
Thin Trees
Nima Anari

based on joint work with

Shayan Oveis Gharan

Thin Tree Recap

Thinness
T is α-thin w.r.t. G iff

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for every subset of vertices S.

Spectral Thinness
T is α-spectrally thin w.r.t. G iff

LT ⪯ α · LG,

or in other words for every x ∈ Rn,

x⊺LTx ⩽ x⊺LGx.

S

S̄

Thin Tree Recap

Thinness
T is α-thin w.r.t. G iff

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for every subset of vertices S.

Spectral Thinness
T is α-spectrally thin w.r.t. G iff

LT ⪯ α · LG,

or in other words for every x ∈ Rn,

x⊺LTx ⩽ x⊺LGx.

S

S̄

Thin Tree Recap

Thinness
T is α-thin w.r.t. G iff

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for every subset of vertices S.

Spectral Thinness
T is α-spectrally thin w.r.t. G iff

LT ⪯ α · LG,

or in other words for every x ∈ Rn,

x⊺LTx ⩽ x⊺LGx.

S

S̄

α-spectrally thin
=⇒ α-thin

Thin Tree Conjecture

Strong Form of [Goddyn]
Every k-edge connected graph has O(1/k)-thin spanning tree.

This implies O(1) upper bound for integrality gap of LP relaxation for ATSP.
Existence of f(n)/k-thin trees implies O(f(n)) upper bound for integrality
gap of LP relaxation for ATSP.
O(1) integrality gap already proved [Svensson-Tarnawski-Végh’17], but thin
tree remains open.

Thin Tree Conjecture

Strong Form of [Goddyn]
Every k-edge connected graph has O(1/k)-thin spanning tree.

This implies O(1) upper bound for integrality gap of LP relaxation for ATSP.

Existence of f(n)/k-thin trees implies O(f(n)) upper bound for integrality
gap of LP relaxation for ATSP.
O(1) integrality gap already proved [Svensson-Tarnawski-Végh’17], but thin
tree remains open.

Thin Tree Conjecture

Strong Form of [Goddyn]
Every k-edge connected graph has O(1/k)-thin spanning tree.

This implies O(1) upper bound for integrality gap of LP relaxation for ATSP.
Existence of f(n)/k-thin trees implies O(f(n)) upper bound for integrality
gap of LP relaxation for ATSP.

O(1) integrality gap already proved [Svensson-Tarnawski-Végh’17], but thin
tree remains open.

Thin Tree Conjecture

Strong Form of [Goddyn]
Every k-edge connected graph has O(1/k)-thin spanning tree.

This implies O(1) upper bound for integrality gap of LP relaxation for ATSP.
Existence of f(n)/k-thin trees implies O(f(n)) upper bound for integrality
gap of LP relaxation for ATSP.
O(1) integrality gap already proved [Svensson-Tarnawski-Végh’17], but thin
tree remains open.

Spectral Thinness

Edge Connectivity

|G(S, S̄)| ⩾ k

⩾ k

Electrical Connectivity

Reff(u, v) ⩽ 1

k
u

v

Thin Tree

|T(S, S̄)| ⩽ α · |G(S, S̄)|

Spectrally Thin Tree

x⊺LTx ⩽ α · x⊺LGx

Goal

[Harvey-
Olver’14,
Marcus-
Spielman-
Srivastava’14]

Spectral Thinness

Edge Connectivity

|G(S, S̄)| ⩾ k

⩾ k

Electrical Connectivity

Reff(u, v) ⩽ 1

k
u

v

Thin Tree

|T(S, S̄)| ⩽ α · |G(S, S̄)|

Spectrally Thin Tree

x⊺LTx ⩽ α · x⊺LGx

Goal

[Harvey-
Olver’14,
Marcus-
Spielman-
Srivastava’14]

Spectral Thinness

Edge Connectivity

|G(S, S̄)| ⩾ k

⩾ k

Electrical Connectivity

Reff(u, v) ⩽ 1

k
u

v

Thin Tree

|T(S, S̄)| ⩽ α · |G(S, S̄)|

Spectrally Thin Tree

x⊺LTx ⩽ α · x⊺LGx

Goal

[Harvey-
Olver’14,
Marcus-
Spielman-
Srivastava’14]

Obstacles
Problem: Edge connectivity does not imply electrical connectivity.

