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Overview

• Short introduction to large eddy simulation (LES)

• Motivation for using moving meshes

• Physically and mathematically based r-adaptation

• Turbulent flow over periodic hills

• Baroclinically unstable jet flow

• Stationary low Mach number combustion

• Summary
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Incompressible Navier-Stokes-Equation

∂tu + (u · ∇)u +∇p −∇ · (2ν S(u)) = f , in (0,T ]× Ω
∇ · u = 0, in (0,T ]× Ω

u = ud , on (0,T ]× ∂ΩD

pn − 2νS(u)n = 0, on (0,T ]× ∂Ω−

u = u0(x), in {0} × Ω

with Ω ∈ R3 and S(u) = (∇u +∇uT )/2.

Large Eddy Simulation (LES): Apply spatial filter to compute u = G4 ?u.

∂tu + (u · ∇)u +∇p −∇ · (2νS(u)) = f −∇ · τ(u,u), in (0,T ]× Ω
∇ · u = 0, in (0,T ]× Ω

u = ud , on (0,T ]× ∂ΩD

pn − 2νS(u)n = 0, on (0,T ]× ∂Ω−

u = u0(x), in {0} × Ω

where the stress tensor τ(u,u) = u u − u u has to be modelled.
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Large Eddy Simulation

Goal: LES models the smallest (and most expensive) scales and resolves
large scales of the flow field solution.
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Miracle: Turbulent Motion of Fluids

Werner Heisenberg was asked what he would ask God, given the
opportunity. His reply was:

When I meet God, I am going to ask him two questions: Why relativity?
And why turbulence? I really believe he will have an answer for the first.

Horace Lamb (who had published a noted text book on Hydrodynamics)
was quoted as saying

I am an old man now, and when I die and go to heaven there are two
matters on which I hope for enlightenment. One is quantum
electrodynamics, and the other is the turbulent motion of fluids. And
about the former I am rather optimistic.
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Filtered Incompressible Navier-Stokes-Equation

Use eddy viscosity model (Smagorinsky model)

τ(u,u) ≈ τs(u) = −νt(u)S(u)

with turbulent viscosity defined by

νt(u) = (cs 4)2
√

2||S(u)||, ||S(u)|| = (S(u) : S(u))1/2

Smagorinsky constant: cs = 0.1− 0.2, dynamic Smagorinsky cs = cs(u)

Closed model for (us , ps):

∂tus + (us · ∇)us +∇ps −∇ · ((2ν + νt)S(us)) = f , (0,T ]× Ω
∇ · us = 0, (0,T ]× Ω

us = ud , (0,T ]× ∂ΩD

psn − (2ν + νt)S(us)n = 0, (0,T ]× ∂Ω−

us = u0(x), {0} × Ω
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Errors in Large Eddy Simulation

Good news: Nowadays LES works quite well provided

• sufficient computer resources are available,

• advanced knowledge on physics and numerical methods.

Two main error sources:

• Filtering, sgs, b.c. give rise to modelling errors.

• Numerical schemes give rise to discretization errors.

Bad news: If ∆ = h (most practical) is used then modelling and
discretization errors interact.

Need for a posteriori quality improvement of LES!

7 / 38



Errors in Large Eddy Simulation

Good news: Nowadays LES works quite well provided

• sufficient computer resources are available,

• advanced knowledge on physics and numerical methods.

Two main error sources:

• Filtering, sgs, b.c. give rise to modelling errors.

• Numerical schemes give rise to discretization errors.

Bad news: If ∆ = h (most practical) is used then modelling and
discretization errors interact.

Need for a posteriori quality improvement of LES!

7 / 38



Errors in Large Eddy Simulation

Good news: Nowadays LES works quite well provided

• sufficient computer resources are available,

• advanced knowledge on physics and numerical methods.

Two main error sources:

• Filtering, sgs, b.c. give rise to modelling errors.

• Numerical schemes give rise to discretization errors.

