Completion and deficiency problems

Adam Zsolt Wagner

ETH Zürich

Joint work with Rajko Nenadov and Benny Sudakov

Steiner triple sytems

Steiner triple system:

- a family of 3-element subsets of X (called blocks),
- every pair of distinct elements is contained in precisely one block.

Steiner triple sytems

Steiner triple system:

- a family of 3-element subsets of X (called blocks),
- every pair of distinct elements is contained in precisely one block.

```
Theorem (Kirkman, 1847)
A STS of order \(n\) exists if and only if \(n \equiv 1\) or \(3(\bmod 6)\).
```


Steiner triple system:

- a family of 3-element subsets of X (called blocks),
- every pair of distinct elements is contained in precisely one block.

Theorem (Kirkman, 1847)
A STS of order n exists if and only if $n \equiv 1$ or $3(\bmod 6)$.

Partial Steiner triple system:

- a family of 3 -element subsets of X,
- every pair of distinct elements is contained in at most one block.

A STS \mathcal{F} on set X is embedded in a STS \mathcal{F}^{\prime} on set X^{\prime} if $\mathcal{F} \subset \mathcal{F}^{\prime}$ and $X \subset X^{\prime}$.

Embeddings of STSs

A STS \mathcal{F} on set X is embedded in a STS \mathcal{F}^{\prime} on set X^{\prime} if $\mathcal{F} \subset \mathcal{F}^{\prime}$ and $X \subset X^{\prime}$.

Not every partial STS of order n can be embedded in a complete STS of the same order.

Embeddings of STSs

A STS \mathcal{F} on set X is embedded in a STS \mathcal{F}^{\prime} on set X^{\prime} if $\mathcal{F} \subset \mathcal{F}^{\prime}$ and $X \subset X^{\prime}$.

Not every partial STS of order n can be embedded in a complete STS of the same order. Not even if $n \equiv 1$ or $3(\bmod 6)$.

Embeddings of STSs

A STS \mathcal{F} on set X is embedded in a STS \mathcal{F}^{\prime} on set X^{\prime} if $\mathcal{F} \subset \mathcal{F}^{\prime}$ and $X \subset X^{\prime}$.

Not every partial STS of order n can be embedded in a complete STS of the same order. Not even if $n \equiv 1$ or $3(\bmod 6)$.

Embeddings of STSs

A STS \mathcal{F} on set X is embedded in a STS \mathcal{F}^{\prime} on set X^{\prime} if $\mathcal{F} \subset \mathcal{F}^{\prime}$ and $X \subset X^{\prime}$.

Not every partial STS of order n can be embedded in a complete STS of the same order. Not even if $n \equiv 1$ or $3(\bmod 6)$.

Embeddings of STSs

A STS \mathcal{F} on set X is embedded in a STS \mathcal{F}^{\prime} on set X^{\prime} if $\mathcal{F} \subset \mathcal{F}^{\prime}$ and $X \subset X^{\prime}$.

Not every partial STS of order n can be embedded in a complete STS of the same order. Not even if $n \equiv 1$ or $3(\bmod 6)$.

Embeddings of STSs

A STS \mathcal{F} on set X is embedded in a STS \mathcal{F}^{\prime} on set X^{\prime} if $\mathcal{F} \subset \mathcal{F}^{\prime}$ and $X \subset X^{\prime}$.

Not every partial STS of order n can be embedded in a complete STS of the same order. Not even if $n \equiv 1$ or $3(\bmod 6)$.

Embeddings of STSs

A (partial or complete) STS \mathcal{F} on set X is embedded in a (partial or complete) STS \mathcal{F}^{\prime} on set X^{\prime} if $\mathcal{F} \subset \mathcal{F}^{\prime}$ and $X \subset X^{\prime}$.

Not every partial STS of order n can be embedded in a complete STS of the same order. Not even if $n \equiv 1$ or $3(\bmod 6)$.

Small embeddings

Theorem (Treash, 1968)
Every partial STS has a finite completion.

Small embeddings

Theorem (Treash, 1968)

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n ' for all $n^{\prime} \geq 2 n+1$.

Small embeddings

Theorem (Treash, 1968)

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n^{\prime} for all $n^{\prime} \geq 2 n+1$.

- Lindner (1975): $6 n+3$ is enough.

Small embeddings

Theorem (Treash, 1968)

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n^{\prime} for all $n^{\prime} \geq 2 n+1$.

