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Perturbative algebraic quantum field theory

Algebraic approach ([Haag 59, Haag-Kastler 64]): allows to separate
the dynamics from the specification of the state.

We can follow the spirit of AQFT also in perturbation theory,
pAQFT is a mathematically rigorous framework that can be used
to make precise calculations done in perturbative QFT,
Basic ingredients:

Free theory obtained by the formal deformation quantization of
the Poisson (Peierls) bracket: ?-product ([Dütsch-Fredenhagen 00,
Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, . . . ]).
Interaction introduced in the causal approach to renormalization
due to Epstein and Glaser ([Epstein-Glaser 73]),
Generalization to curved spacetime in the framework of general
local covariance ([Brunetti-Fredenhagen-Verch 03,
Brunetti-Dütsch-Fredenhagen 09]).
Generalization to gauge theories using homological algebra
([Hollands 07, Fredenhagen-KR 11]).
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Motivation

Why use pAQFT for quantization of theories with local symmetries?
Applies to a very general class of models, including string
quantization and effective quantum gravity (QG).

Allows to quantize observables that are non-local, which is
particularly important for QG.
Uncovers underlying geometrical structures and leads to
interesting mathematics (homological algebra, homotopy).
Justifies constructions, which otherwise seem ad hoc.
Delivers an abstract definition of the quantum BRST differential,
without the need for constructing the charge in a given
representation.

References:
K. Fredenhagen, KR Batalin-Vilkovisky formalism in the functional approach
to classical field theory (CMP 2012),
K. Fredenhagen, KR Batalin-Vilkovisky formalism in perturbative algebraic
quantum field theory (CMP 2013).
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Physical input

A globally hyperbolic spacetime (M, g).

Configuration space E(M): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . . ).
Typically E(M) is a space of smooth sections of some vector
bundle E π−→ M over M.

For the scalar field: E(M) ≡ C∞(M,R).
For Yang-Mills with trivial bundle: E(M) ≡ Ω1(M, k), where k is
a Lie algebra of a compact Lie group.
For effective QG: E(M) = Γ((T∗M)⊗2).

We use notation ϕ ∈ E(M), also if it has several components.

Dynamics: we use a modification of the Lagrangian formalism
(fully covariant).
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Classical observables

Classical observables are smooth functionals on E(M), i.e.
elements of C∞(E(M),C).

For simplicity of notation (and because of functoriality), we drop
M, if no confusion arises, i.e. write E, C∞(E,C), etc.
Localization of functionals governed by their spacetime support:

supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ,ψ ∈ E,

suppψ ⊂ U such that F(ϕ+ ψ) 6= F(ϕ)} .

F is local, F ∈ Floc if it is of the form:

F(ϕ) =

∫
M

f (jx(ϕ)) dµg(x) , where f is a function on the jet

bundle over M and jx(ϕ) is the jet of ϕ at the point x. F is the
space of multilocal functionals (products of local).
A functional is regular, F ∈ Freg if F(n)(ϕ) is as smooth section
(in general it would be distributional).
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Dynamics

Dynamics is introduced by a generalized Lagrangian S, a
localization preserving map S : D→ Floc, where
D(M) = C∞0 (M,R). Examples:

S(f )[ϕ] =

∫
M

(
1
2ϕ

2 +
1
2
∇µϕ∇µϕ

)
fdµg,

S(f )[A] = −1
2

∫
M

f tr(F ∧ ∗F), F being field strength for A,

S(f )[g]
.
=

∫
R[g] f dµg

The Euler-Lagrange derivative of S is denoted by dS and defined
by 〈dS(ϕ), ψ〉 =

〈
S(1)(f )[ϕ], ψ

〉
,

where f ≡ 1 on supph.
The field equation is: dS(ϕ) = 0,
so geometrically, the solution space is
the zero locus of the 1-form dS.
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Symmetries

In the BV framework, symmetries are identified with vector
fields (directions) on E.

We consider vector fields that are local, compactly supported and
sufficiently regular and use notation V.

They act on F as derivations: ∂XF(ϕ) := 〈F(1)(ϕ),X(ϕ)〉
A symmetry of S is a direction in E in which the action is
constant, i.e. it is a vector field X ∈ V such that ∀ϕ ∈ E:
0 = 〈dS(ϕ),X(ϕ)〉=: δS(X)(ϕ).

