Ripples in graphene: A variational approach

Manuel Friedrich

WWU Münster, Germany

Banff, May 2018

Joint work with U. Stefanelli (Vienna)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Carbon nanostructures:

Graphene

Carbon nanotube

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

• 2010 Nobel Prize in Physics to Geim and Novoselov for production of isolated graphene sheets.

Carbon nanostructures:

Graphene

Carbon nanotube

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- 2010 Nobel Prize in Physics to Geim and Novoselov for production of isolated graphene sheets.
- Remarkable electro-mechanical and optical properties.

Carbon nanostructures:

Graphene

Carbon nanotube

- 2010 Nobel Prize in Physics to Geim and Novoselov for production of isolated graphene sheets.
- Remarkable electro-mechanical and optical properties.
- Applications in chemistry, nano-electronics, optics, mechanics.

Carbon nanostructures:

Graphene

Carbon nanotube

- 2010 Nobel Prize in Physics to Geim and Novoselov for production of isolated graphene sheets.
- Remarkable electro-mechanical and optical properties.
- Applications in chemistry, nano-electronics, optics, mechanics.
- Rigorous mathematical results mostly unavailable.

• Suspended graphene sheets are not flat but gently rippled! [Meyer et al. '07]

(a)

• Suspended graphene sheets are not flat but gently rippled! [Meyer et al. '07]

(日) (四) (日) (日)

 Waves of approximately 100 atom spacings, sample-size independent wavelength.

• Suspended graphene sheets are not flat but gently rippled! [Meyer et al. '07]

- Waves of approximately 100 atom spacings, sample-size independent wavelength.
- Tendency to unidirectional waves (under stretching).

- Suspended graphene sheets are not flat but gently rippled! [Meyer et al. '07]
- Waves of approximately 100 atom spacings, sample-size independent wavelength.
- Tendency to unidirectional waves (under stretching).
- Free graphene sheets tend to roll-up ~> nanotubes/nanoscrolls.

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

- Suspended graphene sheets are not flat but gently rippled! [Meyer et al. '07]
- Waves of approximately 100 atom spacings, sample-size independent wavelength.
- Tendency to unidirectional waves (under stretching).
- Free graphene sheets tend to roll-up \rightsquigarrow nanotubes/nanoscrolls.
- Reasons: Stabilization at finite temperatures, quantum fluctuations, randomly attached impurities, ...

• Analytical validation of experimental/computational findings.

• Analytical validation of experimental/computational findings.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Approach via Molecular Mechanics, i.e., interaction of atoms are described by classical interaction potentials between atomic positions.

• Analytical validation of experimental/computational findings.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- Approach via Molecular Mechanics, i.e., interaction of atoms are described by classical interaction potentials between atomic positions.
- Rigorous, variational approach, not computational.
- Cross-validation of different modeling choices.

- Analytical validation of experimental/computational findings.
- Approach via Molecular Mechanics, i.e., interaction of atoms are described by classical interaction potentials between atomic positions.
- Rigorous, variational approach, not computational.
- Cross-validation of different modeling choices.

Outline:

- Phenomenological energies.
- Global vs. local minimization.
- Modeling choices ensuring nonflatness of graphene.
- Periodicity in one direction, unidirectional waves.
- Wave patterning with sample-size-independent wavelength.

Basic phenomenological energies:

$$X = (x_i)_i \text{ atomic positions,}$$

$$\theta_{ijk} \text{ angle formed by } x_i, x_j, x_k.$$

$$E(X) = \sum_{ij \in NN} v_2(|x_i - x_j|) + \sum_{ij, jk \in NN} v_3(\theta_{ijk}).$$

Two-body interactions

Three-body interactions

イロト イポト イヨト イヨト

xk

ж

Ripples in graphene Local and global minimization Local/global minimization

Local/global minimization:

• Hexagonal lattice a strict local minimizer of *E*:

E(X') > E(X),where $X' = (x'_i)_i$ with $|x_i - x'_i| \le \eta, \ \eta > 0$ small.

Local/global minimization:

• Hexagonal lattice a strict local minimizer of *E*:

E(X') > E(X),where $X' = (x'_i)_i$ with $|x_i - x'_i| \le \eta, \ \eta > 0$ small.