- Lindner (1975): $6 n+3$ is enough.
- Andersen, Hilton, Mendelsohn (1978): $4 n$ is enough.

Small embeddings

Theorem (Treash, 1968)

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n^{\prime} for all $n^{\prime} \geq 2 n+1$.

- Lindner (1975): $6 n+3$ is enough.
- Andersen, Hilton, Mendelsohn (1978): $4 n$ is enough.
- Hilton, Rodger (1987): $2 n+1$ is enough for STS of index $4 k$.

Small embeddings

Theorem (Treash, 1968)

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n^{\prime} for all $n^{\prime} \geq 2 n+1$.

- Lindner (1975): $6 n+3$ is enough.
- Andersen, Hilton, Mendelsohn (1978): $4 n$ is enough.
- Hilton, Rodger (1987): $2 n+1$ is enough for STS of index $4 k$.
- Bryant (2004): $3 n-2$ is enough.

Small embeddings

Theorem (Treash, 1968)

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n^{\prime} for all $n^{\prime} \geq 2 n+1$.

- Lindner (1975): $6 n+3$ is enough.
- Andersen, Hilton, Mendelsohn (1978): $4 n$ is enough.
- Hilton, Rodger (1987): $2 n+1$ is enough for STS of index $4 k$.
- Bryant (2004): $3 n-2$ is enough.
- Bryant, Horsley (2009): $2 n+1$ is enough.

When is $n^{\prime}<2 n+1$ enough?

- Colbourn ('83): it is NP-complete to determine whether a partial STS has an embedding of order less than $2 n+1$.

When is $n^{\prime}<2 n+1$ enough?

- Colbourn ('83): it is NP-complete to determine whether a partial STS has an embedding of order less than $2 n+1$.
- Colbourn-Colbourn-Rosa ('83), Bryant ('02), Bryant-Maenhaut-Quinn-Webb ('04), Horsley ('04)
- Colbourn ('83): it is NP-complete to determine whether a partial STS has an embedding of order less than $2 n+1$.
- Colbourn-Colbourn-Rosa ('83), Bryant ('02), Bryant-Maenhaut-Quinn-Webb ('04), Horsley ('04)
- Horsley ('04): if a partial STS has at most $n^{2} / 50$ blocks then it has a completion of order $8 n / 5$.

When is $n^{\prime}<2 n+1$ enough?

- Colbourn ('83): it is NP-complete to determine whether a partial STS has an embedding of order less than $2 n+1$.
- Colbourn-Colbourn-Rosa ('83), Bryant ('02), Bryant-Maenhaut-Quinn-Webb ('04), Horsley ('04)
- Horsley ('04): if a partial STS has at most $n^{2} / 50$ blocks then it has a completion of order $8 n / 5$.

Question

Given that a partial STS has r blocks, how many extra vertices do we need to add to create a completion?

Question

Given that a partial STS has r blocks, how many extra vertices do we need to add to create a completion?

Question

Given that a partial STS has r blocks, how many extra vertices do we need to add to create a completion?

Theorem (Nenadov-Sudakov-W)

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.
Theorem (Nenadov-Sudakov-W)
If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Theorem (Nenadov-Sudakov-W)
 If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Sharp if $|\mathcal{F}| \geq 2 n$:

Theorem (Nenadov-Sudakov-W)

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Sharp if $|\mathcal{F}| \geq 2 n$:

Theorem (Nenadov-Sudakov-W)

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Sharp if $|\mathcal{F}| \geq 2 n$:

Theorem (Nenadov-Sudakov-W)

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Sharp if $|\mathcal{F}| \geq 2 n$:

Theorem (Nenadov-Sudakov-W)

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Sharp if $|\mathcal{F}| \geq 2 n$:

Theorem (Nenadov-Sudakov-W)

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Sharp if $|\mathcal{F}| \geq 2 n$:

Theorem (Nenadov-Sudakov-W)

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Sharp if $|\mathcal{F}| \geq 2 n$:

Theorem (Nenadov-Sudakov-W)

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Sharp if $|\mathcal{F}| \geq 2 n$:

Completing (n, k)-designs

(n, k)-design:

- a family of k-element subsets of [n],
- every pair of distinct elements is contained in precisely one block.

Completing (n, k)-designs

(n, k)-design:

- a family of k-element subsets of [n],
- every pair of distinct elements is contained in precisely one block.

