<C8xP>(P>(DfP>)_

where ®rp = o f by setting ((y) = (++(Fy) and f(y) = frs(F+y)

e The contribution of R . comes from <O|Uf L |0) and may be easily
obtained from the Fredholm—determmant expression for the latter

for free massless bosons worked out in Bruneau-Derezinski (2005)

o It follows that F:(\) is universal depending only on the profile ()
and the central charge of the CFT

One should be able to extract the large deviations asymptotics of
Bernard-Doyon (2012)
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from our exact formula for Fy(\)




Conclusions

e In a CFT conformal symmetries may be used to map inhomogeneous
situations to homogeneous ones

That allowed to express nonequilibrium expectations in states with
temperature profile in terms of equilibrium ones

The states where one imposes also the profiles of chemical potential can

be treated similarly in theories with current-algebra symmetries

The general results confirmed and extended the particular ones obtained
by LLMM for the Luttinger model through perturbative calculations

The FCS statistics of energy transfers in such states was expressed using
characters of Diffi (S!') and was shown to exhibit in the thermodynamic
limit a universal dependence on the temperature profile