· · · · · ·

Problem: Electrical connectivity is needed for the existence of spectrally
thin trees. For any e = (u, v) ∈ T :

1 ⩾ ReffT (u, v) = e⊺L−T be ⩾ 1

α
· b⊺

eL
−
Gbe =

1

α
· ReffG(u, v).

Obstacles
Problem: Edge connectivity does not imply electrical connectivity.

· · · · · ·

Problem: Electrical connectivity is needed for the existence of spectrally
thin trees. For any e = (u, v) ∈ T :

1 ⩾ ReffT (u, v) = e⊺L−T be ⩾ 1

α
· b⊺

eL
−
Gbe =

1

α
· ReffG(u, v).

Key Idea : Well-condition the graph spectrally
without changing cuts much.

Well-Conditioning Scheme

Add “graph” H to G ensuring

|H(S, S̄)| ⩽ O(1) · |G(S, S̄)|.

If G+H admits an α-spectrally thin tree T , then

|T(S, S̄)| = 1
⊺
SLT1S ⩽ α · 1⊺

S(LG + LH)1S = O(α) · |G(S, S̄)|

Goal: Find H that brings Reff down.
Problem 1: How do we ensure T does not use any newly added edges?
Problem 2: How do we certify H is O(1)-thin w.r.t. G?

Well-Conditioning Scheme

Add “graph” H to G ensuring

|H(S, S̄)| ⩽ O(1) · |G(S, S̄)|.

If G+H admits an α-spectrally thin tree T , then

|T(S, S̄)| = 1
⊺
SLT1S ⩽ α · 1⊺

S(LG + LH)1S = O(α) · |G(S, S̄)|

Goal: Find H that brings Reff down.
Problem 1: How do we ensure T does not use any newly added edges?
Problem 2: How do we certify H is O(1)-thin w.r.t. G?

Well-Conditioning Scheme

Add “graph” H to G ensuring

|H(S, S̄)| ⩽ O(1) · |G(S, S̄)|.

If G+H admits an α-spectrally thin tree T , then

|T(S, S̄)| = 1
⊺
SLT1S ⩽ α · 1⊺

S(LG + LH)1S = O(α) · |G(S, S̄)|

Goal: Find H that brings Reff down.

Problem 1: How do we ensure T does not use any newly added edges?
Problem 2: How do we certify H is O(1)-thin w.r.t. G?

Well-Conditioning Scheme

Add “graph” H to G ensuring

|H(S, S̄)| ⩽ O(1) · |G(S, S̄)|.

If G+H admits an α-spectrally thin tree T , then

|T(S, S̄)| = 1
⊺
SLT1S ⩽ α · 1⊺

S(LG + LH)1S = O(α) · |G(S, S̄)|

Goal: Find H that brings Reff down.
Problem 1: How do we ensure T does not use any newly added edges?

Problem 2: How do we certify H is O(1)-thin w.r.t. G?

Well-Conditioning Scheme

Add “graph” H to G ensuring

|H(S, S̄)| ⩽ O(1) · |G(S, S̄)|.

If G+H admits an α-spectrally thin tree T , then

|T(S, S̄)| = 1
⊺
SLT1S ⩽ α · 1⊺

S(LG + LH)1S = O(α) · |G(S, S̄)|

Goal: Find H that brings Reff down.
Problem 1: How do we ensure T does not use any newly added edges?
Problem 2: How do we certify H is O(1)-thin w.r.t. G?

Ensuring only original edges are picked . . .

Extension to Interlacing Families

[Harvey-Olver’14, Marcus-Spielman-Srivastava’14]
If for every edge e in a graph G

Reff(e) ⩽ α,

then G has an O(α)-spectrally thin tree.

[A-Oveis Gharan’15]
Let F be a subset of edges in G. If for every e ∈ F,

ReffG(e) ⩽ α,

and F is k-edge-connected, then G has a O(α+ 1/k)-spectrally thin tree T ⊆ F.

