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Random groups

m Let S be the set of finite abelian p-groups.

m One can define a probability meausure 1 on S with
Yaesh(A) =1
m In particular since

[e o]

_ 1 _in—1
AeS i=1

one can define the Cohen-Lenstra distribution on p-groups

7
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Random groups

m An example:

m Let p1, be Haar measure on Z, extended to M, (Z,) the set of
n x n matrices over Z

m Then

lim p, ({M € M, (Zp) | cokerM = A}) = p(A).

n—00



Random groups

m /i is characterized by the moments of the functions
fa(X) = |Sur (X,A)| forall Ae S.

If v is any probability measure on S such that [ fadv =1 for all
A€ S then v =p.




The function field setting

m Let C be a curve defined over a finite field I, which is a finite
cover of Pf_

m Consider the Jacobian Jac (C) (Fq) = Div® (C) /P (C). This
is a finite group.

m Let M, be the set of hyperelliptic curves over [y of genus g
branched at cc.



The function field setting

m We can consider, for A€ S and fixed g

]{c € Mg | Jac(C), (Fq) = AH
(M|

Hg (A) =

m Does limg_;o 15 (A) exist?

m Function field analog of Cohen-Lenstra conjectures:

lim g (A) = 1 (A)

g—o0



Ellenberg-Venkatesh-Westerland

m As a consequence of proving bounds for dimensions of
homology groups of Hurwitz spaces they were able to prove

Theorem 1 (Ellenberg-Venkatesh-Westerland (2016))

Fix Ac S. Let 6 = limsup, ., g (A) and

0g = liminfg_ o pg (A). Then limg—o0 63‘5 =n/|AutA| = u (A).



What about R-modules?

m Let R be a local ring containing Z, which is finitely generated
over Zp. Let Fr be its residue field.

m Let Sg be the set of finite p™-torsion R-modules

m Lipnowski and Tsimerman defined a measure g on Sg,
extending the Cohen-Lenstra measure: For any integer N
define ur n to be the measure on Sg coming from cokernels
of Haar-random matrices over R. Then ug = limy_,o0 ttr -



What about R-modules?

® (R is supported on a subset of modules Tg C Sg and for
M € Tg, ugr is defined by

"R
M) =

where ng = [[72; (1 - |IFR|7">.
m Similarly to u, g is also determined by the moments
st fadv =1 for all A € Sg.



Finite etale group schemes

m Let F be the Frobenius on a curve C
m We can ask about the distribution of Jac (C) /P (F) as an
R =7Z,[F]/P (F) module for certain polynomials P.

m The category of Z, [Gal (Fq/Fq)]-modules is equivalent to
the category of etale p-group schemes defined over [F,,.



An extension of EVW

m For G a finite etale p-group scheme over Fy let Avg (G, g,q)
be the average number of surjections from Jac (C) to G (as
group-schemes) over all C € M,.

Theorem 2 (Lipnowski-Tsimerman(2019))

Let a;r = limsup,__,, Avg (G, g, q) and

ag = liminfg_,o Avg (G, g,q). Then limg, afvt =1



Comparison of the results

m Notice EVW's theorem is a statement about ji, (A) whereas
Lipnowski-Tsimerman is a statement about Avg (G, g, q).

m Analogous to the group setting, for R = Z, [X] /P (X) and
A € Sg define

Hc € Mg | Jac(C), /P (F) = AH
et My |

m By definition Avg (G, g,q) = st falig R-



From moments to measures

m To go from Avg (G, g, q) to g r (A) need a result of the
form: convergence of moments = convergence of measures.

m In the setting of groups:

Theorem 3 (Ellenberg-Venkatesh-Westerland (2016))

If {vn} is a sequence of probability measures on S such that
[s fadv, — 1 for all A€ S then v, (A) — p(A) forall Ae S.



From moments to measures

m Key fact needed to prove Theorem 3:

Proposition (Ellenberg-Venkatesh-Westerland (2016))

For any € > 0 and A € S there exists a finite set T C S and c € N
such that for all X with |X| > ¢

2aert far (X)
fa(X) < e'%.

m Integrating the above gives f|X|>C fa(X) dug < € for all large
enough g, that is there is no 'escape of mass’.



Proof sketch

Proof sketch

m Define A’ to be an s-enlargement of A if there is a surjection
A" — A with kernel of size p°. Let E; (A) be the set of
s-enlargements of A.

m Show that if X is large enough then there exists A" € E; (A)

far (X) = (p— 1) fa(X)



Proof sketch

Proof sketch continued

m Then for any X large enough

> wcea) ta (X)

|Es (A)] > fa (X) =2 (p—1)° fa(X)

|Es (A)]
m It is easy to see |Es (A)| < P (s +rkA) where P (n) is the
number of partitions of n and that
P(s+1kA)/(p—1)° — 0 as s — oo. So let

e=|E(A)l/(p—1)°.



The property of 'few enlargements’

m This proof mostly works for R-modules, except: it is not
necessarily true that |Es (A)| is sub-exponential in s for
A € Sg.

m Say a ring R has the property of few enlargements if Eg (M)
grows sub-exponentially in s for every R-module M



Obtaining a bound

m Obtaining a bound (assume R = Z, [X] /P (X) for some
polynomial P):

m Suppose | C Zp [X] is an ideal such that S = Z, [X] /I has
few-enlargements. Then so does R, = R/I* for any k.

m Since Ry has few-enlargements we have limg__.oo tig,R, = IR,
by Lipnowski-Tsimerman

m Furthermore limy_, oo ptR, = R-



Obtaining a bound

m It follows from the definition of gz g that if R — R, and M is
an Re-module then pg g (M) < g g, (M).
m Hence
MR, = g“_r>noo Mg Ry > gmm Mg R

and taking limit in k gives

> lim .
UR PR Hg R



A different approach

m Modify EVW's proof to not use all enlargements

m Let N5 (A) C Es (A) be the minimal subset satisfying: for all
M € Sg large enough, if f4 (M) > 0 then fa (M) > 0 for
some A" € Ns (A).

m Let ng (A) = |Ns (A)].



Theorem 1 for R-modules

Theorem (K.)

If ns (A)/(JFgr| —1)° — 0 as s —> oo then Theorem 1 is true for
Sk.

If R is a PID then ng (A) =rkA+ 2.

In general

ns (A) < (tkA+s(s+1)/2)

X Mg]l\élls)((A) |Hom (R, Endz (M)) / ~ Autz (M)|

for A e Sk.



Theorem 1 for R-modules

m As before we want to show for any A € Sg and € > 0 that

/ fa(X)dug <e
[X|>c

for all large enough g.

m Partition the set of X into disjoint subsets T4/ indexed by
A" € Ns (A). Tar consists of elements X satisfying
far (X) = g (X) fa(X) and g (X) > (|Fr| — 1)



Theorem 1 for R-modules

proof sketch continued

m For some § > 0

1
Jup 0= 32 | oyt X

A'ENs(A)
Ns (A)
<« )14
S

<€

since ns (A) /g (X) < ns (A)/ (|Fr| —1)° — 0 as s — oo.

Question: What is the growth of
|Hom (R, Endz (M)) / ~ Autz (M)| as s — o0.



Thank you!



