Ramsey numbers of edge-ordered graphs

Martin Balko and Máté Vizer

Charles University, Prague, Czech republic

November 21, 2018

• For a graph G, the Ramsey number R(G) of G is the smallest integer such that each 2-coloring of the edges of $K_{R(G)}$ contains a monochromatic copy of G as a subgraph.

- For a graph *G*, the Ramsey number R(*G*) of *G* is the smallest integer such that each 2-coloring of the edges of $K_{R(G)}$ contains a monochromatic copy of *G* as a subgraph.
- We would like to know R(G) as precisely as possible.

- For a graph *G*, the Ramsey number R(*G*) of *G* is the smallest integer such that each 2-coloring of the edges of $K_{R(G)}$ contains a monochromatic copy of *G* as a subgraph.
- We would like to know R(G) as precisely as possible.
- We discuss new variants of R(G) and their estimates.

- For a graph *G*, the Ramsey number R(*G*) of *G* is the smallest integer such that each 2-coloring of the edges of $K_{R(G)}$ contains a monochromatic copy of *G* as a subgraph.
- We would like to know R(G) as precisely as possible.
- We discuss new variants of R(G) and their estimates.
- Outline:

- For a graph G, the Ramsey number R(G) of G is the smallest integer such that each 2-coloring of the edges of $K_{R(G)}$ contains a monochromatic copy of G as a subgraph.
- We would like to know R(G) as precisely as possible.
- We discuss new variants of R(G) and their estimates.
- Outline:
 - 1. Ramsey numbers: graphs, some known (classical) bounds;

- For a graph G, the Ramsey number R(G) of G is the smallest integer such that each 2-coloring of the edges of $K_{R(G)}$ contains a monochromatic copy of G as a subgraph.
- We would like to know R(G) as precisely as possible.
- We discuss new variants of R(G) and their estimates.
- Outline:
 - 1. Ramsey numbers: graphs, some known (classical) bounds;
 - Ordered Ramsey numbers: ordered vertex sets, studied, but still relatively new;

- For a graph G, the Ramsey number R(G) of G is the smallest integer such that each 2-coloring of the edges of $K_{R(G)}$ contains a monochromatic copy of G as a subgraph.
- We would like to know R(G) as precisely as possible.
- We discuss new variants of R(G) and their estimates.
- Outline:
 - 1. Ramsey numbers: graphs, some known (classical) bounds;
 - 2. Ordered Ramsey numbers: ordered vertex sets, studied, but still relatively new;
 - 3. Edge-ordered Ramsey numbers: ordered sets of edges, newly introduced variant, our work is still in progress.

- For a graph G, the Ramsey number R(G) of G is the smallest integer such that each 2-coloring of the edges of $K_{R(G)}$ contains a monochromatic copy of G as a subgraph.
- We would like to know R(G) as precisely as possible.
- We discuss new variants of R(G) and their estimates.
- Outline:
 - 1. Ramsey numbers: graphs, some known (classical) bounds;
 - Ordered Ramsey numbers: ordered vertex sets, studied, but still relatively new;
 - **3.** Edge-ordered Ramsey numbers: ordered sets of edges, newly introduced variant, our work is still in progress.
- Unexplored area, a lot of interesting (and maybe difficult) problems.

Part 1 Ramsey numbers

• Obtaining good estimates on R(G) is notoriously hard.

- Obtaining good estimates on R(G) is notoriously hard.
- Except of very special cases, no exact formulas are known.

- Obtaining good estimates on R(G) is notoriously hard.
- Except of very special cases, no exact formulas are known.
- Classical bounds of Erdős and Szekeres: $2^{n/2} \leq R(K_n) \leq 2^{2n}$.

- Obtaining good estimates on R(G) is notoriously hard.
- Except of very special cases, no exact formulas are known.
- Classical bounds of Erdős and Szekeres: $2^{n/2} \leq R(K_n) \leq 2^{2n}$.
- Smaller-term improvements obtained by Spencer and Conlon.

- Obtaining good estimates on R(G) is notoriously hard.
- Except of very special cases, no exact formulas are known.
- Classical bounds of Erdős and Szekeres: $2^{n/2} \leq R(K_n) \leq 2^{2n}$.
- Smaller-term improvements obtained by Spencer and Conlon.

- Obtaining good estimates on R(G) is notoriously hard.
- Except of very special cases, no exact formulas are known.
- Classical bounds of Erdős and Szekeres: $2^{n/2} \leq R(K_n) \leq 2^{2n}$.
- Smaller-term improvements obtained by Spencer and Conlon.

