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Outline of the talk

For a graph G , the Ramsey number R(G ) of G is the smallest integer
such that each 2-coloring of the edges of KR(G) contains a
monochromatic copy of G as a subgraph.

We would like to know R(G ) as precisely as possible.

We discuss new variants of R(G ) and their estimates.

Outline:

1. Ramsey numbers: graphs, some known (classical) bounds;
2. Ordered Ramsey numbers: ordered vertex sets, studied, but still

relatively new;
3. Edge-ordered Ramsey numbers: ordered sets of edges, newly

introduced variant, our work is still in progress.

Unexplored area, a lot of interesting (and maybe difficult) problems.
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Ramsey numbers



Some classical bounds

Obtaining good estimates on R(G ) is notoriously hard.
Except of very special cases, no exact formulas are known.
Classical bounds of Erdős and Szekeres: 2n/2 ≤ R(Kn) ≤ 22n.
Smaller-term improvements obtained by Spencer and Conlon.

Example: R(C4) = 6

Theorem 1 (Chvátal, Rödl, Szemerédi, Trotter, 1983)

Every graph G on n vertices with bounded maximum degree satisfies

R(G ) ≤ O(n).

The linear upper bound holds even for graphs with bounded degeneracy
(a solution of the Erdős–Burr conjecture by Lee, 2015).
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Bounds for dense graphs

Thus very sparse graphs have small Ramsey numbers.

How about dense graphs?

If n-vertex G has density less than 1, is R(G ) ≤ (4− ε)n for some ε > 0?

Theorem 2 (Conlon, 2012)

Every graph G = (V ,E ) on n vertices with edge-density ρ = |E |/n2 satisfies

R(G ) ≤ 2O(
√
ρ log (2/ρ)n).

Close to optimal, as a standard argument shows

R(G ) ≥ 2
√
ρn/4

for some n-vertex graphs G with edge-density ρ.
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Part 2

Ordered Ramsey numbers



Ordered Ramsey numbers

An ordered graph G is a pair (G ,≺) where G is a graph and ≺ is a total
ordering of its vertices.
(H ,≺1) is an ordered subgraph of (G ,≺2) if H ⊆ G and ≺1⊆≺2.

The ordered Ramsey number R(G) of an ordered graph G is the
minimum N such that every 2-coloring of the edges of KN contains
monochromatic copy of G as an ordered subgraph.
Note that R(G ) ≤ R(G) ≤ R(K|V (G)|) for every G and its ordering G.
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Motivation

Motivation for studying ordered Ramsey numbers came from discrete
geometry, especially due to its connections to the Erdős–Szekeres
Lemma and the Erdős–Szekeres Theorem.

The Erdős–Szekeres Lemma (Erdős, Szekeres, 1935)

For every n ∈ N, every sequence of (n − 1)2 + 1 distinct numbers contains
an increasing or a decreasing subsequence of length n. This bound is tight.

The monotone path Pn is an ordered graph with n vertices and edges
formed by pairs of consecutive vertices.

The Erdős–Szekeres Lemma is a corollary of the following result.

Proposition 1

For every n ∈ N, we have

R(Pn) = (n − 1)2 + 1.
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Lower bounds

Ordered Ramsey numbers for graphs are relatively understood.

They can behave very differently than classical Ramsey numbers.

Theorem 3 (B., Cibulka, Kynčl, Král, 2015)

There are arbitrarily large ordered matchings Mn on n vertices such that

R(Mn) ≥ nΩ( log n
log log n).

True for almost every ordered matching (Conlon, Fox, Lee, Sudakov).

Contrasts with the result of Chvátal, Rödl, Szemerédi, Trotter.

There are 3-regular graphs G such that no ordering G has linear R(G).

Theorem 4 (B., Jeĺınek, Valtr, 2016)

For every d ≥ 3, almost every d-regular graph G on n vertices satisfies

R(G) ≥ n3/2−1/d

4 log n log log n
for every ordering G of G .
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There are 3-regular graphs G such that no ordering G has linear R(G).

Theorem 4 (B., Jeĺınek, Valtr, 2016)

For every d ≥ 3, almost every d-regular graph G on n vertices satisfies

R(G) ≥ n3/2−1/d

4 log n log log n
for every ordering G of G .



Lower bounds

Ordered Ramsey numbers for graphs are relatively understood.

They can behave very differently than classical Ramsey numbers.

Theorem 3 (B., Cibulka, Kynčl, Král, 2015)
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There are arbitrarily large ordered matchings Mn on n vertices such that

R(Mn) ≥ nΩ( log n
log log n).

