Critical percolation on networks with given degrees

Souvik Dhara

Microsoft Research and MIT Mathematics

Banff International Research Station

Joint works with Shankar Bhamidi, Remco van der Hofstad, Johan van Leeuwaarden and Sanchayan Sen

October 2, 2018

Percolation: Keep each edge in the graph with probability p, independently

Percolation: Keep each edge in the graph with probability p, independently

- \triangleright Associate independent uniform [0,1] weights U_e to each edge e
- \triangleright p as time: Keep edge e, $U_e \leq p$ at time p, and then increase p

Percolation: Keep each edge in the graph with probability p, independently

- \triangleright Associate independent uniform [0,1] weights U_e to each edge e
- \triangleright p as time: Keep edge e, $U_e \leqslant p$ at time p, and then increase p

Percolation: Keep each edge in the graph with probability p, independently

- \triangleright Associate independent uniform [0,1] weights U_e to each edge e
- \triangleright p as time: Keep edge e, $U_e \leq p$ at time p, and then increase p

Percolation: Keep each edge in the graph with probability p, independently

- \triangleright Associate independent uniform [0,1] weights U_e to each edge e
- \triangleright p as time: Keep edge e, $U_e \leq p$ at time p, and then increase p

Percolation: Keep each edge in the graph with probability p, independently

- \triangleright Associate independent uniform [0,1] weights U_e to each edge e
- \triangleright p as time: Keep edge e, $U_e \leq p$ at time p, and then increase p

Percolation: Keep each edge in the graph with probability p, independently

- \triangleright Associate independent uniform [0,1] weights U_e to each edge e
- \triangleright p as time: Keep edge e, $U_e \leq p$ at time p, and then increase p

Percolation: Keep each edge in the graph with probability p, independently

- \triangleright Associate independent uniform [0,1] weights U_e to each edge e
- \triangleright p as time: Keep edge e, $U_e \leq p$ at time p, and then increase p

Percolation phase transition on finite graphs

There exists p_c such that for any $\epsilon>0$ $\qquad n:=\#$ vertices in the graph

 $\begin{array}{ll} (1) \ p < p_c(1-\epsilon): \mbox{ largest component is } o(n) & \mbox{ subcritical} \\ (2) \ p > p_c(1+\epsilon): \mbox{ largest component is } \Theta(n) & \mbox{ supercritical} \end{array}$

Percolation phase transition on finite graphs

There exists p_c such that for any $\epsilon>0$ $\qquad n:=\#$ vertices in the graph

- ▷ Erdős & Rényi (1959), Gilbert (1959) Complete graph
- ▷ Molloy & Reed (1995), Janson (2009) Uniformly chosen graph given degree
- ▷ Bollobás, Borgs, Chayes, Riordan (2010) Dense graph
- ▷ Aldous (2016) General graphs

Percolation phase transition on finite graphs

There exists p_c such that for any $\epsilon>0$ $\qquad n:=\#$ vertices in the graph

- ▷ Erdős & Rényi (1959), Gilbert (1959) Complete graph
- ▷ Molloy & Reed (1995), Janson (2009) Uniformly chosen graph given degree
- ▷ Bollobás, Borgs, Chayes, Riordan (2010) Dense graph
- ▷ Aldous (2016) General graphs

(1.5) $p = p_c(1 \mp \varepsilon_n)$ with $\varepsilon_n \to 0$: Critical behavior is observed

Surplus edges:= # edges to be deleted to turn a graph into tree

 $\begin{array}{ll} \mbox{Subcritical} & \mbox{Critical window} & \mbox{Supercritical} \\ p = p_c(1 - \epsilon) & \mbox{$p = p_c(1 \mp n^{-\eta})$} & \mbox{$p = p_c(1 + \epsilon)$} \end{array}$

Surplus edges

Component sizes

Subcritical

Supercritical

	$\begin{array}{c} \text{Subcritical} \\ p = p_c(1-\epsilon) \end{array}$	$\begin{array}{l} \mbox{Critical window} \\ p = p_{c}(1 \mp n^{-\eta}) \end{array}$	$\begin{array}{l} \text{Supercritical} \\ p = p_c (1 + \varepsilon) \end{array}$
Surplus edges	$\leqslant 1$		$ ightarrow\infty$
Component sizes	Concentrates	Concent	
ε > 0			$\epsilon > 0$
Subcritical		S	upercritical

