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Simple Random Walk

q p
Lattice Z

* Can make time continuous by giving particle a “random
alarm clock”, I.e. exponential distr. with mean 1.

* This is arguably one of the most important, if

elementary, stochastic processes.

* \Want many particles—to be interesting these particles
must interact.
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Asymmetric Simple Exclusion Process
(ASEP)

A continuous time Markov process
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Lattice Z

* Particles move on Z according to two rules:

e A particle waits at x an exponential time with parameter
one, and then chooses y with probability p(x,y).

e |f yisvacant at that time it moves to y, while if yis
occupied it remains at x.

e “Simple”refers to the tfact that jumps are allowed only
one step to either the right or left

e “Asymmetric” refers to the case p=q.
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Transition Probability: Py(x;t)

For one particle the probabillity that the
particle is initially at yis at x at time tis

1
Pait) = 5 | €m0 ag

where

(€)= g +at—1

and C, is a circle of radius r centered at the origin.

This result is elementary but the generalization to more than one
particle is rather subtle
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N-particle ASEP

Initial configuration: Y = {y1,y2,...,yn} with y; < yo < --- < yn.
Final configuration: X := {x1,22,..., x5} with 21 <29 < --- < zN.

Let Gy denote the permutation group and set

p+q&& —¢
g — €

A = [ Lowbo) g,

1<i<j<N U (6@7 5])

U.¢) =

Theorem (TW, 2008).

(X 1) Z/ / ﬂf )Tt dgy - dey

ceGN
where C, has radius so small that all the poles of A, lie outside of C,.

Remarks:
o Py(X;t) satisfies Py (X;0) = dxy.

e This is a sum of N! terms with each term an /N-dimensional contour
integral.

e We are ultimately interested in N — oo. Not at all clear how to
proceed!



e To extract information from Py(x;t), we start by
looking at marginal distributions; the simplest
are one-point functions:

Py (xm(t) = )

Must sum Py (X;t) over all configurations satisfying x,,(t) = x.

For example, for m = 2 we must sum over configurations X

X=Ax—v,r,c+v9,x+v3+vs,...,.0+vs+ 03+ -+ 0y}
where v; =1,2,3, ...

Second Example: ASEP Blocks
mth particle is the left-most one in a contiguous block of L particles

0000 ——0—00 00— 00—

Lm (t)
block of L =4
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Case m=1, left-most particle

Identity One. For N > L,

E@Em &
U o(1)> So(y
Z H (f ()> Ea( )) (1— Ea(lrl) '§a(N)) (1 — fa(N—l)fa(N))(l — fo(N))

c€Gy 1<i,j<N

_ pNN-1)/2 f.(€)
Hi(l _ §z)

where 7 (§) are symmetric polynomials in the variables &€ = (&1, ...,&N)-

For the definition of f1(£) we first define

ngjgN U(21,&5) U(22,€5) -+ - Uz, ;) H 1

@L(zla---7ZL§§) — L—1

2 (g —p) %~ (g2 —p)--- 20 (g2 —p) 2 Ulz %)

then fL(f)IPL(LH)/Q_LNH@L/ / wr(21,--.,20;8) da -+ - dzy,
i Le Te

I'¢ consists of simple closed curves enclosing the points &; but no other sin-
gularities of the integrand.

For L =1,
fl(f) =1- Hfz

but the complexity of fr increases with L.
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General m
|[dentity Two

Notation:
e S is asubset of {1,2,..., N}
o &5 denotes the variables & with k ¢ S.

e Set 7:=p/q < 1 and recall the 7-binomial coefficients

R

Identity Two: For 0 <m < N — L,

S 106 e) - iu@) = Y ) e

|S|:m ’L"ES
JEs

where §1(§) are the symmetric polynomials from Identity One and

_pH+aEd ¢

U(&,¢) .
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What do the Identities buy for you?

Notation:

e Pry(z,m,t): probability that at time ¢ the mth particle from the left is the
beginning of a block of length L starting at x. —~—e—e——~————~—0-000———0=e

T (t)
@ block of L =4

ney o= I geg g oIl (€

1<i<j<N i i

e S asubset of {1,..., N}, S°complement of S.
o [1(x,Ys,&s) indices lie in S.

e 0(5) is the sum of the elements in S°.
Theorem (TW, L = 1, 2008; general L, 2017): For ¢ > 0

c Sl - L
Pry(w,m,t) = pO-mtD=m/2gm-1)(N-m/2) §= (_jym-i-|s |
L,Y(ZU a ) P 1 ( ) m—l—‘Sc‘ T

|Se|<m

¢ (5)=NIse] 5
chr(sc) |Sc|<|sc|+1>/2/ / [i(w,Ys,85) d™'6

Remarks:

e The proof for general L proceeds exactly the same as for L = 1 given the general L identities
and the fact that f;(£) are polynomials—no new poles introduced in the argument.

e As was the case for L = 1, there is a formula for Py y(x,m,t) but with integrations over
large contours. In this expression one can let N — oo.
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Large contour representation

Notation:

e Pry(xz,m,t): probability that at time ¢ the mth particle from the left is the
beginning of a block of length L starting at .

w@ 0= 1 g lig @Il )

1<i<j<N i i

e S asubset of {1,..., N}.