Theorem 1 (Chvátal, Rödl, Szemerédi, Trotter, 1983)

Every graph G on n vertices with bounded maximum degree satisfies

 $\mathsf{R}(G) \leq O(n).$

- Obtaining good estimates on R(G) is notoriously hard.
- Except of very special cases, no exact formulas are known.
- Classical bounds of Erdős and Szekeres: $2^{n/2} \leq R(K_n) \leq 2^{2n}$.
- Smaller-term improvements obtained by Spencer and Conlon.

Theorem 1 (Chvátal, Rödl, Szemerédi, Trotter, 1983)

Every graph G on n vertices with bounded maximum degree satisfies

 $\mathsf{R}(G) \leq O(n).$

• The linear upper bound holds even for graphs with bounded degeneracy (a solution of the Erdős–Burr conjecture by Lee, 2015).

• Thus very sparse graphs have small Ramsey numbers.

- Thus very sparse graphs have small Ramsey numbers.
- How about dense graphs?

- Thus very sparse graphs have small Ramsey numbers.
- How about dense graphs?
- If *n*-vertex G has density less than 1, is $R(G) \leq (4 \varepsilon)^n$ for some $\varepsilon > 0$?

- Thus very sparse graphs have small Ramsey numbers.
- How about dense graphs?
- If *n*-vertex *G* has density less than 1, is $R(G) \leq (4 \varepsilon)^n$ for some $\varepsilon > 0$?

Theorem 2 (Conlon, 2012)

Every graph G = (V, E) on n vertices with edge-density $\rho = |E|/n^2$ satisfies

 $\mathsf{R}(G) \leq 2^{O(\sqrt{\rho}\log{(2/\rho)n})}.$

- Thus very sparse graphs have small Ramsey numbers.
- How about dense graphs?
- If *n*-vertex G has density less than 1, is $R(G) \leq (4 \varepsilon)^n$ for some $\varepsilon > 0$?

Theorem 2 (Conlon, 2012)

Every graph G = (V, E) on n vertices with edge-density $\rho = |E|/n^2$ satisfies $R(G) \le 2^{O(\sqrt{\rho} \log (2/\rho)n)}.$

• Close to optimal, as a standard argument shows

 $\mathsf{R}(G) \geq 2^{\sqrt{\rho}n/4}$

for some *n*-vertex graphs *G* with edge-density ρ .

Part 2

An ordered graph G is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its vertices.

- An ordered graph G is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- An ordered graph G is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- An ordered graph G is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- An ordered graph G is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

• The ordered Ramsey number $\overline{\mathbb{R}}(\mathcal{G})$ of an ordered graph \mathcal{G} is the minimum N such that every 2-coloring of the edges of \mathcal{K}_N contains monochromatic copy of \mathcal{G} as an ordered subgraph.

- An ordered graph G is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- The ordered Ramsey number $\overline{\mathbb{R}}(\mathcal{G})$ of an ordered graph \mathcal{G} is the minimum N such that every 2-coloring of the edges of \mathcal{K}_N contains monochromatic copy of \mathcal{G} as an ordered subgraph.
- Note that $R(G) \leq \overline{R}(G) \leq R(K_{|V(G)|})$ for every G and its ordering G.

- An ordered graph G is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its vertices.
- (H, \prec_1) is an ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- The ordered Ramsey number $\overline{\mathbb{R}}(\mathcal{G})$ of an ordered graph \mathcal{G} is the minimum N such that every 2-coloring of the edges of \mathcal{K}_N contains monochromatic copy of \mathcal{G} as an ordered subgraph.
- Note that $R(G) \leq \overline{R}(G) \leq R(K_{|V(G)|})$ for every G and its ordering G.

Motivation

Motivation

• Motivation for studying ordered Ramsey numbers came from discrete geometry, especially due to its connections to the Erdős–Szekeres Lemma and the Erdős–Szekeres Theorem.
• Motivation for studying ordered Ramsey numbers came from discrete geometry, especially due to its connections to the Erdős–Szekeres Lemma and the Erdős–Szekeres Theorem.

The Erdős–Szekeres Lemma (Erdős, Szekeres, 1935)

For every $n \in \mathbb{N}$, every sequence of $(n-1)^2 + 1$ distinct numbers contains an increasing or a decreasing subsequence of length n. This bound is tight.

• Motivation for studying ordered Ramsey numbers came from discrete geometry, especially due to its connections to the Erdős–Szekeres Lemma and the Erdős–Szekeres Theorem.

The Erdős–Szekeres Lemma (Erdős, Szekeres, 1935)

For every $n \in \mathbb{N}$, every sequence of $(n-1)^2 + 1$ distinct numbers contains an increasing or a decreasing subsequence of length n. This bound is tight.