	$\begin{array}{l} Subcritical \\ p = p_{c}(1 - \varepsilon) \end{array}$	$\begin{array}{l} \mbox{Critical window} \\ p = p_c (1 \mp n^{-\eta}) \end{array}$	Supercritica $p = p_c(1 + r)$	ι <mark>Ι</mark> ε)
Surplus edges	$\leqslant 1$		$ ightarrow\infty$	
Component size	es Concentrates		Concentrate	S
$\epsilon > 0 \ \epsilon_n \gg$	n ^{-ŋ}	$\epsilon_n \gg$	$n^{-\eta}$ $\varepsilon > 0$	
Subcritical		Supercritical		

	$\begin{array}{l} \text{Subcritical} \\ p = p_c(1-\epsilon) \end{array}$	$\begin{array}{l} \mbox{Critical window} \\ \mbox{p} = \mbox{p}_{c}(1 \mp n^{-\eta}) \end{array}$	$\begin{array}{l} \text{Supercritical} \\ p = p_c(1+\epsilon) \end{array}$
Surplus edges	$\leqslant 1$	Poisson	$ ightarrow\infty$
Component sizes	Concentrates	Random	Concentrates
$\epsilon > 0 \ \epsilon_n \gg n^-$	$\epsilon_{\rm n} \sim$	n ^{-η} ε _n ζ	$\gg n^{-\eta} \epsilon > 0$
Subcritical	Critical	window S	oupercritical

	$\begin{array}{c} \text{Subcritical} \\ p = p_{c}(1 - \epsilon) \end{array}$	$\begin{array}{l} \mbox{Critical window}\\ \mbox{p} = \mbox{p}_{c}(1 \mp n^{-r}) \end{array}$	() Supercritic $p = p_c(1 + p_c)$	cal - ε)
Surplus edges	$\leqslant 1$	Poisson	$ ightarrow\infty$	
Component sizes	Concentrates	Random	Concentrat	tes
$\epsilon > 0 \ \epsilon_n \gg n^-$	$\epsilon_n \sim$	n ^{-η} ε _n	$\gg n^{-\eta} \epsilon > 0$	
Subcritical	Critical window		Supercritical	
Mostly trees \longrightarrow Components merge \longrightarrow Birth of giant				

Surplus edges:= # edges to be deleted to turn a graph into tree

		$\begin{array}{l} \text{Subcritical} \\ p = p_c(1-\epsilon) \end{array}$	$\begin{array}{l} \text{Critical wind} \\ p = p_c (1 \mp n) \end{array}$	dow = Su $u^{-\eta}$ = $p =$	$percritic = p_c(1 + $	$\frac{al}{\varepsilon}$
	Surplus edges	$\leqslant 1$	Poisson]	$ ightarrow\infty$	
(Component sizes	Concentrates	Random	Co	oncentrat	es
	$\varepsilon > 0 \ \varepsilon_n \gg n^-$	$\eta \qquad \epsilon_n \sim$	n ^{-ŋ}	$\epsilon_n \gg n^{-\eta}$	ε > 0	
	Subcritical	Critical window		Supercrit	Supercritical	
	Mostly trees \longrightarrow Components merge \longrightarrow Birth of giant					

Critical window: $p = p_c(1 + \lambda n^{-\eta}), \quad -\infty < \lambda < \infty$

Key questions for percolation over the critical window

$$p = p_c(1 + \lambda n^{-\eta}), \quad -\infty < \lambda < \infty$$

Three fundamental questions:

- (Q1) Component size and surplus (at each fixed λ)
- (Q2) Evolution of component size and surplus over the critical window (as λ varies)
- (Q3) Graph distances within components (at each fixed λ)

Each question poses novel theoretical challenges

(Q1a) **Component size:** [Aldous & Limic '98], [Aldous & Pittel '00], [Nachmias & Peres '10], [van der Hofstad, Janssen & van Leeuwaarden '10], [Bhamidi, van der Hofstad & van Leeuwaarden '10 '12], [van der Hofstad, '13], [Bhamidi, Budhiraja & Wang '14], [Bhamidi, Sen & Wang '14], [Dembo, Levit & Vadlamani '14], [Joseph '14], [van der Hofstad & Nachmias '17] + many more...

(Q1) **Component size and surplus:** [Aldous '97], [Riordan '12], [Bhamidi, Budhiraja & Wang '14] + many more...