True for almost every ordered matching (Conlon, Fox, Lee, Sudakov).

Contrasts with the result of Chvátal, Rödl, Szemerédi, Trotter.
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Lower bounds
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Upper bounds

Although R(G) is almost always superpolynomial, there are classes of
ordered graphs with polynomial ordered Ramsey numbers.
The interval chromatic number χ≺(G ) of (G ,≺) is the minimum
number of intervals V (G ) can be partitioned into so that no two
adjacent vertices are in the same interval.

Theorem 5 (B., Cibulka, Kynčl, Král, 2015)

For all k and p every k-degenerate ordered graph G = (G ,≺) with n vertices
and χ≺(G ) = p satisfies

R(G) ≤ nO(k)log p

.

Improved to R(G) ≤ nO(k log p) (Conlon, Fox, Lee, and Sudakov).
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Dense ordered graphs

Conlon et al. derived a bound that works even for dense ordered graphs.

Theorem 6 (Conlon, Fox, Lee, and Sudakov, 2015)

For every ordered graph G with n vertices and degeneracy d ,

R(G) ≤ 2O(d log2 (2n/d)).

To summarize:

Ordered Ramsey numbers are at most exponential.
They are at most quasi-polynomial for bounded-degree graphs.
For almost all ordered graphs G, the numbers R(G) are at least
super-polynomial.

There is still a gap between the lower bound nΩ(log n/ log log n) and the
upper bound nO(log n) for ordered Ramsey numbers of ordered graphs on
n vertices with bounded degeneracy.
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Part 3

Edge-ordered Ramsey numbers



Edge-ordered graphs

Recently, there have been some new studies of Turán-type questions for
edge-ordered graphs (done, for example, by Gerbner, Methuku, Nagy,
Pálvölgyi, Tardos, Vizer).

An edge-ordered graph G is a pair (G ,≺) where G is a graph and ≺ is a
total ordering of its edges.

(H ,≺1) is an edge-ordered subgraph of (G ,≺2) if H ⊆ G and ≺1⊆≺2.

What can we say about their Ramsey numbers?

Not much yet, our work is still in progress.
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Lexicographic edge-ordered Ramsey numbers

How to define Ramsey numbers for edge-ordered graphs?

For every N ∈ N, there might be edge-ordered G and KN such that G is
not an edge-ordered subgraph of KN .

An edge-ordered graph (G , <lex) is lexicographically edge-ordered if
there is a bijection f : V → [|V |] such that all edges uv and wt of G
with f (u) < f (v) and f (w) < f (t) satisfy uv <lex wt if and only if
f (u) < f (w) or (f (u) = f (w) & f (v) < f (t)).

First idea: restrict ourselves to a special class of edge-ordered graphs.

The lexicographic edge-ordered Ramsey number Rlex(G ) of G is the
minimum N such that every 2-coloring of (KN , <lex) contains
monochromatic copy of (G , <lex) as an edge-ordered subgraph.
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Bounds on lexicographic edge-ordered Ramsey numbers

Clearly, R(G ) ≤ Rlex(G ) ≤ R(K|V (G)|) for every graph G .

In fact, Rlex(G ) ≤ R(G) for each G and its ordering G induced by f .
So, for a bounded-degree G , Rlex(G ) is at most quasi-polynomial.
We can do better sometimes (edge-ordered stars, matchings).
Special case: edge-monotone path Pn.

Recall: R(Pn) = (n − 1)2 + 1 (the Erdős–Szekeres Lemma).

Proposition 2 (B., Vizer, 2018++)

For every n ∈ N,
Rlex(Pn) ≤ O(n).

Proof is based on an estimate of R((Pn,≺mix)).
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Edge-ordered Ramsey numbers

Using a “greedy embedding technique”, we obtain the following result.

Theorem 7 (B., Vizer, 2018++)

Let H be a d-degenerate edge-ordered graph on n vertices and let G be a
bipartite graph on n vertices. Then there exists edge-ordered K2nd+3 such
that every red-blue coloring of its edges contains either a blue H or a red
(G , <lex) as an edge-ordered subgraph.

Should we consider a broader class of edge-ordered graphs?

The edge-ordered Ramsey number Re(G) of an edge-ordered graph G is
the minimum N such that there exists edge-ordered KN such that for
every 2-coloring of the edges of KN contains monochromatic copy of G
as an edge-ordered subgraph.

Clearly, Re((G , <lex)) ≤ Rlex(G ) for every G .

