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Percolation as a dynamic process

Percolation: Keep each edge in the graph with probability p, independently

As a dynamic process (Harris coupling):

B Associate independent uniform [0,1] weights Ue to each edge e

B p as time: Keep edge e, Ue 6 p at time p, and then increase p
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Percolation phase transition on finite graphs

There exists pc such that for any ε > 0 n := # vertices in the graph

(1) p < pc(1 − ε): largest component is o(n) subcritical

(2) p > pc(1 + ε): largest component is Θ(n) supercritical

B Erdős & Rényi (1959), Gilbert (1959) – Complete graph

B Molloy & Reed (1995), Janson (2009) – Uniformly chosen graph given degree

B Bollobás, Borgs, Chayes, Riordan (2010) – Dense graph

B Aldous (2016) – General graphs

(1.5) p = pc(1∓ εn) with εn → 0: Critical behavior is observed
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Critical window: Zoom into the critical value

Surplus edges:= # edges to be deleted to turn a graph into tree

Subcritical
p = pc(1 − ε)

Critical window
p = pc(1∓n−η)

Supercritical
p = pc(1 + ε)

Surplus edges

6 1 Poisson →∞

Component sizes

Concentrates Random Concentrates

ε > 0 εn � n−η εn ∼ n−η εn � n−η ε > 0

Subcritical

Critical window

Supercritical

Mostly trees Components merge Birth of giant

Critical window: p = pc(1 + λn−η), −∞ < λ <∞
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Key questions for percolation over the critical window

p = pc(1 + λn−η), −∞ < λ <∞
Three fundamental questions:

(Q1) Component size and surplus (at each fixed λ)

(Q2) Evolution of component size and surplus over the critical
window (as λ varies)

(Q3) Graph distances within components (at each fixed λ)
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Each question poses novel theoretical challenges

(Q1a) Component size: [Aldous & Limic ’98], [Aldous & Pittel ’00], [Nachmias

& Peres ’10], [van der Hofstad, Janssen & van Leeuwaarden ’10], [Bhamidi, van der

Hofstad & van Leeuwaarden ’10 ’12], [van der Hofstad, ’13], [Bhamidi, Budhiraja &

Wang ’14], [Bhamidi, Sen & Wang ’14], [Dembo, Levit & Vadlamani ’14], [Joseph

’14], [van der Hofstad & Nachmias ’17] + many more...

(Q1) Component size and surplus: [Aldous ’97], [Riordan ’12], [Bhamidi,

Budhiraja & Wang ’14] + many more...

(Q2) Evolution over the critical window: [Aldous ’97], [Aldous & Limic

’98], [Bhamidi, van der Hofstad & van Leeuwaarden ’12], [Bhamidi, Budhiraja &

Wang ’14], [Broutin & Marckert ’16] + many more...

(Q3) Graph distances within components: [Nachmias & Peres 10],

[Addario Berry, Broutin & Goldschmidt ’12], [Bhamidi, Sen & Wang ’14], [Bhamidi,

van der Hofstad & Sen ’17], [Broutin, Duquesne, & Wang ’18] + many more...
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New Challenges: Inhomogeneity in degree distribution

Inhomogeneity or high amount of variability in degrees of network

≡
Empirical degree distribution is heavy-tailed

Inhomogeneity increases if the deg. dist has diverging lower moments

Does inhomogeneity lead to fundamentally different behavior?

Yes, with respect to all above aspects (Q1)–(Q3)

Finite third moment

Infinite third moment but finite second moment

Infinite second moment but finite first moment

Effect of in-
homogeneity
increases
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Role of inhomogeneity: Three universality classes

Critical percolation on configuration model

Finite third moment

B Similar behavior as homogeneous models (Erdős-Rényi, Regular graphs)

B Insensitivity to the degree distribution

Infinite third moment but finite second moment

B Deleting the highest degree vertex changes the scaling limits

B Comp sizes, distances crucially depend on the exact deg. distribution

Infinite second moment but finite first moment

B pc = 0: almost all edges must be deleted to remove the giant

B Critical behavior changes depending on multigraphs or simple graphs

I Configuration model versus erased configuration model
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Preliminaries

Random graph: Configuration model

Set up: Power-law degrees (proportion of vertices of degree k ≈ Ck−τ)