• The monotone path \mathcal{P}_n is an ordered graph with *n* vertices and edges formed by pairs of consecutive vertices.

• Motivation for studying ordered Ramsey numbers came from discrete geometry, especially due to its connections to the Erdős–Szekeres Lemma and the Erdős–Szekeres Theorem.

The Erdős–Szekeres Lemma (Erdős, Szekeres, 1935)

For every $n \in \mathbb{N}$, every sequence of $(n-1)^2 + 1$ distinct numbers contains an increasing or a decreasing subsequence of length n. This bound is tight.

• The monotone path \mathcal{P}_n is an ordered graph with *n* vertices and edges formed by pairs of consecutive vertices.

 \sim

• Motivation for studying ordered Ramsey numbers came from discrete geometry, especially due to its connections to the Erdős–Szekeres Lemma and the Erdős–Szekeres Theorem.

The Erdős–Szekeres Lemma (Erdős, Szekeres, 1935)

For every $n \in \mathbb{N}$, every sequence of $(n-1)^2 + 1$ distinct numbers contains an increasing or a decreasing subsequence of length n. This bound is tight.

• The monotone path \mathcal{P}_n is an ordered graph with *n* vertices and edges formed by pairs of consecutive vertices.

$$\sim$$

• The Erdős–Szekeres Lemma is a corollary of the following result.

• Motivation for studying ordered Ramsey numbers came from discrete geometry, especially due to its connections to the Erdős–Szekeres Lemma and the Erdős–Szekeres Theorem.

The Erdős–Szekeres Lemma (Erdős, Szekeres, 1935)

For every $n \in \mathbb{N}$, every sequence of $(n-1)^2 + 1$ distinct numbers contains an increasing or a decreasing subsequence of length n. This bound is tight.

• The monotone path \mathcal{P}_n is an ordered graph with n vertices and edges formed by pairs of consecutive vertices.

$$\sim$$

• The Erdős–Szekeres Lemma is a corollary of the following result.

Proposition 1

For every $n \in \mathbb{N}$, we have

 $\overline{\mathsf{R}}(\mathcal{P}_n) = (n-1)^2 + 1.$

• Ordered Ramsey numbers for graphs are relatively understood.

- Ordered Ramsey numbers for graphs are relatively understood.
- They can behave very differently than classical Ramsey numbers.

- Ordered Ramsey numbers for graphs are relatively understood.
- They can behave very differently than classical Ramsey numbers.

Theorem 3 (B., Cibulka, Kynčl, Král, 2015)

There are arbitrarily large ordered matchings \mathcal{M}_n on n vertices such that

$$\overline{\mathsf{R}}(\mathcal{M}_n) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}.$$

- Ordered Ramsey numbers for graphs are relatively understood.
- They can behave very differently than classical Ramsey numbers.

Theorem 3 (B., Cibulka, Kynčl, Král, 2015)

There are arbitrarily large ordered matchings \mathcal{M}_n on n vertices such that

$$\overline{\mathsf{R}}(\mathcal{M}_n) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}.$$

• True for almost every ordered matching (Conlon, Fox, Lee, Sudakov).

- Ordered Ramsey numbers for graphs are relatively understood.
- They can behave very differently than classical Ramsey numbers.

Theorem 3 (B., Cibulka, Kynčl, Král, 2015)

There are arbitrarily large ordered matchings \mathcal{M}_n on n vertices such that

$$\overline{\mathsf{R}}(\mathcal{M}_n) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}.$$

- True for almost every ordered matching (Conlon, Fox, Lee, Sudakov).
- Contrasts with the result of Chvátal, Rödl, Szemerédi, Trotter.

- Ordered Ramsey numbers for graphs are relatively understood.
- They can behave very differently than classical Ramsey numbers.

Theorem 3 (B., Cibulka, Kynčl, Král, 2015)

There are arbitrarily large ordered matchings \mathcal{M}_n on n vertices such that

$$\overline{\mathsf{R}}(\mathcal{M}_n) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}.$$

- True for almost every ordered matching (Conlon, Fox, Lee, Sudakov).
- Contrasts with the result of Chvátal, Rödl, Szemerédi, Trotter.
- There are 3-regular graphs G such that no ordering \mathcal{G} has linear $\overline{\mathsf{R}}(\mathcal{G})$.

- Ordered Ramsey numbers for graphs are relatively understood.
- They can behave very differently than classical Ramsey numbers.