Bad news: If ∆ = h (most practical) is used then modelling and
discretization errors interact.

Need for a posteriori quality improvement of LES!

7 / 38



Errors in Large Eddy Simulation

Good news: Nowadays LES works quite well provided

• sufficient computer resources are available,

• advanced knowledge on physics and numerical methods.

Two main error sources:

• Filtering, sgs, b.c. give rise to modelling errors.

• Numerical schemes give rise to discretization errors.

Bad news: If ∆ = h (most practical) is used then modelling and
discretization errors interact.

Need for a posteriori quality improvement of LES!

7 / 38



LES - Statistics

• LES produces huge data of space- and time-resolved flow solutions,
but often one is only interested in statistical values as mean
velocities and fluctuations, which can be compared to experimental
data.

LES for flow over periodic hills, Re = 10595.
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LES - Statistics

• Define time-averaging

〈v〉(x) = lim
T→∞

1

T

∫ T

0

v(t, x) dt

and fluctuations
v ′′ = v − 〈v〉

• For LES it holds

〈u′′ u′′〉 ≈ 〈τ(u,u)〉+ 〈u u〉 − 〈u〉〈u〉 ,

which gives a possibility to approximate the time-averaged stress
tensor 〈τ(u,u)〉.
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Motivation for Mesh Adaptation

• Multi-scale modelling with variable filter width 4 = h(us) yields
resolved subgrid-scale turbulence.

• Optimizing LES via r-adaption (redistribution=moving mesh)

• Appropriate monitor functions for LES

• Adaptive scale separation w.r.t. time-averaged solution
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Mesh Moving Method

• Physical domain Ω with coordinates x = (x1, x2, x3)T

• Computational domain Ωc with coordinates ξ = (ξ1, ξ2, ξ3)T

• Solution of the physical PDE: (us , ps) = (us , ps)(x, t)

• 1-1 coordinate transformation x = x(ξ, t)

• Minimise mesh adaptation functional (equidistribution principle)

I[ξ] =
1

2

∫
Ω

√
g

3∑
i=1

∇ξi G−1∇ξi dx , g = det(G )

• Derive time-dependent mesh moving PDE
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Mesh Moving Method

Time-dependent Mesh Moving PDE [Huang, Russell]:

τ
∂x
∂t

=
1

P

∑
i,j

aij
∂2x
∂ξi∂ξj

−
∑
i

bi
∂x
∂ξi


where

aij = ∇ξi · G−1∇ξj , bi =
∑
j

∇ξi ·
∂G−1

∂ξj
∇ξj , P2 =

∑
i,j

a2
ij +

∑
i

b2
i

How to choose G ∈ R3×3? Typical choice: G = w(Ψ)I .

Monitor function should depend on some quantity of interest Ψ,
physically or mathematically motivated.
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LES with Moving Meshes: General Strategy
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Mesh Moving Method - Implementation

• Use LESOCC2 - advanced parallel code for engineering applications

• Second order cell-centered finite volume method for curvilinear
coordinates, coupled with predictor-corrector scheme based on
three-stage Runge-Kutta methods and pressure correction equation

• Implement arbitrary Lagrangian-Eulerian formulation (ALE) with
time-varying control volumes V (t) and surfaces S(t)

• Ensure mass conservation via space conservation law [Demirdzic,
Peric]

d

dt

∫
V (t)

dv −
∫
S(t)

uNn ds = 0

where uN is the (given) vector of node velocities. Adapt mesh
movement.
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Mesh Moving Method - Implementation
Cell Centered Finite Volume Method

Ilustration of difficulties when constructing a valid grid from cell centres
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Mesh Moving Method - Implementation
Cell Centered Finite Volume Method

Step 1 Integration of the MMPDE for cell centres with fixed points at
boundaries yielding preliminary values of cell centres x∗.

Step 2 Determination of cell corner points x̃n+1 via an interpolation method.

Step 3 Determination of corner points on boundaries from final corner grid
in the interior.