(Q2) **Evolution over the critical window:** [Aldous '97], [Aldous & Limic '98], [Bhamidi, van der Hofstad & van Leeuwaarden '12], [Bhamidi, Budhiraja & Wang '14], [Broutin & Marckert '16] + many more...

(Q3) Graph distances within components: [Nachmias & Peres 10], [Addario Berry, Broutin & Goldschmidt '12], [Bhamidi, Sen & Wang '14], [Bhamidi, van der Hofstad & Sen '17], [Broutin, Duquesne, & Wang '18] + many more...

New Challenges: Inhomogeneity in degree distribution

Inhomogeneity or high amount of variability in degrees of network \equiv Empirical degree distribution is heavy-tailed

Inhomogeneity increases if the deg. dist has diverging lower moments

Does inhomogeneity lead to fundamentally different behavior?

New Challenges: Inhomogeneity in degree distribution

Inhomogeneity or high amount of variability in degrees of network \equiv Empirical degree distribution is heavy-tailed

Inhomogeneity increases if the deg. dist has diverging lower moments

Does inhomogeneity lead to fundamentally different behavior? Yes, with respect to all above aspects (Q1)-(Q3)

Finite third moment

Effect of inhomogeneity increases

Infinite third moment but finite second moment

Infinite second moment but finite first moment

Role of inhomogeneity: Three universality classes

Critical percolation on configuration model

Finite third moment

- > Similar behavior as homogeneous models (Erdős-Rényi, Regular graphs)
- ▷ Insensitivity to the degree distribution

Role of inhomogeneity: Three universality classes

Critical percolation on configuration model

Finite third moment

- > Similar behavior as homogeneous models (Erdős-Rényi, Regular graphs)
- ▷ Insensitivity to the degree distribution

Infinite third moment but finite second moment

- $\,\triangleright\,$ Deleting the highest degree vertex changes the scaling limits
- $\,\vartriangleright\,$ Comp sizes, distances crucially depend on the exact deg. distribution

Role of inhomogeneity: Three universality classes

Critical percolation on configuration model

Finite third moment

- > Similar behavior as homogeneous models (Erdős-Rényi, Regular graphs)
- ▷ Insensitivity to the degree distribution

Infinite third moment but finite second moment

- > Deleting the highest degree vertex changes the scaling limits
- $\,\vartriangleright\,$ Comp sizes, distances crucially depend on the exact deg. distribution

Infinite second moment but finite first moment

- $ightarrow p_c = 0$: almost all edges must be deleted to remove the giant
- > Critical behavior changes depending on multigraphs or simple graphs
 - Configuration model versus erased configuration model

Preliminaries

Random graph: Configuration model

Set up: Power-law degrees (proportion of vertices of degree $k\approx Ck^{-\tau})$

Finite third moment: $\tau > 4$, Infinite third moment: $\tau \in (3, 4)$, Infinite second moment: $\tau \in (2, 3)$

Hubs: Vertices of degree $\Theta(\max \text{ degree})$

Preliminaries

Random graph: Configuration model

Set up: Power-law degrees (proportion of vertices of degree $k\approx Ck^{-\tau})$

Finite third moment: $\tau > 4$, Infinite third moment: $\tau \in (3, 4)$, Infinite second moment: $\tau \in (2, 3)$

Hubs: Vertices of degree $\Theta(\max \text{ degree})$

Critical window: $p = p_c(1 + \lambda n^{-\eta}), -\infty < \lambda < \infty$

$$\begin{split} & \textbf{C}_{(i)} := \text{the i-th largest component} \\ & \textbf{SP}(\textbf{C}_{(i)}) := \# \text{ surplus edges in } \textbf{C}_{(i)} \end{split}$$

Preliminaries

Random graph: Configuration model

Set up: Power-law degrees (proportion of vertices of degree $k \approx Ck^{-\tau}$)

Finite third moment: $\tau > 4$, Infinite third moment: $\tau \in (3, 4)$, Infinite second moment: $\tau \in (2, 3)$

Hubs: Vertices of degree $\Theta(\max \text{ degree})$

Critical window: $p = p_c(1 + \lambda n^{-\eta}), -\infty < \lambda < \infty$

$$\begin{split} & \textbf{C}_{(i)} := \text{the i-th largest component} \\ & \textbf{SP}(\textbf{C}_{(i)}) := \# \text{ surplus edges in } \textbf{C}_{(i)} \end{split}$$