Extension to Interlacing Families

[Harvey-Olver’14, Marcus-Spielman-Srivastava’14]
If for every edge e in a graph G

Reff(e) ⩽ α,

then G has an O(α)-spectrally thin tree.

[A-Oveis Gharan’15]
Let F be a subset of edges in G. If for every e ∈ F,

ReffG(e) ⩽ α,

and F is k-edge-connected, then G has a O(α+ 1/k)-spectrally thin tree T ⊆ F.

Extension to Interlacing Families

[Harvey-Olver’14, Marcus-Spielman-Srivastava’14]
If for every edge e in a graph G

Reff(e) ⩽ α,

then G has an O(α)-spectrally thin tree.

[A-Oveis Gharan’15]
Let F be a subset of edges in G. If for every e ∈ F,

ReffG(e) ⩽ α,

and F is k-edge-connected, then G has a O(α+ 1/k)-spectrally thin tree T ⊆ F.

[on board . . .]

Ensuring cuts do not blow up . . .

Idea 1: Using Shortcuts
If H can be routed over G with congestion O(1), then for every S

H(S, S̄) ⩽ O(1) ·G(S, S̄).

· · · · · ·

Idea 1: Using Shortcuts
If H can be routed over G with congestion O(1), then for every S

H(S, S̄) ⩽ O(1) ·G(S, S̄).

· · · · · ·

Idea 2: Check All Constraints

Instead of LH, we can add any PSD matrix D, as long as for all S

1
⊺
SD1S ⩽ |G(S, S̄)|.

Just turn the problem into an exponential-sized semidefinite program:

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Pro: Can use duality to facilitate analysis.
Con: Adds another obstacle to making the construction algorithmic.

Idea 2: Check All Constraints

Instead of LH, we can add any PSD matrix D, as long as for all S

1
⊺
SD1S ⩽ |G(S, S̄)|.

Just turn the problem into an exponential-sized semidefinite program:

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}

Pro: Can use duality to facilitate analysis.
Con: Adds another obstacle to making the construction algorithmic.

Idea 2: Check All Constraints

Instead of LH, we can add any PSD matrix D, as long as for all S

1
⊺
SD1S ⩽ |G(S, S̄)|.

Just turn the problem into an exponential-sized semidefinite program:

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Pro: Can use duality to facilitate analysis.

Con: Adds another obstacle to making the construction algorithmic.

Idea 2: Check All Constraints

Instead of LH, we can add any PSD matrix D, as long as for all S

1
⊺
SD1S ⩽ |G(S, S̄)|.

Just turn the problem into an exponential-sized semidefinite program:

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Pro: Can use duality to facilitate analysis.
Con: Adds another obstacle to making the construction algorithmic.

Puzzle Interlude: Degree-thinness . . .

Degree-Thin Trees (Toy Example)
Suppose that we want a tree which is thin only in degree cuts, i.e.,

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for all singletons S.

There has been lots of work on special families of cuts, including degree
cuts [Olver-Zenklusen’13, Fürer-Raghavachari’94, . . .], nevertheless . . .
Is there an easy well-conditioner H?
An expander!

[on board . . .]

Degree-Thin Trees (Toy Example)
Suppose that we want a tree which is thin only in degree cuts, i.e.,

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for all singletons S.

There has been lots of work on special families of cuts, including degree
cuts [Olver-Zenklusen’13, Fürer-Raghavachari’94, . . .], nevertheless . . .

Is there an easy well-conditioner H?
An expander!

[on board . . .]

Degree-Thin Trees (Toy Example)
Suppose that we want a tree which is thin only in degree cuts, i.e.,

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for all singletons S.

There has been lots of work on special families of cuts, including degree
cuts [Olver-Zenklusen’13, Fürer-Raghavachari’94, . . .], nevertheless . . .
Is there an easy well-conditioner H?

An expander!

[on board . . .]

Degree-Thin Trees (Toy Example)
Suppose that we want a tree which is thin only in degree cuts, i.e.,

|T(S, S̄)| ⩽ α · |G(S, S̄)|,

for all singletons S.

There has been lots of work on special families of cuts, including degree
cuts [Olver-Zenklusen’13, Fürer-Raghavachari’94, . . .], nevertheless . . .
Is there an easy well-conditioner H?
An expander!

