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Phylodynamics

Grenfell et al. [2004]



  

Phylodynamics

Two paradigms:
● Small outbreaks: who acquires infection from whom?
● Model inference: assume phylogeny is generated by a 
stochastic transmission process

Current approaches commonly assume:
● Neutral evolution of sequences
● No recombination or reassortment
● Phylogenetic branchpoints coincide with transmission 
events



  

Who infected whom?



  

Phylodynamics

Two paradigms:
● Small outbreaks: who acquires infection from whom?
● Model inference: assume phylogeny is generated by a 
stochastic transmission process

Current approaches commonly assume:
● Neutral evolution of sequences
● No recombination or reassortment
● Phylogenetic branchpoints coincide with transmission 
events



  

Transmission trees and phylogenetic trees



  

Phylodynamics

Two paradigms:
● Small outbreaks: who acquires infection from whom?
● Model inference: assume phylogeny is generated by a 
stochastic transmission process

Common approaches avoid the difficult problem of jointly 
inferring model and phylogeny by employing two stages: 
1) estimate a phylogeny from the sequences
2) treating the phylogeny as data, fit the model to the 
phylogeny using variants of the coalescent process or 
birth-death processes to link model and phylogeny



  

Two-stage methods

Rasmussen et al. [2011]



  

Example: HIV among young, black MSM in Detroit

Smith, Ionides and King [2017] 
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Example: HIV among young, black MSM in Detroit



  

Volz et al. [2013b] 

Example: HIV among young, black MSM in Detroit



  

Problems with two-stage methods

● Model used to estimate phylogeny may be logically 
inconsistent with transmission model.

● This leads to bias.
● Methods based on the coalescent process are most 

readily formulated in backward time while models for 
transmission processes can typically only be written at 
all in forward time.

● To get around this, large population, small sample 
assumptions must be made.

● As the models get more complicated (e.g., 
heterogeneous populations, complex immunity, 
disease progression, etc.), the structured coalescent 
approaches become unwieldy.



  

Problems with two-stage methods

Smith, Ionides, King (in prep)



  

Phylodynamics done “properly”

We would like to:

● jointly estimate transmission model and phylogeny

● avoid questionable assumptions needed to apply 
reverse-time likelihoods to forward-time processes

● enjoy the plug-and-play property that affords freedom 
in investigating alternative hypotheses

● a method is plug-and-play if it requires only that one 
be able to simulate from the latent process, i.e., 
transition densities need not be tractable



  Smith, Ionides, and King [2017]; 
cf. Volz et al. [2013b] 

Example: HIV among young, black MSM in Detroit



  
Smith, Ionides and King [2017] 

Ingredients



  

Key innovations

Several innovations are needed:

1) realization of the process as a partially observed 
Markov process (POMP, AKA state space model)

2) concept of a growing tree

3) physical molecular clocks

4) just-in-time construction of state variables

5) hierarchical sampling

6) efficient parallelization

Smith, Ionides and King [2017] 



  

Partially observed Markov processes



  

Partially observed Markov processes



  

Innovation 1: formulation as a POMP

Smith, Ionides and King [2017] 

a GenPOMP Dependency graph
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Ingredients



  

Simulating the latent process



  

GenSMC: 
sequential 
Monte Carlo 
for a 
GenPOMP



  

Innovation 2: physical relaxed molecular clocks

● Strict molecular clocks assume that the rate of evolution is 
constant through time and the mutation process is Poisson.

● It is commonly necessary to allow for overdispersion in this 
process, which leads to relaxed molecular clocks.

● Most relaxed clocks employed in practice are incompatible with 
Markovian assumptions.

● We require that the molecular clock is a non-decreasing, 
continuous-valued Lévy process, e.g., a Gamma clock.



  

Innovation 2: physical relaxed molecular clocks



  

Innovation 2: physical relaxed molecular clocks



  

Innovation 3: Just-in-time state-variable construction

● The evolutionary process for the sequences goes into the 
measurement model.

● Formally, a measurement is the assignment of a new sequence 
to an individual in the transmission tree.

● Evaluating the measurement density involves finding the 
likelihood of the new sequence given the old sequences and the 
tree.

● This likelihood is computed efficiently by the Felsenstein peeling 
(pruning) recursion.

● The high-dimensional pathogen genome need not be included 
in the latent state.



  

A simulation study

Smith, Ionides and King [2017] 
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Results of HIV study



  

Conclusions

● Joint inference is possible with order 102 sequences and order 
103 infections

● We are continuing to investigate how the algorithms scale, but 
further work is needed to scale to much larger problems

● Being able to compute (even noisy) estimates of the likelihood 
is useful, to evaluate bias and loss of information in other 
methods

● Simulation-based methods can reveal modeling errors hidden 
by other methods

● A promising arena for these approaches is hospital infections
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