Topology: $\mathbb{U}^0 \subset \mathbb{R}^\infty_+ \times \mathbb{N}^\infty$ with norm $(\sum_i x_i^2)^{1/2} + \sum_i x_i y_i$

Component size and surplus (Q1)

$$\begin{array}{l} \mbox{Theorem 1 (D, v/d Hofstad, v Leeuwaarden, Sen '16 a,b)} \\ \mbox{For } \tau > 4 \mbox{ and } p = p_c(1 + \lambda n^{-\frac{1}{3}}) \\ & (n^{-\frac{2}{3}}|C_{(\mathfrak{i})}|, \text{SP}(C_{(\mathfrak{i})}))_{\mathfrak{i} \geqslant 1} \stackrel{d}{\longrightarrow} X_1 \quad \mbox{in } \mathbb{U}^0 \qquad \mbox{(Finite third moment)} \\ \mbox{For } \tau \in (3,4) \mbox{ and } p = p_c(1 + \lambda n^{-\frac{\tau-3}{\tau-1}}) \\ & (n^{-\frac{\tau-2}{\tau-1}}|C_{(\mathfrak{i})}|, \text{SP}(C_{(\mathfrak{i})}))_{\mathfrak{i} \geqslant 1} \stackrel{d}{\longrightarrow} X_2 \quad \mbox{in } \mathbb{U}^0 \qquad \mbox{(Infinite third moment)} \\ \end{array}$$

- Generalizes Nachmias & Peres '09 (d-regular), Riordan '12 (bounded degree)
- \triangleright X₁ \equiv Erdős-Rényi (insensitive to the exact degree distribution)
- $\triangleright X_2$ depends on the precise asymptotics of hubs

Component size and surplus (Q1)

$$\begin{array}{l} \mbox{Theorem 1 (D, v/d Hofstad, v Leeuwaarden, Sen '16 a,b)} \\ \mbox{For } \tau > 4 \mbox{ and } p = p_c(1 + \lambda n^{-\frac{1}{3}}) \\ & (n^{-\frac{2}{3}}|C_{(\mathfrak{i})}|, \text{SP}(C_{(\mathfrak{i})}))_{\mathfrak{i} \geqslant 1} \stackrel{d}{\longrightarrow} X_1 \quad \mbox{in } \mathbb{U}^0 \qquad \mbox{(Finite third moment)} \\ \mbox{For } \tau \in (3,4) \mbox{ and } p = p_c(1 + \lambda n^{-\frac{\tau-3}{\tau-1}}) \\ & (n^{-\frac{\tau-2}{\tau-1}}|C_{(\mathfrak{i})}|, \text{SP}(C_{(\mathfrak{i})}))_{\mathfrak{i} \geqslant 1} \stackrel{d}{\longrightarrow} X_2 \quad \mbox{in } \mathbb{U}^0 \qquad \mbox{(Infinite third moment)} \\ \end{array}$$

- Generalizes Nachmias & Peres '09 (d-regular), Riordan '12 (bounded degree)
- \triangleright X₁ \equiv Erdős-Rényi (insensitive to the exact degree distribution)
- $\triangleright \ X_2$ depends on the precise asymptotics of hubs

 $\lim_{n \to \infty} \mathbb{P}(\text{two hubs are in the same component}) \begin{cases} = 0, \text{ for } \tau > 4 \\ \in (0, 1), \text{ for } \tau \in (3, 4) \end{cases}$

Evolution of components as $\boldsymbol{\lambda}$ increases

$$Z_{n}(\lambda) := \begin{cases} \left(n^{-\frac{2}{3}}|C_{(i)}|, \mathsf{SP}(C_{(i)})\right)_{i \geqslant 1} & \tau > 4\\\\ \left(n^{-\frac{\tau-2}{\tau-1}}|C_{(i)}|, \mathsf{SP}(C_{(i)})\right)_{i \geqslant 1} & \tau \in (3, 4) \end{cases}$$

For ERRG,

Previous works by [Aldous '97], [Aldous & Limic '98], [Bhamidi, Budhiraja & Wang '14], [Broutin & Marckert '16]

Results: evolution of components (Q2)

$$\triangleright \ (Z_n(\lambda))_{-\infty < \lambda < \infty}$$
 is not Markov

Results: evolution of components (Q2)

