Completion and deficiency problems

Adam Zsolt Wagner

ETH Zürich

Joint work with Rajko Nenadov and Benny Sudakov

Adam Wagner (ETH Zürich)

Completion and deficiency problems

Banff, September 2019

Steiner triple system:

- a family of 3-element subsets of X (called blocks),
- every pair of distinct elements is contained in precisely one block.

Steiner triple system:

- a family of 3-element subsets of X (called blocks),
- every pair of distinct elements is contained in precisely one block.

Theorem (Kirkman, 1847)

A STS of order n exists if and only if $n \equiv 1$ or 3 (mod 6).

Steiner triple system:

- a family of 3-element subsets of X (called blocks),
- every pair of distinct elements is contained in precisely one block.

Theorem (Kirkman, 1847)

A STS of order n exists if and only if $n \equiv 1$ or 3 (mod 6).

Partial Steiner triple system:

- a family of 3-element subsets of X,
- every pair of distinct elements is contained in **at most** one block.

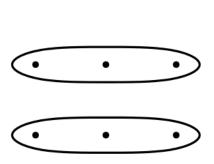
Embeddings of STSs

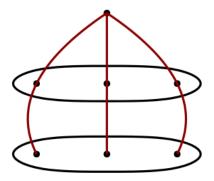
A STS \mathcal{F} on set X is **embedded** in a STS \mathcal{F}' on set X' if $\mathcal{F} \subset \mathcal{F}'$ and $X \subset X'$.

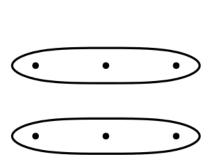
э

(日) (同) (三) (三)

Not every partial STS of order n can be embedded in a complete STS of the same order.

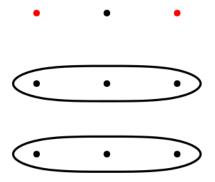




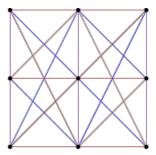


Embeddings of STSs

A STS \mathcal{F} on set X is **embedded** in a STS \mathcal{F}' on set X' if $\mathcal{F} \subset \mathcal{F}'$ and $X \subset X'$.



A (partial or complete) STS \mathcal{F} on set X is **embedded** in a (partial or complete) STS \mathcal{F}' on set X' if $\mathcal{F} \subset \mathcal{F}'$ and $X \subset X'$.



Every partial STS has a finite completion.

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n' for all $n' \ge 2n + 1$.

A 🖓 h

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n' for all $n' \ge 2n + 1$.

• Lindner (1975): 6n + 3 is enough.

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n' for all $n' \ge 2n + 1$.

- Lindner (1975): 6n + 3 is enough.
- Andersen, Hilton, Mendelsohn (1978): 4n is enough.

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n' for all $n' \ge 2n + 1$.

- Lindner (1975): 6n + 3 is enough.
- Andersen, Hilton, Mendelsohn (1978): 4*n* is enough.
- Hilton, Rodger (1987): 2n + 1 is enough for STS of index 4k.

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n' for all $n' \ge 2n + 1$.

- Lindner (1975): 6n + 3 is enough.
- Andersen, Hilton, Mendelsohn (1978): 4n is enough.
- Hilton, Rodger (1987): 2n + 1 is enough for STS of index 4k.
- Bryant (2004): 3*n* − 2 is enough.

Every partial STS has a finite completion.

Conjecture (Lindner, 1975)

Every partial STS of order n has a completion of order n' for all $n' \ge 2n + 1$.

- Lindner (1975): 6n + 3 is enough.
- Andersen, Hilton, Mendelsohn (1978): 4n is enough.
- Hilton, Rodger (1987): 2n + 1 is enough for STS of index 4k.
- Bryant (2004): 3*n* − 2 is enough.
- Bryant, Horsley (2009): 2n + 1 is enough.

- 4 同 6 4 日 6 4 日 6

• Colbourn ('83): it is NP-complete to determine whether a partial STS has an embedding of order less than 2n + 1.

