
Fast Imputation and Haplotyping

Kenneth Lange

Departments of Biomathematics, Human Genetics, and Statistics
University of California, Los Angeles

joint work with Janet Sinsheimer, Eric Sobel, Rory Wasiolek, Hua Zhou

Banff, August, 2018

1

Introduction to the MM Principle

1. The MM principle is not an algorithm, but a prescription or principle
for constructing optimization algorithms.

2. The EM algorithm from statistics is a special case.

3. An MM algorithm operates by creating a surrogate function that
minorizes or majorizes the objective function. When the surrogate
function is optimized, the objective function is driven uphill or
downhill as needed.

4. In minimization MM stands for majorize/minimize, and in
maximization MM stands for minorize/maximize.

5. MM algorithms are particularly appealing for high-dimensional
problems.

2

Majorization and Definition of the Algorithm

• A function g(θ | θk) is said to majorize a
function f (θ) at θk provided

f (θk) = g(θk | θk)

f (θ) ≤ g(θ | θk) for all θ.

• To minimize f (θ), choose a good majorizing
function g(θ | θk) and reduce (usually
minimize) it. This produces the next point
θk+1 in the algorithm.

• The descent property follows from

f (θk+1) ≤ g(θk+1 | θk) ≤ g(θk | θk) = f (θk).

The descent property makes MM algorithms
very stable.

3

MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

4

MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

4

MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

4

MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

●●

4

MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

●●

●●

4

MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

●●

4

MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

●●

●●

●●

4

MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

●●

●●

●●
●●

4

MM Algorithm in Action

x

f(
x)

smaller

larger

very bad optimal less bad

●●

●●

●●

●●●●●●●●

4

Matrix Completion

• Problem: Given an observed m × n matrix X = (xij) with observed
entries indexed by Ω ⊂ {1, . . . ,m} × {1, . . . , n}, fill in the missing
entries.

• Solution: Find a low rank matrix Z = (zij), consistent with the
observed entries of X = (xij).

min
rank(Z)≤r

∑
(i,j)∈Ω

(xij − zij)
2

• The famous Netflix problem fills in missing movie ratings (on a scale
of 1 to 5) for moviegoers. The rows of X represent people and the
columns movies. Most of the entries are missing.

• Majorize the objective function at iteration k by adding the terms
1
2 (zkij − zij)

2 for missing cells (i , j) ∈ Ωc , where Z k = (zkij) equals
the current estimate of Z .

5

Objective and Surrogate Functions in Matrix Completion

f (U ,V) =
∑

(i,j)∈Ω

(
xij −

∑
n

uinvnj
)2

g(U ,V | Uk ,V k) = f (U ,V) +
∑

(i,j) 6∈Ω

(∑
n

ukinvknj −
∑
n

uinvnj
)2

Note that

f (U ,V) ≥ g(U ,V | Uk ,V k)

f (Uk ,V k) = g(Uk ,V k | Uk ,V k).

6

MM Algorithm for a Rank r Approximation

1. Every rank r matrix X of dimension m × n can be expressed as a
matrix product UV , where U is m × r and V is r × n.

2. Each iteration k of the matrix completion MM algorithm alternates
between improving U and V .

3. For the V update, impute a missing entry xij of X by (UkV k)ij .
Call the imputed matrix Y k . Minimize the sum of squares
‖Y k −UkV ‖2

F by the usual regression formula (1)

V k+1 = (U t
kUk)−1U t

kY k (1)

Uk+1 = Z kV t
k+1(V k+1V t

k+1)−1. (2)

For the U update, impute a missing entry xij of X by (Uk+1V k)ij .
Call the imputed matrix Z k . Minimize the sum of squares
‖Z k −UV k+1‖2

F by the transposed regression formula (2).

4. The matrices U t
kUk and V k+1V t

k+1 are r × r and hence quick to
invert when r is small.

7

Sliding Window (Matrix) of SNP Genotypes

SNPs

A B C

S
u

b
je

ct
s

1. Code SNP genotypes as 0, 1, or 2 or as dosages in [0, 2]. Exploit
linkage disequilibrium to impute in small 3-part windows.

2. Construct a hold-out-set by masking entries in A and C.

3. Train on observed entries from A, B, and C.

4. Choose the matrix rank r based on performance on the hold-out-set.

5. Impute missing entries in the middle third B.

8

Performance of Matrix Completion on HapMap Data

CHB YRI
Error (%) Time (min) Error (%) Time (min)

Chr MA MC MA MC Chr MA MC MA MC
4 4.02 2.15 474 26 5 6.55 2.13 1702 52
5 3.75 2.15 482 27 8 6.38 2.04 1497 45

18 4.28 2.37 296 13 14 6.89 2.36 1173 26
21 4.49 2.51 193 6 15 7.79 2.87 768 22

Table: Accuracy and timing results for MACH (MA) and matrix completion
(MC) on eight different chromosomes from the 139 Han Chinese (CHB) and
209 Nigerians (YRI) from HapMap. About 50% of all genotypes are missing.
Caveats: This is an old comparison. MACH has been upgraded. Error rates
diminish with more subjects. Matrix completion timings should improve when
alternating least squares is substituted for singular value decompositions.

9

Extension to Low Coverage Sequencing

• A weighted version of matrix completion applies to sequencing data.
One now seeks

min
rank(Z)≤r

1

2

∑
(i,j)∈Ω

wij(xij − zij)
2,

where wij is the number of reads at SNP j for subject i and
xij ∈ [0, 2] is the posterior mean allele dosage. Posterior dosages are
derived from Bayes’ rule by assuming a binomial likelihood with
success equated to a sequencing error and a prior dictated by the
Hardy-Weinberg law.

• The minimum can be found by a combination of MM majorization
and alternating weighted least squares.