• Fullerene C_{60} and nanotubes a strict local minimizers of E

[F., Mainini, Piovano, Stefanelli '17]

Local/global minimization:

• Hexagonal lattice a strict local minimizer of *E*:

E(X') > E(X),where $X' = (x'_i)_i$ with $|x_i - x'_i| \le \eta, \ \eta > 0$ small.

• Fullerene C_{60} and nanotubes a strict local minimizers of E

[F., Piovano, Stefanelli '16]

[F., Mainini, Piovano, Stefanelli '17]

ション ふゆ く 山 マ チャット しょうくしゃ

 Structures are not ground states: Bravais lattices in R³ are energetically favorable!

Intermediate point of view:

- *H* (infinite) hexagonal lattice is reference configuration, in particular all neighbors are kept fix.
- Restrict admissible configurations to deformations y : H → ℝ³.
 → Lagrangian viewpoint.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Intermediate point of view:

- *H* (infinite) hexagonal lattice is reference configuration, in particular all neighbors are kept fix.
- Restrict admissible configurations to deformations y : H → ℝ³.
 → Lagrangian viewpoint.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

• Characterize global minimizers among all deformations y.

Intermediate point of view:

- *H* (infinite) hexagonal lattice is reference configuration, in particular all neighbors are kept fix.
- Restrict admissible configurations to deformations y : H → ℝ³.
 → Lagrangian viewpoint.
- Characterize global minimizers among all deformations y.

• Deformation ground state \Leftrightarrow energy of every cell optimal.

500

• Flat hexagonal lattice unique ground state.

Refined model:

$$E_{\mathrm{ref}} = E + \rho \sum_{ij \in NNN} v_2(|x_i - x_j|), \ \
ho \ \mathrm{small}.$$

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Refined model:

$$E_{\mathrm{ref}} = E + \rho \sum_{ij \in NNN} v_2(|x_i - x_j|), \ \
ho \ \mathrm{small}.$$

- Cells with optimal energy are not flat.
- bond length $l^* < 1$, angle $\psi^* < 2\pi/3$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Refined model:

$$E_{\mathrm{ref}} = E + \rho \sum_{ij \in NNN} v_2(|x_i - x_j|), \ \
ho \ \mathrm{small}.$$

- Cells with optimal energy are not flat.
- bond length $l^* < 1$, angle $\psi^* < 2\pi/3$.

Two optimal cell geometries:

 $2\pi/3$

 $4\pi/3$

Refined model:

$$E_{\mathrm{ref}} = E + \rho \sum_{ij \in NNN} v_2(|x_i - x_j|), \ \
ho \ \mathrm{small}.$$

- Cells with optimal energy are not flat.
- bond length $l^* < 1$, angle $\psi^* < 2\pi/3$.

Characterization of ground states: [F., Stefanelli '18]

Roll-up structures: All cells are of type C.

2 Rippled structures: Types are constant along one direction.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Proof via geometric compatibility.

Ripples in graphene Characterization of ground states Reduction to 1D-to-2D model

• Previous result shows unidirectionality of ground states.

- Previous result shows unidirectionality of ground states.
- For convenience: Visualization of geometry by a section.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ripples in graphene Characterization of ground states Reduction to 1D-to-2D model

- Previous result shows unidirectionality of ground states.
- For convenience: Visualization of geometry by a section.
- Effective description of a section of the rippled structure:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Example for $\ldots, C, \overline{C}, C, \overline{C}, C, \overline{C}, \ldots$

Ripples in graphene Characterization of ground states Reduction to 1D-to-2D model

- Previous result shows unidirectionality of ground states.
- For convenience: Visualization of geometry by a section.
- Effective description of a section of the rippled structure:

イロト 不得下 不同下 不同下

 Admissible configurations y : {1,..., n} ∈ ℝ² with bonds b_i = |y_i - y_{i+1}|, angles φ_i = ⊲(y_{i+1} - y_i, y_{i-1} - y_i).