) [L<$;Y57£S) indices lie in S.

e o(95) is the sum of the elements in S.

Theorem (TW, L =1, 2008; general L, 2017): For ¢ > 0

_(_1ym+l,m(m—1)/2 (m=1)(Is|-m/2) | |51 = L
Pry(xz,m,t) = (=1)""'p Z q [ I
|S|>m~+L—1

)—m|S|
S|
><q mET |S|+1)/2/ /CR[L z,Ys, &) d"”'E

where R is so large that the poles of the integrand lie inside Cg.

Remarks:

e This theorem extends to infinite systems unbounded on the right. The sum is then
taken over finite subsets of Z*.

e Up to this point the initial configuration Y = {y1,vs,...}, 1 < yo < ---, is completely
general (though bounded below). We now turn to the special case of step initial condition.
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Step Initial Condition

Drift to the left, p < ¢
Particles initially occupy Z™*

o f TQQQQQ..QQ>

Remarks:

e In the stochastic growth interpretation of ASEP, the step initial condition corresponds
to the droplet initial condition.

e We are interested in Py z+(z, m,t).

e One starts with the large contour representation of Pp z+(x, m,t), and then first sums
over all S with |S| equal to a fixed k.
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Fredholm Determinant Representation

Notation:
e Denote by K, .(2) the integral operator acting on functions on Cp with kernel

L
Kio(£,€52) = Kuo(6,€)[[U(2,€), where

j=1
Sm es(g)t

pt+qf& —¢

K, (£,€) =

e 7-Pochhammer symbol, (A;7),, := ]_[;-”:_01(1 — \79).

Theorem (TW, L =1, 2008; general L, 2017). For p,q > 0,

(_1)L—1 pL(L+1)/2 T—(m—l)(L—l)

PL,Z+ (33, m, t)

" / / 1 H 1
To,r To,r 21 (g1 — p) ZzL_l (qza —p)--- 21 (g2 — p) U(zj, z)

1<j
det(I —p_Lq)\KL,erL_l(z)) d\
X [/ e S\ dzp---dz .

Remarks:

e The z-iterated integral is interpreted as follows: First take the sum of the residues at z;, =0
and z;, = 7. In the resulting integrand take the sum of the residues at z;,_1 =0 and z;,_; = 7;
and so on.

e The M-integration is over a contour enclosing the singularities of the integrand at 77 for
j=0,...,m—1.

e For L =1, evaluating the z;-integral leads to the result

Por(onlt) <o) = [ SR D
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J-Kernel

Proposition 1: Suppose r — C, is a deformation of closed curves and a
kernel H(n,n') is analytic in a neighborhood of C, x C, C C? for each
r. Then the Fredholm det of H acting on C, is independent of r.

Proposition 2: Suppose Hi(n,n') and Hs(n,n') are two kernels acting on
a simple closed contour I', that H;(n,n’) extends analytically to 7 inside
" or to 7’ inside I', and Hs(n,n’) extends analytically to 7 inside I and
n' inside I'. Then the Fredholm determinants of Hi(n,n") + Hs(n,n')
and H(n,n') are equal.

1—mp 11y W; — T

/ .
§ = 1—n’ &= I — T w1

After using these two proposition (among other things) we arrive at an
operator J . (w) acting on functions on a circle with center zero and
radius r € (7,1)
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J-Kernel

Poo,z(€) Cm_L [, ¢/n')
Pooe() (W)L (=

L
JL,x,m(nan,;w) — HV(CW/,’CUJ) dC7

Jj=1
where

k

Goo (1) = (1=) "™, flu,2) = Y === 25 V(i) =

k / ’
— i W —a
keZ H U

w(—rT

The (-integration is over a circle with center zero and radius in the interval

(1,r/71).

L—j . — A,
Prar(o,m,t) = (151492 R
’ Ty r w]w —TL9+1 w; — TW;

0,7 j=1 1<J

X / [(TL,LL; T)oo det(I + puJgp zm(w)) %] dwry - - - dwy.

Here 1 runs over a circle of radius larger than 7

inside the w;_; contours.
Recall

~L+1 and the w; contours

Pr.z+(x,m,t) = The probability that at time ¢ the mth particle from the left
is the beginning of a block of particles of length L

with step initial condition.
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Asymptotics: KPZ Scaling

m=ot, 0<o<1l, y=q¢—p>0, o, =—14+20, co =051 —/0)*?

Theorem (TW 2017)
When = = ¢t + co5t'/3,t = o0,

Pra+(x,m,t)y) = c3 a2 F ()71 4 o(t/?)

For L = 1 this reduces to 2008 result.

Corollary 1.

The conditional probability that the mth particle from the left is the begin-
ning of an L-block, given that it is at o at time ¢/v, has the limit o(*—1/2,

The conditional probability that there is a block of precisely L particles, and
no more, has the limit ¢—9/2 — ¢L/2 = o(E=1/2 (1 — /7).
Corollary 2.

The conditional probability that the mth particle from the left is followed by
a gap of G unoccupied sites, given that it is at x at time t/~, has the limit

(1 - Va)C.

The conditional probability that there is a gap of precisely G sites, and no
more, has the limit (1 — /o) /0.

No gap is the same as a block of at least two, so this is consistent with
Corollary 1 with L = 2.
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Thank you for your attention
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