Finite third moment: τ > 4, Infinite third moment: τ ∈ (3, 4),
Infinite second moment: τ ∈ (2, 3)

Hubs: Vertices of degree Θ(max degree)

Critical window: p = pc(1 + λn−η), −∞ < λ <∞
C(i):= the i-th largest component

SP(C(i)):= # surplus edges in C(i)

Topology: U0 ⊂ R∞+ ×N∞ with norm (
∑
i x

2
i )

1/2 +
∑
i xiyi
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Component size and surplus (Q1)

Theorem 1 (D, v/d Hofstad, v Leeuwaarden, Sen ’16 a,b)

For τ > 4 and p = pc(1 +λn− 1
3 )

(n− 2
3 |C(i)|, SP(C(i)))i>1

d−→ X1 in U0 (Finite third moment)

For τ ∈ (3, 4) and p = pc(1 +λn−τ−3
τ−1 )

(n−τ−2
τ−1 |C(i)|, SP(C(i)))i>1

d−→ X2 in U0 (Infinite third moment)

B Generalizes Nachmias & Peres ’09 (d-regular), Riordan ’12 (bounded
degree)

B X1 ≡ Erdős-Rényi (insensitive to the exact degree distribution)

B X2 depends on the precise asymptotics of hubs

lim
n→∞P(two hubs are in the same component)

{
= 0, for τ > 4

∈ (0, 1), for τ ∈ (3, 4)
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Evolution of components as λ increases

Zn(λ) :=


(
n− 2

3 |C(i)|, SP(C(i))
)
i>1 τ > 4

(
n− τ−2

τ−1 |C(i)|, SP(C(i))
)
i>1 τ ∈ (3, 4)

For ERRG,

B C(i) and C(j) merge at rate |C(i)|× |C(j)| (multiplicative coalescent)

B SP(C(i)) increases by 1 at rate
(|C(i)|

2

)
(augmented version)

Previous works by [Aldous ’97], [Aldous & Limic ’98], [Bhamidi, Budhiraja & Wang

’14], [Broutin & Marckert ’16]
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Results: evolution of components (Q2)

B (Zn(λ))−∞<λ<∞ is not Markov

I Approximate by a Markov process evolving as a multiplicative
coalescent

Theorem 2 (D, v/d Hofstad, v Leeuwaarden, Sen ’16 a,b)

(Zn(λ))−∞<λ<∞ d−→ (AMC1(λ))−∞<λ<∞ in (U0)k (Finite third moment)

(Zn(λ))−∞<λ<∞ d−→ (AMC2(λ))−∞<λ<∞ in (U0)k (Infinite third moment)
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Convergence of distances (Q3)

Seminal work by Addario-Berry, Broutin, Goldschmidt (2012)

B C(i) as a random metric space
I Elements: vertices in C(i)

I Metric: graph distance

B Objective: Study the limit of C(i) on the space of metric spaces

B Outcome: Convergence of global functionals like diameter
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Metric structure of critical components

Theorem 3 (Bhamidi, Broutin, Sen, Wang ’14) (Bhamidi, Sen ’16)

Re-scale metric by n−
1
3 . Let τ > 4 and p = pc(1 + λn−

1
3 ). Then

(C(i))i>1 converges in distribution

Theorem 4 (Bhamidi, D, v/d Hofstad, Sen ’17, ’18+)

Re-scale metric by n−
τ−3
τ−1 . Let τ ∈ (3, 4) and p = pc(1 + λn−

τ−3
τ−1 ). Then

(C(i))i>1 converges in distribution
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Limiting object: infinite third moment

size = n
τ−2
τ−1surplus = Poisson distances = n

τ−3
τ−1

Courtesy: Igor Kortchemski’s website
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Infinite second moment case

Degree distribution: Power-law ∼ Ck−τ with τ ∈ (2, 3)

B These networks are always robust

B p > 0: Always supercritical =⇒ pc = 0

B Critical behavior is observed for p→ 0

B Critical window: pc = λn−η for λ > 0

Objectives:

B Identify critical window =⇒ Find the exponent η

B Find ρ > 0 and X (nondegenerate scaling limit) such that

(n−ρ|C(i)|)i>1
d−→ X

B Analyze near critical behavior

Component sizes concentrate outside critical window

All of these were open questions till date...
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Informal description of the results

Models: Configuration model (CM), Erased configuration model (ECM)

CM ECM

pc λn− 3−τ
τ−1 λn− 3−τ

2

|C(i)| n
τ−2
τ−1 n

1
τ−1−

3−τ
2

B Single-edge constraint changes critical value for τ ∈ (2, 3)!