- Admissible configurations y: {1,..., n} ∈ ℝ² with bonds b_i = |y_i - y_{i+1}|, angles φ_i = ⊲(y_{i+1} - y_i, y_{i-1} - y_i).
- Energy: $E^{\text{eff}}(y) = \sum_{i} v_2^{\text{eff}}(b_i) + v^{\text{eff}}(\varphi_i) + \rho \sum_{i} v_2^{\text{eff}}(|y_{i+2} y_i|)$ minimized for bond lengths b^* and angles φ^* .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Admissible configurations y : {1,..., n} ∈ ℝ² with bonds b_i = |y_i - y_{i+1}|, angles φ_i = ⊲(y_{i+1} - y_i, y_{i-1} - y_i).
- Energy: $E^{\text{eff}}(y) = \sum_{i} v_2^{\text{eff}}(b_i) + v^{\text{eff}}(\varphi_i) + \rho \sum_{i} v_2^{\text{eff}}(|y_{i+2} y_i|)$ minimized for bond lengths b^* and angles φ^* .

 \rightarrow same ground states as before with energy $(n-2)e_{cell}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Admissible configurations $y : \{1, \ldots, n\} \in \mathbb{R}^2$ with bonds $b_i = |y_i - y_{i+1}|$, angles $\varphi_i = \sphericalangle(y_{i+1} - y_i, y_{i-1} - y_i)$.
- Energy: E^{eff}(y) = ∑_i v₂^{eff}(b_i) + v^{eff}(φ_i) + ρ∑_i v₂^{eff}(|y_{i+2} y_i|) minimized for bond lengths b* and angles φ*.
 → same ground states as before with energy (n 2)e_{cell}.
- Boundary conditions $\mathcal{A}(\mu) = \{y : (y_n y_1) \cdot e_1 = (n-1)\mu\}.$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらう

- Admissible configurations $y : \{1, \ldots, n\} \in \mathbb{R}^2$ with bonds $b_i = |y_i - y_{i+1}|$, angles $\varphi_i = \sphericalangle(y_{i+1} - y_i, y_{i-1} - y_i)$.
- Energy: E^{eff}(y) = ∑_i v₂^{eff}(b_i) + v^{eff}(φ_i) + ρ∑_i v₂^{eff}(|y_{i+2} y_i|) minimized for bond lengths b* and angles φ*.
 → same ground states as before with energy (n 2)e_{cell}.
- Boundary conditions $\mathcal{A}(\mu) = \{y : (y_n y_1) \cdot e_1 = (n-1)\mu\}.$
- Boundary effects: Study almost minimizers y with $E(y) \le E_{\min} + C$.

- Admissible configurations $y : \{1, \ldots, n\} \in \mathbb{R}^2$ with bonds $b_i = |y_i - y_{i+1}|$, angles $\varphi_i = \sphericalangle(y_{i+1} - y_i, y_{i-1} - y_i)$.
- Energy: E^{eff}(y) = ∑_i v₂^{eff}(b_i) + v^{eff}(φ_i) + ρ∑_i v₂^{eff}(|y_{i+2} y_i|) minimized for bond lengths b* and angles φ*.
 → same ground states as before with energy (n 2)e_{cell}.
- Boundary conditions $\mathcal{A}(\mu) = \{y : (y_n y_1) \cdot e_1 = (n-1)\mu\}.$
- Boundary effects: Study almost minimizers y with $E(y) \le E_{\min} + C$.

Ground-state "waves" with atomic period $\alpha = 6$ and length L_{α} .

- Admissible configurations $y : \{1, \ldots, n\} \in \mathbb{R}^2$ with bonds $b_i = |y_i - y_{i+1}|$, angles $\varphi_i = \sphericalangle(y_{i+1} - y_i, y_{i-1} - y_i)$.
- Energy: E^{eff}(y) = ∑_i v₂^{eff}(b_i) + v^{eff}(φ_i) + ρ∑_i v₂^{eff}(|y_{i+2} y_i|) minimized for bond lengths b* and angles φ*.
 → same ground states as before with energy (n 2)e_{cell}.
- Boundary conditions $\mathcal{A}(\mu) = \{y : (y_n y_1) \cdot e_1 = (n-1)\mu\}.$
- Boundary effects: Study almost minimizers y with $E(y) \le E_{\min} + C$.