Question

Given that a partial (n, k)-design has r blocks, how many extra vertices do we need to add to create a completion?

Completing (n, k)-designs

Question

Given that a partial (n, k)-design has r blocks, how many extra vertices do we need to add to create a completion?

Completing (n, k)-designs

Question

Given that a partial (n, k)-design has r blocks, how many extra vertices do we need to add to create a completion?

Theorem (Nenadov-Sudakov-W)

For every $k \geq 3$ there exist absolute constants $\epsilon, n_{0}>0$ such that the following holds. If \mathcal{F} is a partial (n, k)-design of order $n \geq n_{0}$ with $|\mathcal{F}| \leq \epsilon n^{2}$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+7 k^{2} \sqrt{|\mathcal{F}|}$.

Latin squares

Latin square: every element of [n] appears exactly once in each row, column.

4	5	1	2	3
5	1	2	3	4
1	2	3	4	5
2	3	4	5	1
3	4	5	1	2

Figure: Leonhard Euler 1707-1783

Latin squares

Partial Latin square: every element of [n] appears at most once in each row, column.

Partial Latin square: every element of [n] appears at most once in each row, column.
Not every partial Latin square can be completed to a full Latin square:

$\mathbf{1}$	
	$\mathbf{2}$

Latin squares

Partial Latin square: every element of [n] appears at most once in each row, column.
Not every partial Latin square can be completed to a full Latin square:

$\mathbf{1}$	
	$\mathbf{2}$

But by adding some rows, columns sometimes they can!

$\mathbf{1}$	3	2
3	$\mathbf{2}$	1
2	1	3

Latin squares

Partial Latin square: every element of [n] appears at most once in each row, column.
Not every partial Latin square can be completed to a full Latin square:

$\mathbf{1}$	
	2

But by adding some rows, columns sometimes they can!

$\mathbf{1}$	3	2
3	$\mathbf{2}$	1
2	1	3

Can one always complete a partial Latin square by adding rows/columns?

Completing partial Latin squares, history

- Marshall, Hall (1945), Ryser(1951): If an r by n rectangle is filled up completely, it can be extended to an n by n Latin square.

Completing partial Latin squares, history

- Marshall, Hall (1945), Ryser(1951): If an r by n rectangle is filled up completely, it can be extended to an n by n Latin square.
- Evans (1960), Lindner (1970), Hilton (1971), Cruse (1973): An n by n partial Latin square can be embedded in a $2 n$ by $2 n$ Latin square, this is sharp.

Completing partial Latin squares, history

- Marshall, Hall (1945), Ryser(1951): If an r by n rectangle is filled up completely, it can be extended to an n by n Latin square.
- Evans (1960), Lindner (1970), Hilton (1971), Cruse (1973): An n by n partial Latin square can be embedded in a $2 n$ by $2 n$ Latin square, this is sharp.
- Colbourn (1982): Completing partial Latin squares without adding rows/columns is NP-complete

Completing partial Latin squares, history

- Marshall, Hall (1945), Ryser(1951): If an r by n rectangle is filled up completely, it can be extended to an n by n Latin square.
- Evans (1960), Lindner (1970), Hilton (1971), Cruse (1973): An n by n partial Latin square can be embedded in a $2 n$ by $2 n$ Latin square, this is sharp.
- Colbourn (1982): Completing partial Latin squares without adding rows/columns is NP-complete

Question

Can we improve the $2 n$ in some cases?

When less than $2 n$ is enough

Daykin, Häggkvist (1983) conjecture: if each row, column, symbol is used at most $n / 4$ times then it can be completed without adding rows/columns. Chetwynd and Häggkvist (1985), Gustavsson (1991), Bartlett (2014), Barber, Kühn, Lo, Osthus, Taylor (2017): true if $n / 4$ replaced by $n / 25$.

When less than $2 n$ is enough

Daykin, Häggkvist (1983) conjecture: if each row, column, symbol is used at most $n / 4$ times then it can be completed without adding rows/columns. Chetwynd and Häggkvist (1985), Gustavsson (1991), Bartlett (2014), Barber, Kühn, Lo, Osthus, Taylor (2017): true if $n / 4$ replaced by $n / 25$.

Question

Given the number r of entries, how many rows/columns do we need to add?