Theorem 3 (B., Cibulka, Kynčl, Král, 2015)

There are arbitrarily large ordered matchings \mathcal{M}_n on *n* vertices such that

$$\overline{\mathsf{R}}(\mathcal{M}_n) \geq n^{\Omega\left(\frac{\log n}{\log \log n}\right)}.$$

- True for almost every ordered matching (Conlon, Fox, Lee, Sudakov).
- Contrasts with the result of Chvátal, Rödl, Szemerédi, Trotter.
- There are 3-regular graphs G such that no ordering \mathcal{G} has linear $\overline{\mathsf{R}}(\mathcal{G})$.

Theorem 4 (B., Jelínek, Valtr, 2016)

For every $d \ge 3$, almost every *d*-regular graph *G* on *n* vertices satisfies $\overline{\mathbb{R}}(\mathcal{G}) \ge \frac{n^{3/2-1/d}}{4 \log n \log \log n}$ for every ordering \mathcal{G} of *G*.

 Although R(G) is almost always superpolynomial, there are classes of ordered graphs with polynomial ordered Ramsey numbers.

- Although R(G) is almost always superpolynomial, there are classes of ordered graphs with polynomial ordered Ramsey numbers.
- The interval chromatic number χ_≺(G) of (G, ≺) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.

- Although R(G) is almost always superpolynomial, there are classes of ordered graphs with polynomial ordered Ramsey numbers.
- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.

$$\chi_{\prec_{mon}}(P_n)=n$$

- Although R(G) is almost always superpolynomial, there are classes of ordered graphs with polynomial ordered Ramsey numbers.
- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.

$$\chi_{\prec_{mix}}(P_n)=2$$

- Although R(G) is almost always superpolynomial, there are classes of ordered graphs with polynomial ordered Ramsey numbers.
- The interval chromatic number χ_≺(G) of (G, ≺) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.

$$\chi_{\prec_{mix}}(P_n)=2$$

Theorem 5 (B., Cibulka, Kynčl, Král, 2015)

For all *k* and *p* every *k*-degenerate ordered graph $\mathcal{G} = (\mathcal{G}, \prec)$ with *n* vertices and $\chi_{\prec}(\mathcal{G}) = p$ satisfies

 $\overline{\mathsf{R}}(\mathcal{G}) \leq n^{O(k)^{\log p}}.$

- Although R(G) is almost always superpolynomial, there are classes of ordered graphs with polynomial ordered Ramsey numbers.
- The interval chromatic number $\chi_{\prec}(G)$ of (G, \prec) is the minimum number of intervals V(G) can be partitioned into so that no two adjacent vertices are in the same interval.

$$\chi_{\prec_{mix}}(P_n)=2$$

Theorem 5 (B., Cibulka, Kynčl, Král, 2015)

For all k and p every k-degenerate ordered graph $\mathcal{G} = (\mathcal{G}, \prec)$ with n vertices and $\chi_{\prec}(\mathcal{G}) = p$ satisfies

$$\overline{\mathsf{R}}(\mathcal{G}) \leq n^{O(k)^{\log p}}.$$

• Improved to $\overline{\mathsf{R}}(\mathcal{G}) \leq n^{O(k \log p)}$ (Conlon, Fox, Lee, and Sudakov).

• Conlon et al. derived a bound that works even for dense ordered graphs.

• Conlon et al. derived a bound that works even for dense ordered graphs.

Theorem 6 (Conlon, Fox, Lee, and Sudakov, 2015)

For every ordered graph \mathcal{G} with *n* vertices and degeneracy *d*,

• Conlon et al. derived a bound that works even for dense ordered graphs.

Theorem 6 (Conlon, Fox, Lee, and Sudakov, 2015)

For every ordered graph \mathcal{G} with *n* vertices and degeneracy *d*,

 $\overline{\mathsf{R}}(\mathcal{G}) \leq 2^{O(d \log^2 (2n/d))}.$

• To summarize:

• Conlon et al. derived a bound that works even for dense ordered graphs.

Theorem 6 (Conlon, Fox, Lee, and Sudakov, 2015)

For every ordered graph \mathcal{G} with *n* vertices and degeneracy *d*,

- To summarize:
 - Ordered Ramsey numbers are at most exponential.

• Conlon et al. derived a bound that works even for dense ordered graphs.

Theorem 6 (Conlon, Fox, Lee, and Sudakov, 2015)

For every ordered graph \mathcal{G} with *n* vertices and degeneracy *d*,

- To summarize:
 - Ordered Ramsey numbers are at most exponential.
 - They are at most quasi-polynomial for bounded-degree graphs.

• Conlon et al. derived a bound that works even for dense ordered graphs.