[on board . . .]

Do well-conditioners always exist?

What is the worst possible answer to the convex program?

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}

Bad News: There are k-edge-connected graphs where the answer is Ω(1).
New Strategy: Change the objective to average effective resistance in cuts

max
S

E[ReffD(e) | e ∈ G(S, S̄)].

Bad News: There are still bad examples.

Averages in Degree Cuts [A-Oveis Gharan’15]
For every k-edge-connected graph G there is a 1-thin matrix D ⪰ 0 such that
for every singleton S

E[ReffD(e) | e ∈ G(S, S̄)] ⩽ (log logn)O(1)

k
.

What is the worst possible answer to the convex program?

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Bad News: There are k-edge-connected graphs where the answer is Ω(1).

New Strategy: Change the objective to average effective resistance in cuts

max
S

E[ReffD(e) | e ∈ G(S, S̄)].

Bad News: There are still bad examples.

Averages in Degree Cuts [A-Oveis Gharan’15]
For every k-edge-connected graph G there is a 1-thin matrix D ⪰ 0 such that
for every singleton S

E[ReffD(e) | e ∈ G(S, S̄)] ⩽ (log logn)O(1)

k
.

What is the worst possible answer to the convex program?

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Bad News: There are k-edge-connected graphs where the answer is Ω(1).
New Strategy: Change the objective to average effective resistance in cuts

max
S

E[ReffD(e) | e ∈ G(S, S̄)].

Bad News: There are still bad examples.

Averages in Degree Cuts [A-Oveis Gharan’15]
For every k-edge-connected graph G there is a 1-thin matrix D ⪰ 0 such that
for every singleton S

E[ReffD(e) | e ∈ G(S, S̄)] ⩽ (log logn)O(1)

k
.

What is the worst possible answer to the convex program?

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Bad News: There are k-edge-connected graphs where the answer is Ω(1).
New Strategy: Change the objective to average effective resistance in cuts

max
S

E[ReffD(e) | e ∈ G(S, S̄)].

Bad News: There are still bad examples.

Averages in Degree Cuts [A-Oveis Gharan’15]
For every k-edge-connected graph G there is a 1-thin matrix D ⪰ 0 such that
for every singleton S

E[ReffD(e) | e ∈ G(S, S̄)] ⩽ (log logn)O(1)

k
.

What is the worst possible answer to the convex program?

min
D⪰0

{
max
e∈G

ReffD(e)

∣∣∣∣ ∀S : 1⊺
SD1S ⩽ 1

⊺
SLG1S

}
Bad News: There are k-edge-connected graphs where the answer is Ω(1).
New Strategy: Change the objective to average effective resistance in cuts

max
S

E[ReffD(e) | e ∈ G(S, S̄)].

Bad News: There are still bad examples.

Averages in Degree Cuts [A-Oveis Gharan’15]
For every k-edge-connected graph G there is a 1-thin matrix D ⪰ 0 such that
for every singleton S

E[ReffD(e) | e ∈ G(S, S̄)] ⩽ (log logn)O(1)

k
.

When Degree Cuts are Enough

In expanders, degree cuts are enough.

Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.
If a cut has few low-effective-resistance edges, its expansion must be low.

Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.

When Degree Cuts are Enough

In expanders, degree cuts are enough.
Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.

If a cut has few low-effective-resistance edges, its expansion must be low.
Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.

When Degree Cuts are Enough

In expanders, degree cuts are enough.
Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.
If a cut has few low-effective-resistance edges, its expansion must be low.

Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.

When Degree Cuts are Enough

In expanders, degree cuts are enough.
Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.
If a cut has few low-effective-resistance edges, its expansion must be low.

Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.

When Degree Cuts are Enough

In expanders, degree cuts are enough.
Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.
If a cut has few low-effective-resistance edges, its expansion must be low.

Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.

When Degree Cuts are Enough

In expanders, degree cuts are enough.
Assume average Reff in degree cuts is low. By Markov’s inequality > 99% of
each degree cut has low effective resistance.
If a cut has few low-effective-resistance edges, its expansion must be low.