- $\,\rhd\,\,(\mathsf{Z}_n(\lambda))_{-\infty<\lambda<\infty}$ is not Markov
 - Approximate by a Markov process evolving as a multiplicative coalescent

Results: evolution of components (Q2)

- $\, \rhd \, \, (\mathsf{Z}_n(\lambda))_{-\infty < \lambda < \infty} \text{ is not Markov}$
 - Approximate by a Markov process evolving as a multiplicative coalescent

Theorem 2 (D, v/d Hofstad, v Leeuwaarden, Sen '16 a,b)

$$(\mathsf{Z}_n(\lambda))_{-\infty<\lambda<\infty} \xrightarrow{\mathrm{d}} (\mathsf{AMC}_1(\lambda))_{-\infty<\lambda<\infty} \quad \text{in } (\mathbb{U}^0)^k \qquad \text{(Finite third moment)}$$

 $(\mathsf{Z}_n(\lambda))_{-\infty<\lambda<\infty}\xrightarrow{d}(\mathsf{AMC}_2(\lambda))_{-\infty<\lambda<\infty}\quad\text{in }(\mathbb{U}^0)^k\quad \ (\text{Infinite third moment})$

Convergence of distances (Q3)

Seminal work by Addario-Berry, Broutin, Goldschmidt (2012)

- $\triangleright \ C_{(i)}$ as a random metric space
 - Elements: vertices in C_(i)
 - Metric: graph distance

Convergence of distances (Q3)

Seminal work by Addario-Berry, Broutin, Goldschmidt (2012)

- $\triangleright \ C_{(i)}$ as a random metric space
 - Elements: vertices in C_(i)
 - Metric: graph distance
- $\,\triangleright\,$ Objective: Study the limit of $C_{(\mathfrak{i})}$ on the space of metric spaces
- ▷ Outcome: Convergence of global functionals like diameter

Convergence of distances (Q3)

Seminal work by Addario-Berry, Broutin, Goldschmidt (2012)

- $\triangleright \ C_{(i)}$ as a random metric space
 - Elements: vertices in C_(i)
 - Metric: graph distance
- $\,\triangleright\,$ Objective: Study the limit of $C_{(\mathfrak{i})}$ on the space of metric spaces
- ▷ Outcome: Convergence of global functionals like diameter

Metric structure of critical components

Theorem 3 (Bhamidi, Broutin, Sen, Wang '14) (Bhamidi, Sen '16) Re-scale metric by $n^{-\frac{1}{3}}$. Let $\tau > 4$ and $p = p_c(1 + \lambda n^{-\frac{1}{3}})$. Then $(C_{(i)})_{i \ge 1}$ converges in distribution

Theorem 4 (Bhamidi, D, v/d Hofstad, Sen '17, '18+) Re-scale metric by $n^{-\frac{\tau-3}{\tau-1}}$. Let $\tau\in(3,4)$ and $p=p_c(1+\lambda n^{-\frac{\tau-3}{\tau-1}})$. Then $(C_{(\mathfrak{i})})_{\mathfrak{i}\geqslant 1} \text{ converges in distribution}$

Limiting object: infinite third moment

Degree distribution: Power-law ~ $Ck^{-\tau}$ with $\tau \in (2, 3)$

▷ These networks are always robust

$$\triangleright p > 0$$
: Always supercritical $\Longrightarrow p_c = 0$

Degree distribution: Power-law ~ $Ck^{-\tau}$ with $\tau \in (2, 3)$

- ▷ These networks are always robust
- $\triangleright p > 0$: Always supercritical $\Longrightarrow p_c = 0$
- $\,\triangleright\,$ Critical behavior is observed for $p\to 0$
- \triangleright Critical window: $p_c = \lambda n^{-\eta}$ for $\lambda > 0$

Degree distribution: Power-law ~ $Ck^{-\tau}$ with $\tau \in (2,3)$

- ▷ These networks are always robust
- $\triangleright p > 0$: Always supercritical $\Longrightarrow | p_c = 0 |$
- $\,\triangleright\,$ Critical behavior is observed for $p\to 0$
- \triangleright Critical window: $p_c = \lambda n^{-\eta}$ for $\lambda > 0$

Objectives:

 $\,\triangleright\,$ Identify critical window $\Longrightarrow \big|$ Find the exponent η