Theorem 6 (Conlon, Fox, Lee, and Sudakov, 2015)

For every ordered graph \mathcal{G} with *n* vertices and degeneracy *d*,

- To summarize:
 - Ordered Ramsey numbers are at most exponential.
 - They are at most quasi-polynomial for bounded-degree graphs.
 - For almost all ordered graphs \mathcal{G} , the numbers $\overline{\mathsf{R}}(\mathcal{G})$ are at least super-polynomial.

• Conlon et al. derived a bound that works even for dense ordered graphs.

Theorem 6 (Conlon, Fox, Lee, and Sudakov, 2015)

For every ordered graph \mathcal{G} with *n* vertices and degeneracy *d*,

- To summarize:
 - Ordered Ramsey numbers are at most exponential.
 - They are at most quasi-polynomial for bounded-degree graphs.
 - For almost all ordered graphs G, the numbers R(G) are at least super-polynomial.
- There is still a gap between the lower bound $n^{\Omega(\log n/\log \log n)}$ and the upper bound $n^{O(\log n)}$ for ordered Ramsey numbers of ordered graphs on n vertices with bounded degeneracy.

Part 3

Edge-ordered Ramsey numbers

 Recently, there have been some new studies of Turán-type questions for edge-ordered graphs (done, for example, by Gerbner, Methuku, Nagy, Pálvölgyi, Tardos, Vizer).

- Recently, there have been some new studies of Turán-type questions for edge-ordered graphs (done, for example, by Gerbner, Methuku, Nagy, Pálvölgyi, Tardos, Vizer).
- An edge-ordered graph 𝔅 is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its edges.

- Recently, there have been some new studies of Turán-type questions for edge-ordered graphs (done, for example, by Gerbner, Methuku, Nagy, Pálvölgyi, Tardos, Vizer).
- An edge-ordered graph 𝔅 is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its edges.
- (H, \prec_1) is an edge-ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- Recently, there have been some new studies of Turán-type questions for edge-ordered graphs (done, for example, by Gerbner, Methuku, Nagy, Pálvölgyi, Tardos, Vizer).
- An edge-ordered graph 𝔅 is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its edges.
- (H, \prec_1) is an edge-ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- Recently, there have been some new studies of Turán-type questions for edge-ordered graphs (done, for example, by Gerbner, Methuku, Nagy, Pálvölgyi, Tardos, Vizer).
- An edge-ordered graph 𝔅 is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its edges.
- (H, \prec_1) is an edge-ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- Recently, there have been some new studies of Turán-type questions for edge-ordered graphs (done, for example, by Gerbner, Methuku, Nagy, Pálvölgyi, Tardos, Vizer).
- An edge-ordered graph 𝔅 is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its edges.
- (H, \prec_1) is an edge-ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

• What can we say about their Ramsey numbers?
Edge-ordered graphs

- Recently, there have been some new studies of Turán-type questions for edge-ordered graphs (done, for example, by Gerbner, Methuku, Nagy, Pálvölgyi, Tardos, Vizer).
- An edge-ordered graph 𝔅 is a pair (G, ≺) where G is a graph and ≺ is a total ordering of its edges.
- (H, \prec_1) is an edge-ordered subgraph of (G, \prec_2) if $H \subseteq G$ and $\prec_1 \subseteq \prec_2$.

- What can we say about their Ramsey numbers?
- Not much yet, our work is still in progress.

• How to define Ramsey numbers for edge-ordered graphs?

- How to define Ramsey numbers for edge-ordered graphs?
- For every $N \in \mathbb{N}$, there might be edge-ordered \mathfrak{G} and \mathfrak{K}_N such that \mathfrak{G} is not an edge-ordered subgraph of \mathfrak{K}_N .

- How to define Ramsey numbers for edge-ordered graphs?
- For every $N \in \mathbb{N}$, there might be edge-ordered \mathfrak{G} and \mathfrak{K}_N such that \mathfrak{G} is not an edge-ordered subgraph of \mathfrak{K}_N .

- How to define Ramsey numbers for edge-ordered graphs?
- For every $N \in \mathbb{N}$, there might be edge-ordered \mathfrak{G} and \mathfrak{K}_N such that \mathfrak{G} is not an edge-ordered subgraph of \mathfrak{K}_N .

An edge-ordered graph (G, <_{lex}) is lexicographically edge-ordered if there is a bijection f: V → [|V|] such that all edges uv and wt of G with f(u) < f(v) and f(w) < f(t) satisfy uv <_{lex} wt if and only if f(u) < f(w) or (f(u) = f(w) & f(v) < f(t)).

- How to define Ramsey numbers for edge-ordered graphs?
- For every $N \in \mathbb{N}$, there might be edge-ordered \mathfrak{G} and \mathfrak{K}_N such that \mathfrak{G} is not an edge-ordered subgraph of \mathfrak{K}_N .