B ECM has larger component sizes and critical value

B In both cases, critical window is precisely the value when

lim
n→∞P(hubs are in the same component)= ζ ∈ (0, 1)

Subcritical regime: P(hubs are in the same component)→ 0

Supercritical regime: P(hubs are in the same component)→ 1
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Configuration model results

Theorem 5 (D, v/d Hofstad, v Leeuwaarden ’18+)

For pc = λn−
3−τ
τ−1 :

(n−
τ−2
τ−1 |C(i)|, SP(C(i)))i>1

d−→ (|γi|,N(γi))i>1

in U0
↓ topology, where (γi)i>1 is the ordered excursions of

S∞(t) = λ

∞∑
i=1

i−
1
τ−1 1

{Exp(1/i
1
τ−1 µ)6t}

−2t, N(γi) = Poisson(area under γi)

B Moreover, diameter(C(i)) is tight for all i > 1

Theorem 6 (D, v/d Hofstad, v Leeuwaarden ’18+)

For p� pc = λn−
3−τ
τ−1 : (n

1
τ−1 p)−1|C(i)|

P−→ ci−
1
τ−1

For p� pc = λn−
3−τ
τ−1 : (np

1
3−τ )−1|C(1)|

P−→ c, |C(2)|� |C(1)|
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Erased configuration model results

Theorem 7 (Bhamidi, D, v/d Hofstad, v Leeuwaarden ’18+)

For p� pc = λn−
3−τ

2 : (n
1
τ−1 p)−1|C(i)|

P−→ ci−
1
τ−1

Theorem 8 (Bhamidi, D, v/d Hofstad, v Leeuwaarden ’18+)

For p = pc = λn−
3−τ

2 , λ ∈ (0, λ0): in `2↓ topology(
(n

1
τ−1 pc)

−1|C(i)|
)
i>1

d−→ (W∞i )i>1

Limit object: G∞(λ) is a graph on Z+, where vertices i and j share
Poisson(λij) edges with λij

λij := λ
2
∫∞

0
Θi(x)Θj(x)dx, Θi(x) :=

c2
Fi

−αx−α

µ+ c2
Fi

−αx−α

W∞i is the i-th largest value of{∑
i∈C

i−α : C is a connected component of G∞(λ)
}
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Erased configuration model results

Theorem 7 (Bhamidi, D, v/d Hofstad, v Leeuwaarden ’18+)

For p� pc = λn−
3−τ

2 : (n
1
τ−1 p)−1|C(i)|

P−→ ci−
1
τ−1

Theorem 8 (Bhamidi, D, v/d Hofstad, v Leeuwaarden ’18+)

For p = pc = λn−
3−τ

2 , λ ∈ (0, λ0): in `2↓ topology(
(n

1
τ−1 pc)

−1|C(i)|
)
i>1

d−→ (W∞i )i>1

Theorem 9 (Bhamidi, D, v/d Hofstad, v Leeuwaarden ’18+)

For p = pc = λn
− 3−τ

2 , λ > λ0: P(all hubs in same component)→ 1
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Summary

Critical percolation on configuration model τ = power-law exponent

Three fundamental questions:

(Q1) Component size and surplus (at each fixed λ)

I τ > 4: Erdős-Rényi universality class
I τ ∈ (3, 4): Deleting the highest degree vertex changes scaling limits
I τ ∈ (2, 3): Critical window depends on the single-edge constraint

(Q2) Evolution of component size and surplus over critical window (as λ varies)

I τ > 4 & τ ∈ (3, 4): Augmented Multiplicative Coalescent (AMC)
I τ ∈ (2, 3): Open question

(Q3) Graph distances within components (at each fixed λ)

I τ > 4: Metric structure converges (distance rescaled by n
1
3 )

I τ ∈ (3, 4): Metric structure converges (distance rescaled by n
τ−3
τ−1 )

I τ ∈ (2, 3): CM: Finite diameter, ECM: Open question

Thank you
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