Step 4 Re-computation of cell centres xn+1 in the domain and on the
boundary to generate the final valid grid.

Hertel, Schümichen, JL, Fröhlich: Using a Moving Mesh PDE for Cell
Centres to Adapt a Finite Volume Grid, Flow, Turbulence and
Combustion 90(4), pp. 785–812, 2013.
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Turbulent Flows over Periodic Hills

• Re = 10595

• Smagorinsky subgrid-scale model with cs = 0.1

• Reference solution with 4.500.000 cells [Fröhlich et al., 2005]

• Computational grid: 89× 33× 49 (135.168 cells)
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The Engineer’s Approach

Quantity of Interest Φ

Here: 〈·〉 denotes averaging in homogeneous direction and time.

• Gradient of streamwise velocity: Φ = ∇〈u1〉
• Modelled turbulent kinetic energy (TKE)

Φ =
〈ksgs〉
ktot,max

, ksgs ≈ (21/3 − 1)0.5|u − u| [Berselli et al., 2006]

• Turbulent shear stress: ratio of modelled and total shear stress

Φ =
〈τmod

12 〉
〈τmod

12 〉+ 〈u′′1 u′′2 〉
, τmod

12 = −νt
(
∂u1

∂x2
+
∂u2

∂x1

)
Use combination of them as well.
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The Engineer’s Approach

Monitor function: gradient of streamwise velocity Φ = ∇〈u1〉
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The Engineer’s Approach

Monitor function: gradient of streamwise velocity Φ = ∇〈u1〉

Comparison of low separation and reattachment point
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The Engineer’s Approach

Monitor function: combine gradient of streamwise velocity and modelled

kinetic energy Φ = ∇〈u1〉+
〈ksgs〉
ktot,max
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The Engineer’s Approach

Comparison of low separation and reattachment point
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The Mathematician’s Approach

Dual Weighted Residual Method [Becker, Rannacher, Braack, ...]

Goal: quantify the contributions of the subgrid-scale model and the
numerical method to a user specified quantity of interest

M(〈u〉, 〈p〉) =

∫
Ω

N(〈u〉, 〈p〉)dx

Linearize N in the neighbourhood of (〈ūh〉, 〈p̄h〉):

M(〈u〉, 〈p〉)−M(〈ūh〉, 〈p̄h〉) =∫
Ω

{
∂〈u〉N(〈ūh〉, 〈p̄h〉) e〈u〉 + ∂〈p〉N(〈ūh〉, 〈p̄h〉) e〈p〉

}
dx + H.O.T .

with e〈u〉 = 〈u〉 − 〈ūh〉 and e〈p〉 = 〈p〉 − 〈p̄h〉.
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∂〈u〉N(〈ūh〉, 〈p̄h〉) e〈u〉 + ∂〈p〉N(〈ūh〉, 〈p̄h〉) e〈p〉
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The Mathematician’s Approach

Define (linear) stationary dual system with (φ, θ):

−(〈ūh〉 · ∇)ϕ+ (∇〈ūh〉)Tϕ+∇θ

−∇ · ((2ν + νt(〈ūh〉))S(ϕ))−∇ · T h[〈ūh〉](ϕ) = ∂〈u〉N(〈ūh〉, 〈p̄h〉)

−∇ ·ϕ = ∂〈p〉N(〈ūh〉, 〈p̄h〉)

ϕ = 0 b.c.
ϕ(T , x) = 0 i.c.

where T h[〈ūh〉](ϕ) = (cs ∆)2 ||S(〈ūh〉)||−1
F (S(〈ūh〉) : S(ϕ))S(〈ūh〉).
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The Mathematician’s Approach

Theorem [Computable error representation formula]
Let (〈ūh〉, 〈p̄h〉) be the numerical solution and N a given operator. Then

M(〈u〉, 〈p〉)−M(〈ūh〉, 〈p̄h〉) ≈ eM + eN + H.O.T .

with eM and eN are given by

eM =

∫
Ω

φh

{
〈f〉 − 〈̄f〉+ 〈(∇ · τs)(ūh)〉 − 〈∇ · τds(ūh)〉

}
dx

eN =

∫
Ω

{φh〈ResSM(ūh, p̄h)〉+ θh〈∇ · ūh〉} dx

where ResSM(ūh, p̄h) is the residual of the space-averaged momentum
equation with Smagorinsky subgrid-scale model.

