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Phylodynamics
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Fig. 1. (A) Prevaccination measles dynamics: weekly case
reports for Leeds, UK (7). (B) Weekly reports of influenza-
like illness for France (44). (C) Annual diagnosed cases of
HIV in the United Kingdom (45). (D) Measles phylogeny: the
measles virus nucleocapsid gene [63 sequences, 1575 base
pairs (bp)]. (E) Influenza phylogeny: the human influenza A
virus (subtype H3N2) hemagglutinin (HA7) gene longitudi-
nally sampled over a period of 32 years (50 sequences, 1080
bp). (F) Dengue phylogeny: the dengue virus envelope gene
from all four serotypes (DENV-1 to DENV-4, 120 sequences,
1485 bp). (G) HIV-1 population phylogeny: the subtype B
envelope (E) gene sampled from different patients (39
sequences, 2979 bp). (H) HCV population phylogeny: the Time

virus genotype 1b ET1EZ2 gene sampled from different pa- e

tients (65 sequences, 1677 bp). (1) HIV-1 within-host phy-
logeny: the partial envelope (E) gene longitudinally sampled HCV population phylogeny HIV within host phylogeny

from a single patient over 5.8 years [58 sequences, 627 bp;

patient 6 from (26)]. All sequences were collected from GenBank and trees were constructed with maximum likelihood in PAUP* (46). Horizontal
branch lengths are proportional to substitutions per site. Further details are available from the authors on request.

Grenfell et al. [2004]



Phylodynamics

Two paradigms:

« Small outbreaks: who acquires infection from whom?
* Model inference: assume phylogeny is generated by a
stochastic transmission process

Current approaches commonly assume:

* Neutral evolution of sequences

 No recombination or reassortment

* Phylogenetic branchpoints coincide with transmission
events
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Phylodynamics

Two paradigms:

« Small outbreaks: who acquires infection from whom?
* Model inference: assume phylogeny is generated by a
stochastic transmission process

Current approaches commonly assume:

* Neutral evolution of sequences

 No recombination or reassortment

* Phylogenetic branchpoints coincide with transmission
events



Transmission trees and phylogenetic trees
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Phylodynamics

Two paradigms:

« Small outbreaks: who acquires infection from whom?
* Model inference: assume phylogeny is generated by a
stochastic transmission process

Common approaches avoid the difficult problem of jointly
inferring model and phylogeny by employing two stages:
1) estimate a phylogeny from the sequences

2) treating the phylogeny as data, fit the model to the
phylogeny using variants of the coalescent process or
birth-death processes to link model and phylogeny
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Count

Example: HIV among young, black MSM in Detroit

T T
o o
<t o

SISOUSRI(] J€ 93V

60 +
50 4

20 +

L C10¢C
L 110¢C
L 0T0¢C
L 600C
L 800¢C
L L00T
L 900¢C
L S00C
L ¥00C
L £00C
L C00¢C
L 100C
L 000C
L 6661
L 8661
L L66]
L 9661
L C661
L 7661
L €661
L 2661
L 1661
L 0661
L 6861
L 8861
L L86I
L 9861
L G861
L 7861
L €861

Year

Smith, lonides and King [2017]



Number of Individuals

Example: HIV among young, black MSM in Detroit
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Example: HIV among young, black MSM in Detroit
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Example: HIV among young, black MSM in Detroit
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Problems with two-stage methods

Model used to estimate phylogeny may be logically
inconsistent with transmission model.

 This leads to bias.

Methods based on the coalescent process are most
readily formulated in backward time while models for
transmission processes can typically only be written at
all in forward time.

To get around this, large population, small sample
assumptions must be made.

As the models get more complicated (e.q.,
heterogeneous populations, complex immunity,
disease progression, etc.), the structured coalescent
approaches become unwieldy.
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Phylodynamics done “properly”

We would like to:
jointly estimate transmission model and phylogeny

avoid questionable assumptions needed to apply
reverse-time likelihoods to forward-time processes

enjoy the plug-and-play property that affords freedom
In investigating alternative hypotheses

a method is plug-and-play if it requires only that one
be able to simulate from the latent process, i/.e.,
transition densities need not be tractable



Example: HIV among young, black MSM in Detroit
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Key innovations

Several innovations are needed:

1) realization of the process as a partially observed
Markov process (POMP, AKA state space model)

2) concept of a growing tree

3) physical molecular clocks

4) just-in-time construction of state variables
5) hierarchical sampling

6) efficient parallelization

Smith, lonides and King [2017]



Partially observed Markov processes
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Partially observed Markov processes

= Data: y,, = {yi,...,Yn}

= Modeled as a realization of a stochastic process Y7.,,

= Observation times: t¥. = {t1,...,t,}

= Latent Markovian state process: X,.,, = {X(t9), X(t1),..., X(t,)}
= Joint density:

X0 Yo (To:ms Y105 0) = fx, (To;0) Hka\Xk_l (zr|Tr-159) frix, v (Ye|Th, Y1k—1;0)
ko1

= |ikelihood:

L(0) = fv.,(yi.n;0) = / Fxon Vi (Tons Yin; 0) dzo..

= Factorization:

L(6) = H/fYka,ml W 1 Y15 0) Fxevis, (@ | Y115 6) d
k=1



Innovation 1: formulation as a POMP

» Data are:
= Genetic sequences at known sampling
times
= Other information, e.g., diagnoses
without sequences

« Latent process: X (t) = (T (¢), P(t), U(t))
« Transmission forest: T (t)

= Pathogen phylogeny: P(t)

» Auxiliary Markovian process: U(t)

a GenPOMP

Dependency graph

Smith, lonides and King [2017]



Smith, lonides and King [2017]



Simulating the latent process
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sequenced.

2. Weighting. Based on the
. structure of the proposed trans-
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Innovation 2: physical relaxed molecular clocks

e Strict molecular clocks assume that the rate of evolution is
constant through time and the mutation process is Poisson.

e It is commonly necessary to allow for overdispersion in this
process, which leads to relaxed molecular clocks.

* Most relaxed clocks employed in practice are incompatible with
Markovian assumptions.

* We require that the molecular clock is a non-decreasing,
continuous-valued Lévy process, e.q., a Gamma clock.



Innovation 2: physical relaxed molecular clocks
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Innovation 2: physical relaxed molecular clocks
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Innovation 3: Just-in-time state-variable construction

* The evolutionary process for the sequences goes into the
measurement model.

« Formally, a measurement is the assignment of a new sequence
to an individual in the transmission tree.

« Evaluating the measurement density involves finding the
likelihood of the new sequence given the old sequences and the
tree.

* This likelihood is computed efficiently by the Felsenstein peeling
(pruning) recursion.

* The high-dimensional pathogen genome need not be included
In the latent state.
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diagnoses + sequences

A simulation study
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Results of HIV study
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Conclusions

Joint inference is possible with order 102 sequences and order
10° infections

We are continuing to investigate how the algorithms scale, but
further work is needed to scale to much larger problems

Being able to compute (even noisy) estimates of the likelihood
is useful, to evaluate bias and loss of information in other
methods

Simulation-based methods can reveal modeling errors hidden
by other methods

A promising arena for these approaches is hospital infections
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