Ground-state "waves" with atomic period $\alpha = 6$ and length L_{α} . Mean projected bond length $\lambda_{\alpha} = L_{\alpha}/\alpha \qquad \rightsquigarrow \lambda_{\alpha} = \mu$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ = □ のへで

Ripples in graphene Effective 1D-to-2D model Basic effective 1D-to-2D model

Effective 1D-to-2D model:

- Admissible configurations y : {1,..., n} ∈ ℝ² with bonds b_i = |y_i - y_{i+1}|, angles φ_i = ⊲(y_{i+1} - y_i, y_{i-1} - y_i).
- Energy: E^{eff}(y) = ∑_i v₂^{eff}(b_i) + v^{eff}(φ_i) + ρ∑_i v₂^{eff}(|y_{i+2} y_i|) minimized for bond lengths b* and angles φ*
 → same ground states as before with energy (n 2)e_{cell}.
- Boundary conditions $\mathcal{A}(\mu) = \{y : (y_n y_1) \cdot e_1 = (n-1)\mu\}.$
- Boundary effects: Study almost minimizers y with $E(y) \le E_{\min} + C$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Ripples in graphene Effective 1D-to-2D model Basic effective 1D-to-2D model

Effective 1D-to-2D model:

- Admissible configurations y : {1,..., n} ∈ ℝ² with bonds b_i = |y_i - y_{i+1}|, angles φ_i = ⊲(y_{i+1} - y_i, y_{i-1} - y_i).
- Energy: E^{eff}(y) = ∑_i v₂^{eff}(b_i) + v^{eff}(φ_i) + ρ∑_i v₂^{eff}(|y_{i+2} y_i|) minimized for bond lengths b* and angles φ*
 → same ground states as before with energy (n 2)e_{cell}.
- Boundary conditions $\mathcal{A}(\mu) = \{y : (y_n y_1) \cdot e_1 = (n-1)\mu\}.$
- Boundary effects: Study almost minimizers y with $E(y) \le E_{\min} + C$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Ripples in graphene Effective 1D-to-2D model Basic effective 1D-to-2D model

Effective 1D-to-2D model:

 Admissible configurations y : {1,..., n} ∈ ℝ² with bonds b_i = |y_i - y_{i+1}|, angles φ_i = ⊲(y_{i+1} - y_i, y_{i-1} - y_i).

Energy: E^{eff}(y) = ∑_i v₂^{eff}(b_i) + v^{eff}(φ_i) + ρ∑_i v₂^{eff}(|y_{i+2} - y_i|) minimized for bond lengths b* and angles φ*
 → same ground states as before with energy (n - 2)e_{cell}.

- Boundary conditions $\mathcal{A}(\mu) = \{y : (y_n y_1) \cdot e_1 = (n-1)\mu\}.$
- Boundary effects: Study almost minimizers y with $E(y) \le E_{\min} + C$.

Further refinement of energy: Third neighbors!

 $E^{ ext{eff}}_{ ext{ref}}(y) = E^{ ext{eff}}(y) + ar{
ho} \sum_i v^{ ext{eff}}_2(|y_{i+3} - y_i|), \quad ar{
ho} ext{ small}.$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Further refinement of energy: Third neighbors!

 $E^{ ext{eff}}_{ ext{ref}}(y) = E^{ ext{eff}}(y) + ar{
ho} \sum_i v^{ ext{eff}}_2(|y_{i+3} - y_i|), \quad ar{
ho} ext{ small}.$

For $\mu < 1$ let $E_{\min}(\mu) = \frac{1}{n} \min_{y \in \mathcal{A}(\mu)} E_{\mathrm{ref}}^{\mathrm{eff}}(y)$ normalized minimal energy.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For $\mu < 1$ let $E_{\min}(\mu) = \frac{1}{n} \min_{y \in \mathcal{A}(\mu)} E_{\mathrm{ref}}^{\mathrm{eff}}(y)$ normalized minimal energy. Then

$$E_{
m min}(\mu) = e_{
m cell} + ar{
ho} e_{
m range}(\mu) + {
m O}(ar{
ho}^2)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

where the function e_{range} satisfies:

For $\mu < 1$ let $E_{\min}(\mu) = \frac{1}{n} \min_{y \in \mathcal{A}(\mu)} E_{\mathrm{ref}}^{\mathrm{eff}}(y)$ normalized minimal energy. Then

$$E_{
m min}(\mu) = e_{
m cell} + ar{
ho} e_{
m range}(\mu) + {
m O}(ar{
ho}^2)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

where the function e_{range} satisfies:

• related to wavenumber.