When less than $2 n$ is enough

Daykin, Häggkvist (1983) conjecture: if each row, column, symbol is used at most $n / 4$ times then it can be completed without adding rows/columns. Chetwynd and Häggkvist (1985), Gustavsson (1991), Bartlett (2014), Barber, Kühn, Lo, Osthus, Taylor (2017): true if $n / 4$ replaced by $n / 25$.

Question

Given the number r of entries, how many rows/columns do we need to add?

Theorem (Nenadov-Sudakov-W)

If L is a partial Latin square of order $n \geq n_{0}$ with $|L|$ entries, then L has an embedding of order $n+O(\sqrt{|L|})$.

This is sharp up to constant. Similar results for completion of a sequence of orthogonal Latin squares.

Theorem

If \mathcal{F} is a partial Steiner triple system of order $n \geq n_{0}$ with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Proof

Theorem

If \mathcal{F} is a partial Steiner triple system of order $n \geq n_{0}$ with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Equivalently: G is obtained from K_{n} by removing $|\mathcal{F}|$ triangles. Want to show that by adding $\sqrt{|\mathcal{F}|}$ full degree vertices to G, the graph G^{\prime} has a K_{3}-decomposition.

Proof

Theorem

If \mathcal{F} is a partial Steiner triple system of order $n \geq n_{0}$ with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Equivalently: G is obtained from K_{n} by removing $|\mathcal{F}|$ triangles. Want to show that by adding $\sqrt{|\mathcal{F}|}$ full degree vertices to G, the graph G^{\prime} has a K_{3}-decomposition.

Goal: apply Gustavsson's theorem. If minimum degree at least $(1-\gamma)\left|V\left(G^{\prime}\right)\right|$ then G^{\prime} has K_{3}-decomposition.

Proof

Theorem

If \mathcal{F} is a partial Steiner triple system of order $n \geq n_{0}$ with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Equivalently: G is obtained from K_{n} by removing $|\mathcal{F}|$ triangles. Want to show that by adding $\sqrt{|\mathcal{F}|}$ full degree vertices to G, the graph G^{\prime} has a K_{3}-decomposition.

Goal: apply Gustavsson's theorem. If minimum degree at least $(1-\gamma)\left|V\left(G^{\prime}\right)\right|$ then G^{\prime} has K_{3}-decomposition.

Let B be the set of small degree (less than $n-\sqrt{|\mathcal{F}|}$) vertices in G. Cover all edges incident to B with triangles so that rest of the graph has high minimum degree.

Covering small degree vertices

Proof

Lemma

let G be a graph on vertex set $S \dot{U} T$ with $|T| \geq 50 \sqrt{r}$, such that the degree of every vertex satisfies $d(v) \geq|V(G)|-\sqrt{r}$. Then no matter how one removes at most r edges from $G[S]$, the resulting graph has a perfect matching.

Proof

Lemma

let G be a graph on vertex set $S \dot{U} T$ with $|T| \geq 50 \sqrt{r}$, such that the degree of every vertex satisfies $d(v) \geq|V(G)|-\sqrt{r}$. Then no matter how one removes at most r edges from $G[S]$, the resulting graph has a perfect matching.

Would like to use Dirac's theorem: if $\delta(G) \geq \frac{1}{2}|V(G)|$ then have perfect matching. But vertices in S may have small degree.

Proof

Lemma

let G be a graph on vertex set $S \dot{\cup} T$ with $|T| \geq 50 \sqrt{r}$, such that the degree of every vertex satisfies $d(v) \geq|V(G)|-\sqrt{r}$. Then no matter how one removes at most r edges from $G[S]$, the resulting graph has a perfect matching.

Would like to use Dirac's theorem: if $\delta(G) \geq \frac{1}{2}|V(G)|$ then have perfect matching. But vertices in S may have small degree.

Deal with low degree $(\leq|V(G)|-2 \sqrt{r})$ vertices in S one by one. There are only $2 \sqrt{r}$ such vertices, for each we find a vertex in their neighbourhood in T.

Proof

Lemma

let G be a graph on vertex set $S \dot{U} T$ with $|T| \geq 50 \sqrt{r}$, such that the degree of every vertex satisfies $d(v) \geq|V(G)|-\sqrt{r}$. Then no matter how one removes at most r edges from $G[S]$, the resulting graph has a perfect matching.

Would like to use Dirac's theorem: if $\delta(G) \geq \frac{1}{2}|V(G)|$ then have perfect matching. But vertices in S may have small degree.