- An edge-ordered graph $(G, <_{lex})$ is lexicographically edge-ordered if there is a bijection $f: V \to [|V|]$ such that all edges uv and wt of Gwith f(u) < f(v) and f(w) < f(t) satisfy $uv <_{lex} wt$ if and only if f(u) < f(w) or (f(u) = f(w) & f(v) < f(t)).
- First idea: restrict ourselves to a special class of edge-ordered graphs.

- How to define Ramsey numbers for edge-ordered graphs?
- For every $N \in \mathbb{N}$, there might be edge-ordered \mathfrak{G} and \mathfrak{K}_N such that \mathfrak{G} is not an edge-ordered subgraph of \mathfrak{K}_N .

- An edge-ordered graph $(G, <_{lex})$ is lexicographically edge-ordered if there is a bijection $f: V \to [|V|]$ such that all edges uv and wt of Gwith f(u) < f(v) and f(w) < f(t) satisfy $uv <_{lex} wt$ if and only if f(u) < f(w) or (f(u) = f(w) & f(v) < f(t)).
- First idea: restrict ourselves to a special class of edge-ordered graphs.
- The lexicographic edge-ordered Ramsey number $\overline{\mathbb{R}}_{lex}(G)$ of G is the minimum N such that every 2-coloring of $(K_N, <_{lex})$ contains monochromatic copy of $(G, <_{lex})$ as an edge-ordered subgraph.

• Clearly, $\mathsf{R}(G) \leq \overline{\mathsf{R}}_{lex}(G) \leq \mathsf{R}(\mathcal{K}_{|V(G)|})$ for every graph G.

- Clearly, $\mathsf{R}(G) \leq \overline{\mathsf{R}}_{lex}(G) \leq \mathsf{R}(\mathcal{K}_{|V(G)|})$ for every graph G.
- In fact, $\overline{R}_{lex}(G) \leq \overline{R}(G)$ for each G and its ordering G induced by f.

- Clearly, $\mathsf{R}(G) \leq \overline{\mathsf{R}}_{lex}(G) \leq \mathsf{R}(\mathcal{K}_{|V(G)|})$ for every graph **G**.
- In fact, $\overline{R}_{lex}(G) \leq \overline{R}(G)$ for each G and its ordering G induced by f.
- So, for a bounded-degree G, $\overline{R}_{lex}(G)$ is at most quasi-polynomial.

- Clearly, $\mathsf{R}(G) \leq \overline{\mathsf{R}}_{lex}(G) \leq \mathsf{R}(\mathcal{K}_{|V(G)|})$ for every graph **G**.
- In fact, $\overline{R}_{lex}(G) \leq \overline{R}(G)$ for each G and its ordering G induced by f.
- So, for a bounded-degree G, $\overline{R}_{lex}(G)$ is at most quasi-polynomial.
- We can do better sometimes (edge-ordered stars, matchings).

- Clearly, $\mathsf{R}(G) \leq \overline{\mathsf{R}}_{lex}(G) \leq \mathsf{R}(K_{|V(G)|})$ for every graph **G**.
- In fact, $\overline{R}_{lex}(G) \leq \overline{R}(G)$ for each G and its ordering G induced by f.
- So, for a bounded-degree G, $\overline{R}_{lex}(G)$ is at most quasi-polynomial.
- We can do better sometimes (edge-ordered stars, matchings).
- Special case: edge-monotone path \mathfrak{P}_n .

- Clearly, $\mathsf{R}(G) \leq \overline{\mathsf{R}}_{lex}(G) \leq \mathsf{R}(\mathcal{K}_{|V(G)|})$ for every graph **G**.
- In fact, $\overline{R}_{lex}(G) \leq \overline{R}(G)$ for each G and its ordering G induced by f.
- So, for a bounded-degree G, $\overline{R}_{lex}(G)$ is at most quasi-polynomial.
- We can do better sometimes (edge-ordered stars, matchings).
- Special case: edge-monotone path \mathfrak{P}_n .

• Recall: $\overline{\mathsf{R}}(\mathcal{P}_n) = (n-1)^2 + 1$ (the Erdős–Szekeres Lemma).

- Clearly, $\mathsf{R}(G) \leq \overline{\mathsf{R}}_{lex}(G) \leq \mathsf{R}(\mathcal{K}_{|V(G)|})$ for every graph **G**.
- In fact, $\overline{R}_{lex}(G) \leq \overline{R}(G)$ for each G and its ordering G induced by f.
- So, for a bounded-degree G, $\overline{R}_{lex}(G)$ is at most quasi-polynomial.
- We can do better sometimes (edge-ordered stars, matchings).
- Special case: edge-monotone path \mathfrak{P}_n .