Not every graph is an expander but,

Informal Lemma
Every graph has weakly expanding induced subgraphs.

Plan: Contract this subgraph, and repeat to get a hierarchical decomposition.
Lower average Reff in degree cuts of each expander simultaneously.

Example: Planar Graphs

If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

Example: Planar Graphs

If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

Example: Planar Graphs

If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

Example: Planar Graphs

If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

Example: Planar Graphs

If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

Example: Planar Graphs

If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

Example: Planar Graphs

If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

Example: Planar Graphs

If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

Example: Planar Graphs

If G is planar, there are vertices u and v connected by Ω(k) edges.

· · · · · ·

Reduce average Reff in degree cuts of hierarchy simultaneously.

Rest of the Ideas

There is always a Ω(k)-edge-connected 1/ logn-expanding induced
subgraph. Using this, build the hierarchical decomposition.

Reduce average effective resistance of degree cuts in the hierarchy.
Contract k-edge-connected components formed of low Reff edges.
Key Observation: Expansion goes up by a constant factor after
contracting.
Repeat this log logn times until expansion is Ω(1).

Rest of the Ideas

There is always a Ω(k)-edge-connected 1/ logn-expanding induced
subgraph. Using this, build the hierarchical decomposition.
Reduce average effective resistance of degree cuts in the hierarchy.

Contract k-edge-connected components formed of low Reff edges.
Key Observation: Expansion goes up by a constant factor after
contracting.
Repeat this log logn times until expansion is Ω(1).

Rest of the Ideas

There is always a Ω(k)-edge-connected 1/ logn-expanding induced
subgraph. Using this, build the hierarchical decomposition.
Reduce average effective resistance of degree cuts in the hierarchy.
Contract k-edge-connected components formed of low Reff edges.

Key Observation: Expansion goes up by a constant factor after
contracting.
Repeat this log logn times until expansion is Ω(1).

Rest of the Ideas

There is always a Ω(k)-edge-connected 1/ logn-expanding induced
subgraph. Using this, build the hierarchical decomposition.
Reduce average effective resistance of degree cuts in the hierarchy.
Contract k-edge-connected components formed of low Reff edges.
Key Observation: Expansion goes up by a constant factor after
contracting.

Repeat this log logn times until expansion is Ω(1).

Rest of the Ideas

There is always a Ω(k)-edge-connected 1/ logn-expanding induced
subgraph. Using this, build the hierarchical decomposition.
Reduce average effective resistance of degree cuts in the hierarchy.
Contract k-edge-connected components formed of low Reff edges.
Key Observation: Expansion goes up by a constant factor after
contracting.
Repeat this log logn times until expansion is Ω(1).

Conclusion

Every k-edge-connected graph has an α-thin tree for

α =
(log logn)O(1)

k
.

Can we build thin trees efficiently?
Can we remove the dependence on n?
What happens if we look at thinness w.r.t. a family of cuts? For what
families is it easy to construct well-conditioners?

Thank you!

Conclusion

Every k-edge-connected graph has an α-thin tree for

α =
(log logn)O(1)

k
.

Can we build thin trees efficiently?

Can we remove the dependence on n?
What happens if we look at thinness w.r.t. a family of cuts? For what
families is it easy to construct well-conditioners?

Thank you!

Conclusion

Every k-edge-connected graph has an α-thin tree for

α =
(log logn)O(1)

k
.

Can we build thin trees efficiently?
Can we remove the dependence on n?

What happens if we look at thinness w.r.t. a family of cuts? For what
families is it easy to construct well-conditioners?

Thank you!

Conclusion

Every k-edge-connected graph has an α-thin tree for

α =
(log logn)O(1)

k
.

Can we build thin trees efficiently?
Can we remove the dependence on n?
What happens if we look at thinness w.r.t. a family of cuts? For what
families is it easy to construct well-conditioners?

Thank you!

Conclusion

Every k-edge-connected graph has an α-thin tree for

α =
(log logn)O(1)

k
.

Can we build thin trees efficiently?
Can we remove the dependence on n?
What happens if we look at thinness w.r.t. a family of cuts? For what
families is it easy to construct well-conditioners?

Thank you!