E(M)

Cϕ
F

Kasia Rejzner BV quantization 7 / 23



pAQFT
BV complex
Quantization

Symmetries

In the BV framework, symmetries are identified with vector
fields (directions) on E.

We consider vector fields that are local, compactly supported and
sufficiently regular and use notation V.

They act on F as derivations: ∂XF(ϕ) := 〈F(1)(ϕ),X(ϕ)〉
A symmetry of S is a direction in E in which the action is
constant, i.e. it is a vector field X ∈ V such that ∀ϕ ∈ E:
0 = 〈dS(ϕ),X(ϕ)〉=: δS(X)(ϕ).

E(M)

Cϕ
F

Kasia Rejzner BV quantization 7 / 23



pAQFT
BV complex
Quantization

Symmetries

In the BV framework, symmetries are identified with vector
fields (directions) on E.

We consider vector fields that are local, compactly supported and
sufficiently regular and use notation V.

They act on F as derivations: ∂XF(ϕ) := 〈F(1)(ϕ),X(ϕ)〉

A symmetry of S is a direction in E in which the action is
constant, i.e. it is a vector field X ∈ V such that ∀ϕ ∈ E:
0 = 〈dS(ϕ),X(ϕ)〉=: δS(X)(ϕ).

E(M)

Cϕ
F

Kasia Rejzner BV quantization 7 / 23



pAQFT
BV complex
Quantization

Symmetries

In the BV framework, symmetries are identified with vector
fields (directions) on E.

We consider vector fields that are local, compactly supported and
sufficiently regular and use notation V.

They act on F as derivations: ∂XF(ϕ) := 〈F(1)(ϕ),X(ϕ)〉
A symmetry of S is a direction in E in which the action is
constant, i.e. it is a vector field X ∈ V such that ∀ϕ ∈ E:
0 = 〈dS(ϕ),X(ϕ)〉=: δS(X)(ϕ).

E(M)

Cϕ
F

Kasia Rejzner BV quantization 7 / 23



pAQFT
BV complex
Quantization

Equations of motion and symmetries

Space of solutions: ES ⊂ E. Denote functionals that vanish on ES

by F0. Assume that they are of the form: δS(X) for some X ∈ V.

The space of on-shell functionals FS is the quotient FS = F/F0.

δS is called the Koszul differential. Symmetries constitute its
kernel.

We obtain a sequence: 0→ Sym ↪→ V
δS−→ F → 0.

For the beginning we consider the case where there are no
non-trivial (not vanishing on ES) local symmetries,

Let KT
.
=
(∧

V, δS

)
. Then FS = H0(KT) and higher

homologies vanish.

This is called the Koszul complex.
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Antifields and antibracket

Vector fields V can be written formally as: X =

∫
dx X(x)

δ

δϕ(x)
.

The action on functionals F ∈ F can be written as:

X(F)(ϕ) =

∫
dx X(ϕ)(x)

δF
δϕ(x)

(ϕ) .

We can think of derivatives
δ

δϕ(x)
as "generators" of V.

In literature those objects are called antifields and are denoted by

ϕ‡(x), i.e.: ϕ‡(x)
.
=

δ

δϕ(x)
. The grading of Koszul complex is

called antifield number #af.
There is a graded bracket (called antibracket) identified with the
Schouten bracket {., .} on multivector fields.
Derivation δS is not inner with respect to {., .}, but locally it can
be written as δSX = {X, S(f )} for f ≡ 1 on suppX, X ∈ V.
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Invariants

The space of symmetries is a Lie subalgebra of V and has a
natural action on F. Assume that this space is of the form F⊗̂s,
for some Lie algebra s.

In YM theories, we have s(M) = C∞(M, k), while in gravity by
s(M) = Γ(TM).
In physics we are interested in the space of on-shell functionals,
invariant under the action of symmetries. We denote this space
by Finv

S and call it gauge invariant on-shell functionals.
Finv

S is characterized with the Chevalley-Eilenberg complex

CE
.
=
(∧

s∗⊗̂F, γ
)
.