10

Fast Imputation of Haplotypes

Genotype imputation produces for each person a dosage vector x . Phase
is still unknown. To recover phase, the current best practice is to exploit
reference panels of known haplotypes. The next few slides will discuss a
new algorithm for haplotyping. The algorithm operates on sliding
windows of SNPs. It then stitches together the inferences from successive
windows. The algorithm is fast because it relies on highly parallelized
linear algebra.

11

Imputation within a Window

In an imputation window, let the columns hi of the matrix H constitute
a complete list of reference haplotypes with redundancies removed.
Haplotype imputation is done by minimizing the criterion

1

2
‖x − h1 − h2‖2 =

1

2
‖x‖2 +

1

2
‖h1‖2 +

1

2
‖h2‖2 + ht

1h2 − ht
1x − ht

2x

over all h1 and h2. Solution: Precompute and store the values
1
2‖h1‖2 + 1

2‖h2‖2 + ht
1h2 in a matrix M = (mij). For a given x , compute

all inner products y = H tx involving x . Then find the index pair (i , j)
that minimize mij − yi − yj . This process is very fast since it reduces
haplotyping to a search over the entries of a symmetric matrix. For
optimal speed, the inner products y = H tx are computed for all
individuals simultaneously as a single matrix product Y = H tX . Also all
inner products ht

1h2 can be recovered simultaneously from the matrix
product H tH . The squared norms ‖x‖2 are irrelevant.

12

Fast Elimination of Redundant Haplotypes

The number of reference haplotypes may be in the tens of thousands.
Within a genomic window, the number of unique haplotyes is small. How
do we eliminate duplicates? If we suppose the number of SNPs within a
window is a small power of 2, then the 0’s and 1’s of a haplotype can be
interpreted as the binary digits of a nonnegative integer. Once these
integers are sorted, it is trivial to eliminate redundancies. Conversion of
the remaining unique integers back into binary vectors of 0’s and 1’s
gives the haplotype matrix H for the window. Example of 4 SNPs and 3
reference haplotypes with haplotypes as columns:

111
111
100
111

 7→ (15, 13, 13) 7→ (13, 13, 15) 7→ (13, 15) 7→

11
11
01
11

Using a permutation sort, no columns are actually moved.

13

Bridging Breaks

Occasionally, the two unique haplotypes assigned to two adjacent
windows are inconsistent. In this situation there is a break and we must
locate its position. Based on the sample (observed) SNPs alone, we slide
the breakpoint across the two windows and determine its optimal
position. For example, with two windows of length 8 each,

0000000000000000 extended left haplotype

1111111111111111 extended right haplotype

0000000001111111 extended observed haplotype

↑ optimal break position

The optimal break position minimizes the number of disagreements
between the observed and reconstructed haplotypes. Note that left and
right haplotypes are extended beyond their original windows by choosing
consistent reference haplotypes.

14

Imputation of Untyped SNPs

The reference haplotypes may contain many more SNPs than the sample
haplotypes, say 106 versus 107. Imputation of untyped SNPs is not
routine because in a given window many reference haplotypes collapse to
the same unique haplotype for the typed SNPs. Example:

{3, 4, 27}

window 1

{1, 4, 18, 27}

window 2

{1, 4, 95, 103}

window 3

Figure: Consistent Reference Haplotype Sets in 3 Adjacent Windows

If no haplotype breaks occur across the 3 windows, then the only
consistent reference haplotype is

{4} = {3, 4, 27} ∩ {1, 4, 18, 27} ∩ {1, 4, 95, 103}.

15

Resolving Ambiguities by Parsimony
What happens when the intersection principle fails to identify a unique
reference haplotype? In such a situation we rely on parsimony and
attempt to minimize the number of haplotypes employed per person per
chromosome. Each reference haplotype is assigned a usage weight along
a chromosome. In an unassigned block (region between breakpoints), the
block is attributed to the consistent reference haplotype with largest
weight. Example:

{3}

block 1

{1, 2}

block 2

{3}

block 3

{1}

block 1

Weights of reference haplotypes:

w1 =
1

2
2 + 1 = 2, w2 =

1

2
2 = 1, w3 = 1 + 1 = 2

Because w1 = 2 > w2 = 1, the ambiguous block 2 is assigned to
reference haplotype 1.

16

Chromosome Painting

Local ancestry attribution can be achieved by haplotyping based on
reference panels. Each haplotype block is assigned to a reference
haplotype. If each reference haplotype is assigned to a country (or region
or continent) of origin, then a person’s genome can be painted block by
block by country of origin. These labels can obviously be applied as
predictors in association studies.

17

Data Compression

The sheer volume of SNP genotype data makes transferring data files a
pain. Data compression can be achieved by haplotyping. Instead of
sending genotypes, simply send each haplotype block start point and end
point and a pointer to the relevant reference haplotype. These data
immediately yield genotypes. A small list of errors of reconstruction
complete the mailing package. This scheme depends on universal storage
and curation of reference haplotypes. These should be stored on the
cloud for easy access.

18

References

1. Chen GK, Wang K, Stram AH, Sobel EM, Lange K (2012)
Mendel-GPU: Haplotyping and genotype imputation on graphics
processing units. Bioinformatics 28:2979–2980

2. Chi EC, Chen GK, Zhou H, Ortega Del Vecchyo D, Lange K (2013)
Genotype imputation via matrix completion. Genome Res
23:509–518

3. Hunter DR, Lange K (2004) A tutorial on MM algorithms.
American Statistician 58:30–37

4. Lange K, Papp JC, Sinsheimer JS, Sobel EM (2014) Next generation
statistical genetics: modeling, penalization, and optimization in
high-dimensional data. Annual Review Stat Applications 1:279–300

19