Deal with low degree $(\leq|V(G)|-2 \sqrt{r})$ vertices in S one by one. There are only $2 \sqrt{r}$ such vertices, for each we find a vertex in their neighbourhood in T.

Remaining graph has minimum degree at least $|V(G)|-3 \sqrt{r} \geq \frac{1}{2}|V(G)|$.

A general class of completion problems

Our results suggest the following new class of extremal problems:

A general class of completion problems

Our results suggest the following new class of extremal problems:

- Given a global, spanning property \mathcal{P} (e.g. Hamiltonicity)

A general class of completion problems

Our results suggest the following new class of extremal problems:

- Given a global, spanning property \mathcal{P} (e.g. Hamiltonicity)
- Typically we can destroy \mathcal{P} by deleting very few edges from K_{n}, e.g. by isolating a vertex. So Turán problem not so interesting.

A general class of completion problems

Our results suggest the following new class of extremal problems:

- Given a global, spanning property \mathcal{P} (e.g. Hamiltonicity)
- Typically we can destroy \mathcal{P} by deleting very few edges from K_{n}, e.g. by isolating a vertex. So Turán problem not so interesting.
- Usual solution: add minimum degree condition to avoid these issues.

A general class of completion problems

Our results suggest the following new class of extremal problems:

- Given a global, spanning property \mathcal{P} (e.g. Hamiltonicity)
- Typically we can destroy \mathcal{P} by deleting very few edges from K_{n}, e.g. by isolating a vertex. So Turán problem not so interesting.
- Usual solution: add minimum degree condition to avoid these issues.
- We look at this problem differently.

The join $K * K_{t}$

Rephrasing our results

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+O(\sqrt{|\mathcal{F}|})$.

Theorem (Rephrased)

If one removes up to r edge-disjoint copies of K_{3} from K_{n} to obtain a graph G, then there exists some t with $t \leq C \sqrt{r}$ so that $G * K_{t}$ has a K_{3}-decomposition.

Rephrasing our results

If \mathcal{F} is a partial (n, k)-design with $|\mathcal{F}| \leq \epsilon n^{2}$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+7 k^{2} \sqrt{|\mathcal{F}|}$.

Theorem (Rephrased)

If one removes up to $r \leq \varepsilon n^{2}$ edge-disjoint copies of K_{k} from K_{n} to obtain a graph G, then there exists some t with $t \leq 7 k^{2} \sqrt{r}$ so that $G * K_{t}$ has a K_{k}-decomposition.

Rephrasing our results

If \mathcal{F} is a partial (n, k)-design with $|\mathcal{F}| \leq \epsilon n^{2}$ blocks, then there exists an embedding of \mathcal{F} of order at most $n+7 k^{2} \sqrt{|\mathcal{F}|}$.

Theorem (Rephrased)

If one removes up to $r \leq \varepsilon n^{2}$ edge-disjoint copies of K_{k} from K_{n} to obtain a graph G, then there exists some t with $t \leq 7 k^{2} \sqrt{r}$ so that $G * K_{t}$ has a K_{k}-decomposition.

Latin squares results: multipartite analogues of these.

Definition

Given a property \mathcal{P} and graph G, the deficiency of G with respect to \mathcal{P} is the smallest t such that $G * K_{t}$ has property \mathcal{P}.

Definition

Given a property \mathcal{P} and graph G, the deficiency of G with respect to \mathcal{P} is the smallest t such that $G * K_{t}$ has property \mathcal{P}.

- Previous results: \mathcal{P} is K_{k}-decomposition

Definition

Given a property \mathcal{P} and graph G, the deficiency of G with respect to \mathcal{P} is the smallest t such that $G * K_{t}$ has property \mathcal{P}.

- Previous results: \mathcal{P} is K_{k}-decomposition
- Concept of deficiency is not completely new: Tutte-Berge formula.

Definition

Given a property \mathcal{P} and graph G, the deficiency of G with respect to \mathcal{P} is the smallest t such that $G * K_{t}$ has property \mathcal{P}.