Degree distribution: Power-law ~ $Ck^{-\tau}$ with $\tau \in (2,3)$

- ▷ These networks are always robust
- $\triangleright p > 0$: Always supercritical $\Longrightarrow | p_c = 0 |$
- \triangleright Critical behavior is observed for $p \rightarrow 0$
- \triangleright Critical window: $p_c = \lambda n^{-\eta}$ for $\lambda > 0$

Objectives:

- $\,\triangleright\,$ Identify critical window $\Longrightarrow \big|$ Find the exponent η
- $\,\vartriangleright\,$ Find $\rho>0$ and X (nondegenerate scaling limit) such that

$$(\mathfrak{n}^{-\rho}|C_{(\mathfrak{i})}|)_{\mathfrak{i}\geqslant 1}\xrightarrow{d} X$$

Degree distribution: Power-law ~ $Ck^{-\tau}$ with $\tau \in (2, 3)$

- ▷ These networks are always robust
- $\triangleright p > 0$: Always supercritical $\Longrightarrow | p_c = 0 |$
- \triangleright Critical behavior is observed for $p \rightarrow 0$
- \triangleright Critical window: $p_c = \lambda n^{-\eta}$ for $\lambda > 0$

Objectives:

- $\,\triangleright\,$ Identify critical window $\Longrightarrow \big|$ Find the exponent η
- $\,\vartriangleright\,$ Find $\rho>0$ and X (nondegenerate scaling limit) such that

$$(\mathfrak{n}^{-\rho}|C_{(\mathfrak{i})}|)_{\mathfrak{i}\geqslant 1}\xrightarrow{d} X$$

▷ Analyze near critical behavior

Component sizes concentrate outside critical window

All of these were open questions till date...

Informal description of the results

Models: Configuration model (CM), Erased configuration model (ECM)

Informal description of the results

Models: Configuration model (CM), Erased configuration model (ECM)

$$\begin{array}{ccc} \mathsf{CM} & \mathsf{ECM} \\ \mathsf{p}_{c} & \lambda n^{-\frac{3-\tau}{\tau-1}} & \lambda n^{-\frac{3-\tau}{2}} \\ |\mathsf{C}_{(i)}| & n^{\frac{\tau-2}{\tau-1}} & n^{\frac{1}{\tau-1}-\frac{3-\tau}{2}} \end{array}$$

Informal description of the results

Models: Configuration model (CM), Erased configuration model (ECM)

$$\begin{array}{ccc} \mathsf{CM} & \mathsf{ECM} \\ \mathfrak{p}_{c} & \lambda n^{-\frac{3-\tau}{\tau-1}} & \lambda n^{-\frac{3-\tau}{2}} \\ |\mathsf{C}_{(\mathfrak{i})}| & n^{\frac{\tau-2}{\tau-1}} & n^{\frac{1}{\tau-1}-\frac{3-\tau}{2}} \end{array}$$

- $\,\triangleright\,$ Single-edge constraint changes critical value for $\tau\in(2,3)!$
- ▷ ECM has larger component sizes and critical value
- $\,\triangleright\,$ In both cases, critical window is precisely the value when

 $\underset{n \rightarrow \infty}{\text{lim}} \, \mathbb{P}(\text{hubs are in the same component}) {= \zeta \in (0,1)}$

Subcritical regime: $\mathbb{P}(hubs are in the same component) \rightarrow 0$ Supercritical regime: $\mathbb{P}(hubs are in the same component) \rightarrow 1$

Configuration model results

Theorem 5 (D, v/d Hofstad, v Leeuwaarden '18+) For $p_c = \lambda n^{-\frac{3-\gamma}{\tau-1}}$:

$(n^{-\frac{\tau-2}{\tau-1}}|C_{(\mathfrak{i})}|,SP(C_{(\mathfrak{i})}))_{\mathfrak{i}\geqslant 1}\xrightarrow{d}(|\gamma_{\mathfrak{i}}|,N(\gamma_{\mathfrak{i}}))_{\mathfrak{i}\geqslant 1}$

in \mathbb{U}^0_\downarrow topology, where $(\gamma_i)_{i\geqslant 1}$ is the ordered excursions of

$$S_{\infty}(t) = \lambda \sum_{i=1}^{\infty} i^{-\frac{1}{\tau-1}} \mathbb{1}_{\{\mathsf{Exp}(1/i^{\frac{1}{\tau-1}}\mu)\leqslant t\}} - 2t, \quad \mathsf{N}(\gamma_i) = \mathsf{Poisson}(\mathsf{area under } \gamma_i)$$