25 / 38



The Mathematician’s Approach

Theorem [Computable error representation formula]
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where ResSM(ūh, p̄h) is the residual of the space-averaged momentum
equation with Smagorinsky subgrid-scale model.

25 / 38



The Mathematician’s Approach

Monitor function: Φ = ΦN + ΦM based on N(u) = ∇〈u1〉

Comparison of ∇〈u1〉/Ub at x/h = 2 and x/h = 6.
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Meteorological Application
German Priority Program ’METSTROEM’ (Funded by DFG)

Collaborators in the first period: C. Kühnlein, A. Dörnbrack (Munich),
P.K. Smolarkiewicz (Boulder)

Software Package MPDATA and EULAG

Application:
Baroclinically unstable jet flow in inviscid and dry atmosphere
Zonally-periodic channel: 10.000 km × 8.000 km × 18 km
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Meteorological Application: Baroclinically Unstable
Jet Flow in Inviscid and Dry Atmosphere

Representation of mesoscale internal gravity waves

Φ = 1/H

∫ H

0

‖∇Θ(t, x , y , z)‖ dz

(C. Kühnlein, A. Dörnbrack, P.K. Smolarkiewicz, 2011)
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Low Mach Number Compressible Combustion

ρ∂tu + ρ(u · ∇)u +∇phyd −∇ · (2ν S(u)) = ρg , in (0,T ]× Ω

1

M
u · ∇M − 1

T
u · ∇T +∇ · u = 0, in (0,T ]× Ω

cp∂tT + cpρu · ∇T −∇ · (λ∇T ) = fT (T ,ω), in (0,T ]× Ω

∂tωi + ρu · ∇ωi −∇ · (ρDi∇ωi ) = fi (T ,ω), in (0,T ]× Ω

i = 1 : N, Ω ⊂ R2

ρ =
PthM

RT
,

1

M
=

N∑
i=1

ωi

Mi

Methane Burner (JUNKERS Bosch Thermotechnik, 1988) with global
reaction

CH4 + 2O2 → CO2 + 2H2O

N = 15 species and 84 elementary reactions (no NOx formation)
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Methane Burner

15mm 1.5mm

uniform inflow of

2.2mm
13mm

11 mm

burnt gas

unburnt gas

flame front

Geometry of the Junkers Bosch Methane Burner
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Methane Burner

Stationary solutions: T, CH4, and OH
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Methane Burner

Stationary solutions: HCO (Hydrocarbonate), HO2, and CH3O
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Moving Meshes for the Methane Burner
Quantity of Interest: Φ = ∇ωCHO

Profile of radical HCO. The elements in magenta represent enlarged
triangles (rate: +0.15), and the cyan ones show the compressed cells
(rate: -0.05).
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Moving Meshes for the Methane Burner

Quantity of Interest: Φ = ∇ωCHO

Initial mesh (left) and adaptive mesh (right) close to the shortest slot.
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Summary

• LES is well suited for moving mesh techniques.

• Physically motivated monior functions work quite well for LES.

• High potential of sensitivity-based mesh moving methods based on
adaptive scale separation.

• Resolve as much physics as possible with given DoFs: Model
dissipation and resolve production.

• Application of moving meshes to complex combustion still needs
expert knowledge.
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Final Remark

Independent (UK), 4th May 2018
Karl Marx 200th anniversary

The world is finally ready for Marxism
as capitalism reaches the tipping
point.

The world is finally ready for Moving
Meshes as uniform ones reach the
tipping point.

Banff, 31st May 2018
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