In degree 0, γ acts as: (γF)(ξ)
.
= ∂ξF, ξ ∈ s, F ∈ F.

If F ∈ Finv then γF ≡ 0, so the H0(γ) characterizes the gauge
invariant functionals.
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BV complex

Now we combine gauge invariant and on-shell, to be able to
characterize the space Finv

S .

Observation: CE is a graded manifold E⊕ s[1], so instead of
vector fields on E, we should consider the vector fields on the
extended configuration space E

.
= E⊕ s[1].

This way we obtain the BV complex: BV(M). Its underlying
algebra is the algebra of multivector fileds on E.

BV is equipped with the BV differential, which in simple cases
is just s = δ + γ (in general, more work needed).

We have H0(s) = H0(H0(δ), γ) = Finv
S , which is the reason to

work with BV as it contains the same information as Finv
S , but

has a simpler algebraic structure (quotients and spaces of orbits
are resolved).

Kasia Rejzner BV quantization 11 / 23
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Antibracket and the Classical Master Equation

BV, as the space of multivector fields, comes with a graded
bracket (the Schouten bracket again).

Derivation δS is not inner with respect to {., .}, but locally it can
be written as:

δSX = {X, S(f )} , f ≡ 1 on suppX , X ∈ V

Similarly sX = {X, Sext(f )}, where Sext is the extended action,
which contains ghosts (odd generators of CE), antifields and
often non-minimal sector needed for implementing the gauge
fixing (see the talk of Hollands).
The BV differential s has to be nilpotent, i.e.: s2 = 0, which
leads to the classical master equation (CME):

{Sext(f ), Sext(f )} = 0 ,

modulo terms that vanish in the limit of constant f .
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often non-minimal sector needed for implementing the gauge
fixing (see the talk of Hollands).

The BV differential s has to be nilpotent, i.e.: s2 = 0, which
leads to the classical master equation (CME):

{Sext(f ), Sext(f )} = 0 ,

modulo terms that vanish in the limit of constant f .
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Poisson structure and the ?-product

Firstly, linearize Sext around a fixed configuration ϕ0, and write
Sext = S0 + V , where S0 might contain both fields and antifields.

The Poisson bracket of the free theory is

{F,G} .=
〈

F(1),∆G(1)
〉
,

where ∆ = ∆R −∆A is the Pauli-Jordan function for the
#af = 0 part of S0.
Define the ?-product (deformation of the pointwise product):

(F ? G)(ϕ)
.
=
∞∑

n=0

~n

n!

〈
F(n)(ϕ),W⊗nG(n)(ϕ)

〉
,

where W is the 2-point function of a Hadamard state and it

differs from
i
2

∆ by a symmetric bidistribution: W =
i
2

∆ + H.
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Time-ordered product

Let Freg(M) be the space of functionals whose derivatives are
test functions, i.e. F(n)(ϕ) ∈ D(Mn),

The time-ordering operator T is defined as:

TF(ϕ)
.
=

∞∑
n=0

1
n!

〈
F(2n)(ϕ), (~2 ∆F)⊗n

〉
,

where ∆F =
i
2

(∆A + ∆R) + H and H = W − i
2

∆.
Formally it corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance i~∆F”,

TF(ϕ)
formal

=

∫
F(ϕ− φ) dµi~∆F (φ) .

Define the time-ordered product ·T on Freg[[~]] by:

F ·T G .
= T(T−1F · T−1G)
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Interaction

·T is the time-ordered version of ?, in the sense that

F ·T G = F ? G ,

if the support of F is later than the support of G.

Interaction is a functional V , for the moment V ∈ Freg.
We define the formal S-matrix, S(λV) ∈ Freg((~))[[λ]] by

S(λV)
.
= eiλV/~

T = T(eT
−1(iλV/~)) .

Interacting fields are elements of Freg[[~, λ]] given by

RλV(F)
.
=(eiλV/~

T )?−1?(eiλV/~
T ·TF) = −i~

d
dµ

S(λV)−1S(λV+µF)
∣∣
µ=0

We define the interacting star product as:

F ?int G .
= R−1

V (RV(F) ? RV(G)) ,

Renormalization problem: extend ·T to V local and non-linear.