 $\, \triangleright \ \, \text{Moreover, diameter}(\mathsf{C}_{(i)}) \text{ is tight for all } i \geqslant 1$

Configuration model results

Theorem 5 (D, v/d Hofstad, v Leeuwaarden '18+) For $p_c = \lambda n^{-\frac{3-\tau}{\tau-1}}$:

$(n^{-\frac{\tau-2}{\tau-1}}|C_{(\mathfrak{i})}|,\mathsf{SP}(C_{(\mathfrak{i})}))_{\mathfrak{i}\geqslant 1}\xrightarrow{d}(|\gamma_{\mathfrak{i}}|,N(\gamma_{\mathfrak{i}}))_{\mathfrak{i}\geqslant 1}$

in \mathbb{U}^0_\downarrow topology, where $(\gamma_i)_{i\geqslant 1}$ is the ordered excursions of

$$S_{\infty}(t) = \lambda \sum_{i=1}^{\infty} i^{-\frac{1}{\tau-1}} \mathbb{1}_{\{\mathsf{Exp}(1/i^{\frac{1}{\tau-1}}\mu)\leqslant t\}} - 2t, \quad \mathsf{N}(\gamma_i) = \mathsf{Poisson}(\mathsf{area under } \gamma_i)$$

 \triangleright Moreover, diameter(C_(i)) is tight for all $i \ge 1$

$$\begin{split} & \text{Theorem 6 (D, v/d Hofstad, v Leeuwaarden '18+)} \\ & \text{For } p \ll p_c = \lambda n^{-\frac{3-\tau}{\tau-1}} \colon (n^{\frac{1}{\tau-1}}p)^{-1}|C_{(\iota)}| \xrightarrow{\mathbb{P}} c\iota^{-\frac{1}{\tau-1}} \\ & \text{For } p \gg p_c = \lambda n^{-\frac{3-\tau}{\tau-1}} \colon (np^{\frac{1}{3-\tau}})^{-1}|C_{(\iota)}| \xrightarrow{\mathbb{P}} c, \quad |C_{(2)}| \ll |C_{(1)}| \end{split}$$

Erased configuration model results

 $\begin{array}{l} \mbox{Theorem 7 (Bhamidi, D, v/d Hofstad, v Leeuwaarden '18+)} \\ \mbox{For } p \ll p_c = \lambda n^{-\frac{3-\tau}{2}} \colon (n^{\frac{1}{\tau-1}}p)^{-1}|C_{(\iota)}| \xrightarrow{\mathbb{P}} c \iota^{-\frac{1}{\tau-1}} \end{array}$

 $\label{eq:constraint} \begin{array}{l} \mbox{Theorem 8 (Bhamidi, D, v/d Hofstad, v Leeuwaarden '18+)} \\ \mbox{For } p = p_c = \lambda n^{-\frac{3-\tau}{2}}, \, \lambda \in (0,\lambda_0) \text{: in } \ell^2_\downarrow \mbox{ topology} \end{array}$

$$\left((\mathfrak{n}^{\frac{1}{\tau-1}}\mathfrak{p}_{c})^{-1}|C_{(\mathfrak{i})}|\right)_{\mathfrak{i}\geqslant 1}\xrightarrow{d}(W_{\mathfrak{i}}^{\infty})_{\mathfrak{i}\geqslant 1}$$

Limit object: $G_{\infty}(\lambda)$ is a graph on \mathbb{Z}_+ , where vertices i and j share Poisson (λ_{ij}) edges with λ_{ij}

$$\lambda_{ij} := \lambda^2 \int_0^\infty \Theta_i(x) \Theta_j(x) dx, \quad \Theta_i(x) := \frac{c_F^2 i^{-\alpha} x^{-\alpha}}{\mu + c_F^2 i^{-\alpha} x^{-\alpha}}$$

 W^{∞}_{i} is the i-th largest value of

$$\bigg\{\sum_{i\in C}i^{-\alpha}: C \text{ is a connected component of } G_{\infty}(\lambda)\bigg\}$$