Are these numbers finite for every edge-ordered G?



Edge-ordered Ramsey numbers

Using a “greedy embedding technique”, we obtain the following result.

Theorem 7 (B., Vizer, 2018++)

Let H be a d-degenerate edge-ordered graph on n vertices and let G be a
bipartite graph on n vertices. Then there exists edge-ordered K2nd+3 such
that every red-blue coloring of its edges contains either a blue H or a red
(G , <lex) as an edge-ordered subgraph.

Should we consider a broader class of edge-ordered graphs?

The edge-ordered Ramsey number Re(G) of an edge-ordered graph G is
the minimum N such that there exists edge-ordered KN such that for
every 2-coloring of the edges of KN contains monochromatic copy of G
as an edge-ordered subgraph.

Clearly, Re((G , <lex)) ≤ Rlex(G ) for every G .

Are these numbers finite for every edge-ordered G?



Edge-ordered Ramsey numbers

Using a “greedy embedding technique”, we obtain the following result.

Theorem 7 (B., Vizer, 2018++)

Let H be a d-degenerate edge-ordered graph on n vertices and let G be a
bipartite graph on n vertices. Then there exists edge-ordered K2nd+3 such
that every red-blue coloring of its edges contains either a blue H or a red
(G , <lex) as an edge-ordered subgraph.

Should we consider a broader class of edge-ordered graphs?

The edge-ordered Ramsey number Re(G) of an edge-ordered graph G is
the minimum N such that there exists edge-ordered KN such that for
every 2-coloring of the edges of KN contains monochromatic copy of G
as an edge-ordered subgraph.

Clearly, Re((G , <lex)) ≤ Rlex(G ) for every G .

Are these numbers finite for every edge-ordered G?



Edge-ordered Ramsey numbers

Using a “greedy embedding technique”, we obtain the following result.

Theorem 7 (B., Vizer, 2018++)

Let H be a d-degenerate edge-ordered graph on n vertices and let G be a
bipartite graph on n vertices. Then there exists edge-ordered K2nd+3 such
that every red-blue coloring of its edges contains either a blue H or a red
(G , <lex) as an edge-ordered subgraph.

Should we consider a broader class of edge-ordered graphs?

The edge-ordered Ramsey number Re(G) of an edge-ordered graph G is
the minimum N such that there exists edge-ordered KN such that for
every 2-coloring of the edges of KN contains monochromatic copy of G
as an edge-ordered subgraph.

Clearly, Re((G , <lex)) ≤ Rlex(G ) for every G .

Are these numbers finite for every edge-ordered G?



Edge-ordered Ramsey numbers

Using a “greedy embedding technique”, we obtain the following result.

Theorem 7 (B., Vizer, 2018++)

Let H be a d-degenerate edge-ordered graph on n vertices and let G be a
bipartite graph on n vertices. Then there exists edge-ordered K2nd+3 such
that every red-blue coloring of its edges contains either a blue H or a red
(G , <lex) as an edge-ordered subgraph.

Should we consider a broader class of edge-ordered graphs?

The edge-ordered Ramsey number Re(G) of an edge-ordered graph G is
the minimum N such that there exists edge-ordered KN such that for
every 2-coloring of the edges of KN contains monochromatic copy of G
as an edge-ordered subgraph.

Clearly, Re((G , <lex)) ≤ Rlex(G ) for every G .

Are these numbers finite for every edge-ordered G?



Edge-ordered Ramsey numbers

Using a “greedy embedding technique”, we obtain the following result.

Theorem 7 (B., Vizer, 2018++)

Let H be a d-degenerate edge-ordered graph on n vertices and let G be a
bipartite graph on n vertices. Then there exists edge-ordered K2nd+3 such
that every red-blue coloring of its edges contains either a blue H or a red
(G , <lex) as an edge-ordered subgraph.

Should we consider a broader class of edge-ordered graphs?

The edge-ordered Ramsey number Re(G) of an edge-ordered graph G is
the minimum N such that there exists edge-ordered KN such that for
every 2-coloring of the edges of KN contains monochromatic copy of G
as an edge-ordered subgraph.

Clearly, Re((G , <lex)) ≤ Rlex(G ) for every G .

Are these numbers finite for every edge-ordered G?



Edge-ordered Ramsey numbers

Using a “greedy embedding technique”, we obtain the following result.