• Recall: $\overline{\mathsf{R}}(\mathcal{P}_n) = (n-1)^2 + 1$ (the Erdős–Szekeres Lemma).

Proposition 2 (B., Vizer, 2018++)For every $n \in \mathbb{N}$, $\overline{\mathsf{R}}_{lex}(\mathfrak{P}_n) \leq O(n).$

- Clearly, $\mathsf{R}(G) \leq \overline{\mathsf{R}}_{lex}(G) \leq \mathsf{R}(\mathcal{K}_{|V(G)|})$ for every graph **G**.
- In fact, $\overline{R}_{lex}(G) \leq \overline{R}(G)$ for each G and its ordering G induced by f.
- So, for a bounded-degree G, $\overline{R}_{lex}(G)$ is at most quasi-polynomial.
- We can do better sometimes (edge-ordered stars, matchings).
- Special case: edge-monotone path \mathfrak{P}_n .

$$\overbrace{1 \ 2 \ 3 \ 4 \ 5 \ 6}^{\mathcal{P}_n} \overbrace{1 \ 2 \ 3 \ 4 \ 5 \ 6}^{1 \ 2 \ 3 \ 4 \ 5 \ 6}$$

• Recall: $\overline{\mathsf{R}}(\mathcal{P}_n) = (n-1)^2 + 1$ (the Erdős–Szekeres Lemma).

$\begin{array}{l} \text{Proposition 2 (B., Vizer, 2018++)}\\ \text{For every } n \in \mathbb{N},\\ \overline{\mathsf{R}}_{lex}(\mathfrak{P}_n) \leq O(n). \end{array}$

• Proof is based on an estimate of $\overline{R}((P_n, \prec_{mix}))$.

- Clearly, $\mathsf{R}(G) \leq \overline{\mathsf{R}}_{lex}(G) \leq \mathsf{R}(K_{|V(G)|})$ for every graph **G**.
- In fact, $\overline{R}_{lex}(G) \leq \overline{R}(G)$ for each G and its ordering G induced by f.
- So, for a bounded-degree G, $\overline{R}_{lex}(G)$ is at most quasi-polynomial.
- We can do better sometimes (edge-ordered stars, matchings).
- Special case: edge-monotone path \mathfrak{P}_n .

• Recall: $\overline{\mathsf{R}}(\mathcal{P}_n) = (n-1)^2 + 1$ (the Erdős–Szekeres Lemma).

 $\begin{array}{l} \text{Proposition 2 (B., Vizer, 2018++)}\\ \text{For every } n \in \mathbb{N},\\ \overline{\mathsf{R}}_{lex}(\mathfrak{P}_n) \leq O(n). \end{array}$

• Proof is based on an estimate of $\overline{R}((P_n, \prec_{mix}))$.

• Using a "greedy embedding technique", we obtain the following result.

• Using a "greedy embedding technique", we obtain the following result.

Theorem 7 (B., Vizer, 2018++)

• Using a "greedy embedding technique", we obtain the following result.

Theorem 7 (B., Vizer, 2018++)

Let \mathfrak{H} be a *d*-degenerate edge-ordered graph on *n* vertices and let *G* be a bipartite graph on *n* vertices. Then there exists edge-ordered $\mathfrak{K}_{2n^{d+3}}$ such that every red-blue coloring of its edges contains either a blue \mathfrak{H} or a red $(G, <_{lex})$ as an edge-ordered subgraph.

• Should we consider a broader class of edge-ordered graphs?

• Using a "greedy embedding technique", we obtain the following result.

Theorem 7 (B., Vizer, 2018++)

- Should we consider a broader class of edge-ordered graphs?
- The edge-ordered Ramsey number $\overline{\mathbb{R}}_{e}(\mathfrak{G})$ of an edge-ordered graph \mathfrak{G} is the minimum N such that there exists edge-ordered \mathfrak{K}_{N} such that for every 2-coloring of the edges of \mathfrak{K}_{N} contains monochromatic copy of \mathfrak{G} as an edge-ordered subgraph.

• Using a "greedy embedding technique", we obtain the following result.

Theorem 7 (B., Vizer, 2018++)

- Should we consider a broader class of edge-ordered graphs?
- The edge-ordered Ramsey number $\overline{\mathbb{R}}_{e}(\mathfrak{G})$ of an edge-ordered graph \mathfrak{G} is the minimum N such that there exists edge-ordered \mathfrak{K}_{N} such that for every 2-coloring of the edges of \mathfrak{K}_{N} contains monochromatic copy of \mathfrak{G} as an edge-ordered subgraph.
- Clearly, $\overline{\mathsf{R}}_{e}((G, <_{\mathit{lex}})) \leq \overline{\mathsf{R}}_{\mathit{lex}}(G)$ for every G.