Erased configuration model results

Theorem 7 (Bhamidi, D, v/d Hofstad, v Leeuwaarden '18+) For $p \ll p_c = \lambda n^{-\frac{3-\tau}{2}} : (n^{\frac{1}{\tau-1}}p)^{-1}|C_{(i)}| \xrightarrow{\mathbb{P}} ci^{-\frac{1}{\tau-1}}$

Theorem 8 (Bhamidi, D, v/d Hofstad, v Leeuwaarden '18+) For $p = p_c = \lambda n^{-\frac{3-\tau}{2}}$, $\lambda \in (0, \lambda_0)$: in ℓ^2_{\downarrow} topology $\left((n^{\frac{1}{\tau-1}} p_c)^{-1} |C_{(i)}| \right)_{i>1} \stackrel{d}{\to} (W_i^{\infty})_{i \ge 1}$

Theorem 9 (Bhamidi, D, v/d Hofstad, v Leeuwaarden '18+) For $p = p_c = \lambda n^{-\frac{3-\tau}{2}}$, $\lambda > \lambda_0$: $\mathbb{P}(\text{all hubs in same component}) \rightarrow 1$

Critical percolation on configuration model

 $\tau = power-law exponent$

Three fundamental questions:

(Q1) Component size and surplus (at each fixed λ)

(Q2) Evolution of component size and surplus over critical window (as λ varies)

Critical percolation on configuration model

 $\tau = power-law exponent$

Three fundamental questions:

(Q1) Component size and surplus (at each fixed λ)

- $\tau > 4$: Erdős-Rényi universality class
- $\blacktriangleright~\tau\in(3,4):$ Deleting the highest degree vertex changes scaling limits
- ▶ $\tau \in (2,3)$: Critical window depends on the single-edge constraint

(Q2) Evolution of component size and surplus over critical window (as λ varies)

Critical percolation on configuration model

 $\tau = power-law exponent$

Three fundamental questions:

(Q1) Component size and surplus (at each fixed λ)

- ► $\tau > 4$: Erdős-Rényi universality class
- $\blacktriangleright~\tau\in(3,4):$ Deleting the highest degree vertex changes scaling limits
- ▶ $\tau \in (2,3)$: Critical window depends on the single-edge constraint

(Q2) Evolution of component size and surplus over critical window (as λ varies)

▶ $\tau > 4 \& \tau \in (3, 4)$: Augmented Multiplicative Coalescent (AMC) ▶ $\tau \in (2, 3)$: Open question

Critical percolation on configuration model

 $\tau = power-law exponent$

Three fundamental questions:

(Q1) Component size and surplus (at each fixed λ)

- ► $\tau > 4$: Erdős-Rényi universality class
- $\blacktriangleright~\tau\in(3,4):$ Deleting the highest degree vertex changes scaling limits
- ▶ $\tau \in (2,3)$: Critical window depends on the single-edge constraint

(Q2) Evolution of component size and surplus over critical window (as λ varies)

▶ $\tau > 4 \& \tau \in (3, 4)$: Augmented Multiplicative Coalescent (AMC) ▶ $\tau \in (2, 3)$: Open question

- $\tau > 4$: Metric structure converges (distance rescaled by $n^{\frac{1}{3}}$)
- ▶ $\tau \in (3, 4)$: Metric structure converges (distance rescaled by $n^{\frac{\tau-3}{\tau-1}}$)
- ▶ $\tau \in (2,3)$: CM: Finite diameter, ECM: Open question

Critical percolation on configuration model

 $\tau = power-law exponent$

Three fundamental questions:

(Q1) Component size and surplus (at each fixed λ)

- ► $\tau > 4$: Erdős-Rényi universality class
- $\blacktriangleright~\tau\in(3,4):$ Deleting the highest degree vertex changes scaling limits
- ▶ $\tau \in (2,3)$: Critical window depends on the single-edge constraint

(Q2) Evolution of component size and surplus over critical window (as λ varies)

- τ > 4 & τ ∈ (3, 4): Augmented Multiplicative Coalescent (AMC)
 τ ∈ (2, 3): Open question
- (Q3) Graph distances within components (at each fixed λ)
 - $\tau > 4$: Metric structure converges (distance rescaled by $n^{\frac{1}{3}}$)
 - ▶ $\tau \in (3, 4)$: Metric structure converges (distance rescaled by $n^{\frac{\tau-3}{\tau-1}}$)
 - ▶ $\tau \in (2,3)$: CM: Finite diameter, ECM: Open question

Thank you