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Introduction: Carbon nanostructures

Graphene and carbon nanotubes

Carbon nanostructures:

Graphene Carbon nanotube

2010 Nobel Prize in Physics to Geim and Novoselov for
production of isolated graphene sheets.

Remarkable electro-mechanical and optical properties.

Applications in chemistry, nano-electronics, optics, mechanics.

Rigorous mathematical results mostly unavailable.
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Introduction: Carbon nanostructures

Ripples in graphene

http://chaos.utexas.edu/people/faculty/michael-p-marder/rippling-of-graphene

Suspended graphene sheets are not �at but gently rippled!
[Meyer et al. '07]

Waves of approximately 100 atom spacings,
sample-size independent wavelength.

Tendency to unidirectional waves (under stretching).

Free graphene sheets tend to roll-up  nanotubes/nanoscrolls.

Reasons: Stabilization at �nite temperatures, quantum
�uctuations, randomly attached impurities, . . .
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Introduction: Carbon nanostructures

Goals and outline

Our goal:

Analytical validation of experimental/computational �ndings.

Approach via Molecular Mechanics, i.e.,
interaction of atoms are described by classical interaction
potentials between atomic positions.

Rigorous, variational approach, not computational.

Cross-validation of di�erent modeling choices.

Outline:

Phenomenological energies.

Global vs. local minimization.

Modeling choices ensuring non�atness of graphene.

Periodicity in one direction, unidirectional waves.

Wave patterning with sample-size-independent wavelength.
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Introduction: Carbon nanostructures

Phenomenological energies

Basic phenomenological energies:

X = (xi )i atomic positions,

θijk angle formed by xi , xj , xk .

E (X ) =
∑
ij∈NN

v2(|xi −xj |) +
∑

ij ,jk∈NN
v3(θijk).

v2 v3

Two-body interactions Three-body interactions

Lennard-Jones Terso�
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Local and global minimization

Local/global minimization

Local/global minimization:

Hexagonal lattice a strict local minimizer of E :

E (X ′) > E (X ),

where X ′ = (x ′i )i with |xi − x ′i | ≤ η, η > 0 small.

Graphene is a ground state  crystallization:

[Mainini, Stefanelli '14] (�nite cryst.), [E, Li '09] (thermodyn.

limit)

Square lattice is not a ground state.



Ripples in graphene

Local and global minimization

Local/global minimization

Local/global minimization:

Hexagonal lattice a strict local minimizer of E :

E (X ′) > E (X ),

where X ′ = (x ′i )i with |xi − x ′i | ≤ η, η > 0 small.

Fullerene C60 and nanotubes a strict local minimizers of E

[F., Piovano, Stefanelli '16] [F., Mainini, Piovano, Stefanelli '17]

Bravais lattices in R3

are energetically favorable!

Structures are not ground states:



Ripples in graphene

Local and global minimization

Local/global minimization

Local/global minimization:

Hexagonal lattice a strict local minimizer of E :

E (X ′) > E (X ),

where X ′ = (x ′i )i with |xi − x ′i | ≤ η, η > 0 small.

Fullerene C60 and nanotubes a strict local minimizers of E

[F., Piovano, Stefanelli '16] [F., Mainini, Piovano, Stefanelli '17]

Bravais lattices in R3

are energetically favorable!

Structures are not ground states:



Ripples in graphene

Local and global minimization

Intermediate point of view

Intermediate point of view:

H (in�nite) hexagonal lattice is reference con�guration, in
particular all neighbors are kept �x.

Restrict admissible con�gurations to deformations y : H → R3.
 Lagrangian viewpoint.

Characterize global minimizers among all deformations y .

Deformation ground state ⇔ energy of every cell optimal.

Flat hexagonal lattice unique ground state.
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Characterization of ground states

Re�ned model

Re�ned model:

Eref = E+ρ
∑

ij∈NNN v2(|xi−xj |), ρ small.

Cells with optimal energy are not �at.

bond length l∗ < 1, angle ψ∗ < 2π/3.

Two optimal cell geometries:

Z cell C cell
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Re�ned model

Re�ned model:

Eref = E+ρ
∑

ij∈NNN v2(|xi−xj |), ρ small.

Cells with optimal energy are not �at.

bond length l∗ < 1, angle ψ∗ < 2π/3.
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Characterization of ground states

Characterization of ground states

Characterization of ground states: [F., Stefanelli '18]

1 Roll-up structures: All cells are of type C .

2 Rippled structures: Types are constant along one direction.

. . . ,C , C̄ ,C , C̄ ,C , C̄ , . . . . . . , Z̄ , C̄ ,Z ,C , . . .

Proof via geometric compatibility.
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Characterization of ground states

Reduction to 1D-to-2D model

Previous result shows unidirectionality of ground states.

For convenience: Visualization of geometry by a section.

E�ective description of a section of the rippled structure:

Example for . . . ,C , C̄ ,C , C̄ ,C , C̄ , . . .

ϕ∗
b∗

Variety of minimizers!

Suspended samples:
Speci�c wavelengths?
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E�ective 1D-to-2D model

Basic e�ective 1D-to-2D model

E�ective 1D-to-2D model:

Admissible con�gurations y : {1, . . . , n} ∈ R2 with

bonds bi = |yi − yi+1|, angles ϕi = ^(yi+1 − yi , yi−1 − yi ).

Energy: E e�(y) =
∑

i v
e�
2

(bi ) + v e�(ϕi ) + ρ
∑

i v
e�
2

(|yi+2 − yi |)
minimized for bond lengths b∗ and angles ϕ∗.

 same ground states as before with energy (n − 2)ecell.

Boundary conditions A(µ) = {y : (yn − y1) · e1 = (n − 1)µ}.

Boundary e�ects: Study almost minimizers y with E (y) ≤ Emin +C .

ϕi bi+2

Ground-state "waves" with atomic period α = 6 and length Lα.

Mean projected bond length λα = Lα/α  λα = µ.
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θ 6= ϕ∗
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E�ective 1D-to-2D model

Re�nement of the energy

Further re�nement of energy: Third neighbors!

E e�

ref
(y) = E e�(y) + ρ̄

∑
i v

e�
2 (|yi+3 − yi |), ρ̄ small.

smaller re�ned energy larger re�ned energy

θ

large energy

small energy

intermediate energy
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E�ective 1D-to-2D model

Characterization of minimizers

Minimal energy: [F., Stefanelli' 18]

For µ < 1 let Emin(µ) = 1

n miny∈A(µ) E
e�
ref (y) normalized minimal energy.

Then
Emin(µ) = ecell + ρ̄erange(µ) +O(ρ̄2)

where the function erange satis�es:

related to wavenumber.

increasing, convex, and piecewise a�ne.

not smooth for µ ∈ Mres resonance lengths:
µ = λα for some atomic period α.

Characterization of almost minimizers: [F., Stefanelli' 18]

Up to small portion of size O(ρ̄), almost minimizers satisfy:

µ ∈ Mres: Composed of waves with atomic period α where λα = µ.

µ ∈ [µ′, µ′′]: Composed of waves with two atomic periods α′, α′′.
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Up to small portion of size O(ρ̄), almost minimizers satisfy:

µ ∈ Mres: Composed of waves with atomic period α where λα = µ.

µ ∈ [µ′, µ′′]: Composed of waves with two atomic periods α′, α′′.
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Summary:

Characterization of ground states of the hexagonal lattice.

Second neighbors induce non�atness.

Roll-up or rippled structures: unidirectionality.

Third neighbors induce wave patterning with
sample-size-independent wavelength.

Cross-validation of modeling choices:
Range of interaction matters!
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