- Previous results: \mathcal{P} is K_{k}-decomposition
- Concept of deficiency is not completely new: Tutte-Berge formula.
- We propose a systematic study of these problems

Examples: Hamiltonicity

$\mathcal{P}=$ Hamiltonicity: $\operatorname{def}(G, \mathcal{P})$ is smallest t such that $G * K_{t}$ is Hamiltonian

Examples: Hamiltonicity

$\mathcal{P}=$ Hamiltonicity: $\operatorname{def}(G, \mathcal{P})$ is smallest t such that $G * K_{t}$ is Hamiltonian

Question

Given that $G * K_{t}$ does not have a Hamiltonian cycle, at most how many edges can G have?

Examples: Hamiltonicity

$\mathcal{P}=$ Hamiltonicity: $\operatorname{def}(G, \mathcal{P})$ is smallest t such that $G * K_{t}$ is
Hamiltonian

Question

Given that $G * K_{t}$ does not have a Hamiltonian cycle, at most how many edges can G have?

Path cover number $\mu(G)$ is smallest number of vertex-disjoint paths that cover $V(G)$. Note: $\mu(G)=t \Longleftrightarrow G * K_{t}$ is Hamiltonian but $G * K_{t-1}$ is not.

Examples: Hamiltonicity

$\mathcal{P}=$ Hamiltonicity: $\operatorname{def}(G, \mathcal{P})$ is smallest t such that $G * K_{t}$ is Hamiltonian

Question

Given that $G * K_{t}$ does not have a Hamiltonian cycle, at most how many edges can G have?

Path cover number $\mu(G)$ is smallest number of vertex-disjoint paths that cover $V(G)$. Note: $\mu(G)=t \Longleftrightarrow G * K_{t}$ is Hamiltonian but $G * K_{t-1}$ is not.

Question (Rephrased)

Given $\mu(G)$, how large can $e(G)$ be?

Examples: Hamiltonicity

Question

Given that $G * K_{t}$ does not have a Hamiltonian cycle, at most how many edges can G have?

Theorem

plus an edge

$$
n+t \text { even } \quad n+t \text { odd }
$$

Prior work by Skupień (1974), we expanded on it.

Examples: K_{3}-factor

$\mathcal{P}=$ existence of a K_{3}-factor: $\operatorname{def}(G, \mathcal{P})$ is smallest t such that $G * K_{t}$ has K_{3}-factor

Examples: K_{3}-factor

$\mathcal{P}=$ existence of a K_{3}-factor: $\operatorname{def}(G, \mathcal{P})$ is smallest t such that $G * K_{t}$ has K_{3}-factor

Question

Given that $G * K_{t}$ does not have a K_{3}-factor (and $3 \mid n+t$), at most how many edges can G have?

Examples: K_{3}-factor

$\mathcal{P}=$ existence of a K_{3}-factor: $\operatorname{def}(G, \mathcal{P})$ is smallest t such that $G * K_{t}$ has K_{3}-factor

Question

Given that $G * K_{t}$ does not have a K_{3}-factor (and $3 \mid n+t$), at most how many edges can G have?

We solve this problem for $t \leq n / 1000$.

Theorem (Nenadov-Sudakov-W)

$\mathcal{P}=$ existence of a perfect matching: let \mathcal{H} be a k-uniform hypergraph, then $\operatorname{def}(\mathcal{H}, \mathcal{P})$ is smallest t such that $\mathcal{H} * K_{t}$ has perfect matching

Examples: perfect matching in hypergraphs

$\mathcal{P}=$ existence of a perfect matching: let \mathcal{H} be a k-uniform hypergraph, then $\operatorname{def}(\mathcal{H}, \mathcal{P})$ is smallest t such that $\mathcal{H} * K_{t}$ has perfect matching

Question

Given that $\mathcal{H} * K_{t}$ does not have a perfect matching, at most how many edges can \mathcal{H} have?

Examples: perfect matching in hypergraphs

$\mathcal{P}=$ existence of a perfect matching: let \mathcal{H} be a k-uniform hypergraph, then $\operatorname{def}(\mathcal{H}, \mathcal{P})$ is smallest t such that $\mathcal{H} * K_{t}$ has perfect matching

Question

Given that $\mathcal{H} * K_{t}$ does not have a perfect matching, at most how many edges can \mathcal{H} have?

This is equivalent to Erdős matching problem!

General problem

Pick a global property \mathcal{P}.

Question

Given that $G * K_{t}$ does not have \mathcal{P}, how many edges can G have?
E.g.

- K_{k}-decomposition,
- containing Hamilton cycle,
- containing power of Hamilton cycle,
- K_{k}-factor, etc.