• Using a "greedy embedding technique", we obtain the following result.

Theorem 7 (B., Vizer, 2018++)

- Should we consider a broader class of edge-ordered graphs?
- The edge-ordered Ramsey number $\overline{\mathbb{R}}_{e}(\mathfrak{G})$ of an edge-ordered graph \mathfrak{G} is the minimum N such that there exists edge-ordered \mathfrak{K}_{N} such that for every 2-coloring of the edges of \mathfrak{K}_{N} contains monochromatic copy of \mathfrak{G} as an edge-ordered subgraph.
- Clearly, $\overline{\mathsf{R}}_{e}((G, <_{\mathit{lex}})) \leq \overline{\mathsf{R}}_{\mathit{lex}}(G)$ for every G.
- Are these numbers finite for every edge-ordered \mathfrak{G} ?

 It follows from the Graham-Rotschild theorem that R
_e(𝔅) is finite for every edge-ordered 𝔅.

- It follows from the Graham-Rotschild theorem that R
 _e(𝔅) is finite for every edge-ordered 𝔅.
- However, the obtained bound is enormous.

- It follows from the Graham-Rotschild theorem that R
 _e(𝔅) is finite for every edge-ordered 𝔅.
- However, the obtained bound is enormous.
- By a result of Shelah (1988), the bound is primitive recursive.

- It follows from the Graham-Rotschild theorem that R
 _e(𝔅) is finite for every edge-ordered 𝔅.
- However, the obtained bound is enormous.
- By a result of Shelah (1988), the bound is primitive recursive.
- Can we get better bounds?

- It follows from the Graham-Rotschild theorem that R_e(G) is finite for every edge-ordered G.
- However, the obtained bound is enormous.
- By a result of Shelah (1988), the bound is primitive recursive.
- Can we get better bounds?

Theorem 8 (B., Vizer, 2018++)

Let \mathfrak{H} be an edge-ordered graph on n vertices and let \mathfrak{G} be a bipartite edge-ordered graph with n vertices and m edges. Then there exists edge-ordered \mathfrak{K}_N with $N \leq 2^{O(nm \log m)}$ such that every red-blue coloring of its edges contains either a blue \mathfrak{H} or a red \mathfrak{G} as an edge-ordered subgraph.

- It follows from the Graham-Rotschild theorem that R_e(G) is finite for every edge-ordered G.
- However, the obtained bound is enormous.
- By a result of Shelah (1988), the bound is primitive recursive.
- Can we get better bounds?

Theorem 8 (B., Vizer, 2018++)

Let \mathfrak{H} be an edge-ordered graph on n vertices and let \mathfrak{G} be a bipartite edge-ordered graph with n vertices and m edges. Then there exists edge-ordered \mathfrak{K}_N with $N \leq 2^{O(nm \log m)}$ such that every red-blue coloring of its edges contains either a blue \mathfrak{H} or a red \mathfrak{G} as an edge-ordered subgraph.

• No nontrivial lower bounds.

• We have more questions than answers.

- We have more questions than answers.
- Some open problems:

- We have more questions than answers.
- Some open problems:
 - Can we improve upper bounds on edge-ordered Ramsey numbers? (At least for some classes of edge-ordered graphs.)
Open problems

- We have more questions than answers.
- Some open problems:
 - Can we improve upper bounds on edge-ordered Ramsey numbers? (At least for some classes of edge-ordered graphs.)
 - Are there asymptotically better lower bounds on edge-ordered Ramsey numbers of complete graphs than the ones obtained from lower bounds on Ramsey numbers?

Open problems

- We have more questions than answers.
- Some open problems:
 - Can we improve upper bounds on edge-ordered Ramsey numbers? (At least for some classes of edge-ordered graphs.)
 - Are there asymptotically better lower bounds on edge-ordered Ramsey numbers of complete graphs than the ones obtained from lower bounds on Ramsey numbers?
 - Do edge-ordered Ramsey numbers grow significantly faster than ordered Ramsey numbers for some edge-ordered graphs?

Open problems

- We have more questions than answers.
- Some open problems:
 - Can we improve upper bounds on edge-ordered Ramsey numbers? (At least for some classes of edge-ordered graphs.)
 - Are there asymptotically better lower bounds on edge-ordered Ramsey numbers of complete graphs than the ones obtained from lower bounds on Ramsey numbers?
 - Do edge-ordered Ramsey numbers grow significantly faster than ordered Ramsey numbers for some edge-ordered graphs?

Thank you.