Theorem 7 (B., Vizer, 2018++)

Let H be a d-degenerate edge-ordered graph on n vertices and let G be a
bipartite graph on n vertices. Then there exists edge-ordered K2nd+3 such
that every red-blue coloring of its edges contains either a blue H or a red
(G , <lex) as an edge-ordered subgraph.

Should we consider a broader class of edge-ordered graphs?

The edge-ordered Ramsey number Re(G) of an edge-ordered graph G is
the minimum N such that there exists edge-ordered KN such that for
every 2-coloring of the edges of KN contains monochromatic copy of G
as an edge-ordered subgraph.

Clearly, Re((G , <lex)) ≤ Rlex(G ) for every G .

Are these numbers finite for every edge-ordered G?



Bounds on edge-ordered Ramsey numbers

It follows from the Graham–Rotschild theorem that Re(G) is finite for
every edge-ordered G.

However, the obtained bound is enormous.

By a result of Shelah (1988), the bound is primitive recursive.

Can we get better bounds?

Theorem 8 (B., Vizer, 2018++)

Let H be an edge-ordered graph on n vertices and let G be a bipartite
edge-ordered graph with n vertices and m edges. Then there exists
edge-ordered KN with N ≤ 2O(nm log m) such that every red-blue coloring of
its edges contains either a blue H or a red G as an edge-ordered subgraph.

No nontrivial lower bounds.
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Open problems

We have more questions than answers.

Some open problems:

Can we improve upper bounds on edge-ordered Ramsey numbers?
(At least for some classes of edge-ordered graphs.)
Are there asymptotically better lower bounds on edge-ordered
Ramsey numbers of complete graphs than the ones obtained from
lower bounds on Ramsey numbers?
Do edge-ordered Ramsey numbers grow significantly faster than
ordered Ramsey numbers for some edge-ordered graphs?

Thank you.



Open problems

We have more questions than answers.

Some open problems:

Can we improve upper bounds on edge-ordered Ramsey numbers?
(At least for some classes of edge-ordered graphs.)
Are there asymptotically better lower bounds on edge-ordered
Ramsey numbers of complete graphs than the ones obtained from
lower bounds on Ramsey numbers?
Do edge-ordered Ramsey numbers grow significantly faster than
ordered Ramsey numbers for some edge-ordered graphs?

Thank you.



Open problems

We have more questions than answers.

Some open problems:

Can we improve upper bounds on edge-ordered Ramsey numbers?
(At least for some classes of edge-ordered graphs.)
Are there asymptotically better lower bounds on edge-ordered
Ramsey numbers of complete graphs than the ones obtained from
lower bounds on Ramsey numbers?
Do edge-ordered Ramsey numbers grow significantly faster than
ordered Ramsey numbers for some edge-ordered graphs?

Thank you.



Open problems

We have more questions than answers.

Some open problems:

Can we improve upper bounds on edge-ordered Ramsey numbers?
(At least for some classes of edge-ordered graphs.)

Are there asymptotically better lower bounds on edge-ordered
Ramsey numbers of complete graphs than the ones obtained from
lower bounds on Ramsey numbers?
Do edge-ordered Ramsey numbers grow significantly faster than
ordered Ramsey numbers for some edge-ordered graphs?

Thank you.



Open problems

We have more questions than answers.

Some open problems:

Can we improve upper bounds on edge-ordered Ramsey numbers?
(At least for some classes of edge-ordered graphs.)
Are there asymptotically better lower bounds on edge-ordered
Ramsey numbers of complete graphs than the ones obtained from
lower bounds on Ramsey numbers?

Do edge-ordered Ramsey numbers grow significantly faster than
ordered Ramsey numbers for some edge-ordered graphs?

Thank you.



Open problems

We have more questions than answers.

Some open problems:

Can we improve upper bounds on edge-ordered Ramsey numbers?
(At least for some classes of edge-ordered graphs.)
Are there asymptotically better lower bounds on edge-ordered
Ramsey numbers of complete graphs than the ones obtained from
lower bounds on Ramsey numbers?
Do edge-ordered Ramsey numbers grow significantly faster than
ordered Ramsey numbers for some edge-ordered graphs?

Thank you.



Open problems

We have more questions than answers.

Some open problems:

Can we improve upper bounds on edge-ordered Ramsey numbers?
(At least for some classes of edge-ordered graphs.)
Are there asymptotically better lower bounds on edge-ordered
Ramsey numbers of complete graphs than the ones obtained from
lower bounds on Ramsey numbers?
Do edge-ordered Ramsey numbers grow significantly faster than
ordered Ramsey numbers for some edge-ordered graphs?

Thank you.