Kasia Rejzner BV quantization 15 / 23
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QME on regular functionals

The quantum master equation is the condition that the S-matrix
is invariant under the quantum Koszul operator:

{eiV/~
T , S0}? = 0 ,

where {., .}? is the antibracket where the pointwise product is
replaced by ?.

The left-hand side can be rewritten as:

eiV/~
T ·T

(
1
2
{S + V, S + V}T − i~4 (S + V)

)
= {eiV/~

T , S0}? .

We obtain the standard form of the QME:
1
2
{S + V, S + V}T = i~4S+V .

This should be understood as a condition on V , which guarantees
that the S-matrix on-shell doesn’t depend on the gauge fixing.

Kasia Rejzner BV quantization 16 / 23
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Quantum BV operator I

The linearized BV operator is defined by

ŝ0X = {X, S0}? .

Under appropriate conditions on the 2-point function W, ŝ0 = s0.

The quantum BV operator ŝ is defined on regular functionals by:

RV ◦ ŝ = ŝ0 ◦ RV ,

the twist of the free quantum BV operator by the (non-local!)
map that intertwines the free and the interacting theory.

The 0th cohomology of ŝ characterizes quantum gauge invariant
observables.

Kasia Rejzner BV quantization 17 / 23
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The quantum BV operator ŝ is defined on regular functionals by:
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Quantum BV operator II

Assuming QME, ŝX = e−iV/~
T ·T

(
{eiV/~

T ·T X, S0}?
)

.

ŝ on regular functionals can also be written as:

ŝ = {., S + V}T − i~4 ,

where4 is the BV Laplacian, which on regular functionals is

4X = (−1)(1+|X|)
∫

dx
δ2X

δϕ‡(x)δϕ(x)
.

In our framework this is a mathematically rigorous result, no
path integral needed (in contrast to other approaches).

Kasia Rejzner BV quantization 18 / 23
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Towards renormalization

To extend QME and ŝ to local observables, we need to replace ·T with
the renormalized time-ordered product.

Theorem (K. Fredenhagen, K.R. 2011)
The renormalized time-ordered product ·Tr is an associative product
on Tr(F) given by

F ·Tr G .
= Tr(T

−1
r F · T−1

r G) ,

where Tr : F[[~]]→ Tr(F)[[~]] is defined as

Tr = (⊕nT
n
r ) ◦ β ,

where β : Tr : F → S•F(0)
loc is the inverse of multiplication m.

Kasia Rejzner BV quantization 19 / 23
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Renormalized QME and the quantum BV operator

Since ·Tr is an associative, commutative product, we can use it in
place of ·T and define the renormalized QME and the quantum
BV operator as:

{eiV/~
Tr , S0}? = 0

ŝ(X)
.
= e−iV/~

Tr ·Tr

(
{eiV/~

Tr ·Tr X, S0}?
)
,

These formulas get even simpler if we use the anomalous Master
Ward Identity ([Brenecke-Dütsch 08, Hollands 07]).

Kasia Rejzner BV quantization 20 / 23
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Renormalized QME and the quantum BV operator

Using the MWI we obtain following formulas:

0 =
1
2
{V + S0,V + S0}Tr −4V ,

ŝX = {X,V + S0} −4V(X) ,

where4V is identified with the anomaly term and
4V(X)

.
= d

dλ 4V+λX
∣∣
λ=0.

Hence, by using the renormalized time ordered product ·Tr , we
obtained in place of4(X), the interaction-dependent operator
4V(X) (the anomaly). It is of order O(~) and local.

In the renormalized theory,4V is well-defined on local vector
fields, in contrast to4.
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Conclusions

Conclusions

We combined geometrical structures underlying the BV
formalism with pAQFT, to develop a general framework to
quantize theories with local symmetries.

Our approach avoids using path integrals and ill-defined
quantities in intermediate steps.
We showed that for regular objects our definitions agree with the
standard ones.
We proved the associativity of the renormalized time-ordered
product and this allowed us to use Tr instead of T in algebraic
formulas for the QME and ŝ (which we postulated).
The renormalized QME and the quantum BV operator are defined
in a natural way and don’t suffer from divergent terms,
Example applications: Yang-Mills theories, bosonic string,
perturbative quantum gravity.
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