For $\mu < 1$ let $E_{\min}(\mu) = \frac{1}{n} \min_{y \in \mathcal{A}(\mu)} E_{\mathrm{ref}}^{\mathrm{eff}}(y)$ normalized minimal energy. Then

$$\mathcal{E}_{\min}(\mu) = \mathbf{e}_{\mathrm{cell}} + ar{
ho} \mathbf{e}_{\mathrm{range}}(\mu) + \mathrm{O}(ar{
ho}^2)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

where the function e_{range} satisfies:

- related to wavenumber.
- increasing, convex, and piecewise affine.

For $\mu < 1$ let $E_{\min}(\mu) = \frac{1}{n} \min_{y \in \mathcal{A}(\mu)} E_{\mathrm{ref}}^{\mathrm{eff}}(y)$ normalized minimal energy. Then

$$\mathcal{E}_{ ext{min}}(\mu) = \mathbf{e}_{ ext{cell}} + ar{
ho} \mathbf{e}_{ ext{range}}(\mu) + \mathrm{O}(ar{
ho}^2)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

where the function e_{range} satisfies:

- related to wavenumber.
- increasing, convex, and piecewise affine.
- not smooth for $\mu \in M_{res}$ resonance lengths: $\mu = \lambda_{\alpha}$ for some atomic period α .

For $\mu < 1$ let $E_{\min}(\mu) = \frac{1}{n} \min_{y \in \mathcal{A}(\mu)} E_{ref}^{eff}(y)$ normalized minimal energy. Then

$$\mathcal{E}_{ ext{min}}(\mu) = \mathbf{e}_{ ext{cell}} + ar{
ho} \mathbf{e}_{ ext{range}}(\mu) + \mathrm{O}(ar{
ho}^2)$$

where the function e_{range} satisfies:

- related to wavenumber.
- increasing, convex, and piecewise affine.
- not smooth for $\mu \in M_{res}$ resonance lengths: $\mu = \lambda_{\alpha}$ for some atomic period α .

Characterization of almost minimizers: [F., Stefanelli' 18]

Up to small portion of size $O(\bar{\rho})$, almost minimizers satisfy:

- $\mu \in M_{res}$: Composed of waves with atomic period α where $\lambda_{\alpha} = \mu$.
- $\mu \in [\mu',\mu'']$: Composed of waves with two atomic periods α',α'' .

• Characterization of ground states of the hexagonal lattice.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Characterization of ground states of the hexagonal lattice.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• Second neighbors induce nonflatness.

• Characterization of ground states of the hexagonal lattice.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Second neighbors induce nonflatness.
- Roll-up or rippled structures: unidirectionality.

• Characterization of ground states of the hexagonal lattice.

(ロ) (型) (E) (E) (E) (O)

- Second neighbors induce nonflatness.
- Roll-up or rippled structures: unidirectionality.
- Third neighbors induce wave patterning with sample-size-independent wavelength.

• Characterization of ground states of the hexagonal lattice.

ション ふゆ く 山 マ チャット しょうくしゃ

- Second neighbors induce nonflatness.
- Roll-up or rippled structures: unidirectionality.
- Third neighbors induce wave patterning with sample-size-independent wavelength.
- Cross-validation of modeling choices: Range of interaction matters!

- Characterization of ground states of the hexagonal lattice.
- Second neighbors induce nonflatness.
- Roll-up or rippled structures: unidirectionality.
- Third neighbors induce wave patterning with sample-size-independent wavelength.
- Cross-validation of modeling choices: Range of interaction matters!

Thank you for your attention!

(ロ) (型) (E) (E) (E) (O)