- Colbourn ('83): it is NP-complete to determine whether a partial STS has an embedding of order less than 2n + 1.
- Colbourn–Colbourn–Rosa ('83), Bryant ('02), Bryant–Maenhaut–Quinn–Webb ('04), Horsley ('04)

- Colbourn ('83): it is NP-complete to determine whether a partial STS has an embedding of order less than 2n + 1.
- Colbourn–Colbourn–Rosa ('83), Bryant ('02), Bryant–Maenhaut–Quinn–Webb ('04), Horsley ('04)
- Horsley ('04): if a partial STS has at most $n^2/50$ blocks then it has a completion of order 8n/5.

- Colbourn ('83): it is NP-complete to determine whether a partial STS has an embedding of order less than 2n + 1.
- Colbourn–Colbourn–Rosa ('83), Bryant ('02), Bryant–Maenhaut–Quinn–Webb ('04), Horsley ('04)
- Horsley ('04): if a partial STS has at most $n^2/50$ blocks then it has a completion of order 8n/5.

Question

Given that a partial STS has r blocks, how many extra vertices do we need to add to create a completion?

Question

Given that a partial STS has r blocks, how many extra vertices do we need to add to create a completion?

Question

Given that a partial STS has r blocks, how many extra vertices do we need to add to create a completion?

Theorem (Nenadov–Sudakov–W)

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

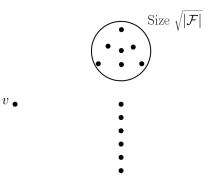
If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

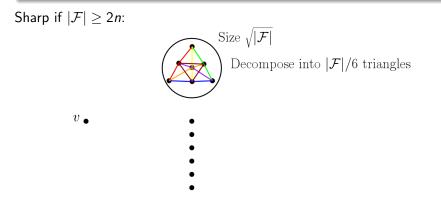
Sharp if $|\mathcal{F}| \geq 2n$:

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

Sharp if $|\mathcal{F}| \geq 2n$:

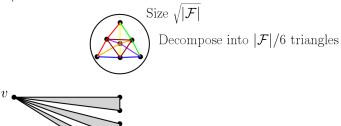


If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

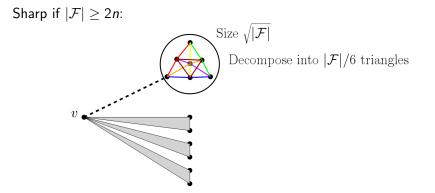


If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

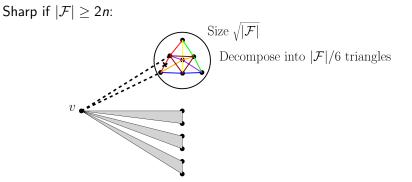
Sharp if $|\mathcal{F}| \geq 2n$:



If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

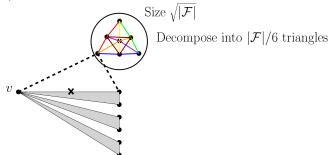


If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.



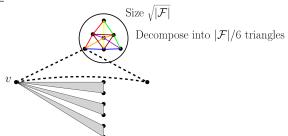
If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

Sharp if $|\mathcal{F}| \geq 2n$:



If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

Sharp if $|\mathcal{F}| \geq 2n$:



(n, k)-design:

- a family of k-element subsets of [n],
- every pair of distinct elements is contained in precisely one block.

(n, k)-design:

- a family of k-element subsets of [n],
- every pair of distinct elements is contained in precisely one block.

Question

Given that a partial (n, k)-design has r blocks, how many extra vertices do we need to add to create a completion?

Question

Given that a partial (n, k)-design has r blocks, how many extra vertices do we need to add to create a completion?

Question

Given that a partial (n, k)-design has r blocks, how many extra vertices do we need to add to create a completion?

Theorem (Nenadov–Sudakov–W)

For every $k \ge 3$ there exist absolute constants ϵ , $n_0 > 0$ such that the following holds. If \mathcal{F} is a partial (n, k)-design of order $n \ge n_0$ with $|\mathcal{F}| \le \epsilon n^2$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + 7k^2\sqrt{|\mathcal{F}|}$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Latin squares

Latin square: every element of [*n*] appears **exactly** once in each row, column.

4	5	1	2	3
5	1	2	3	4
1	2	3	4	5
2	3	4	5	1
3	4	5	1	2

Figure: Leonhard Euler 1707-1783

Adam Wagner (ETH Zürich)

Completion and deficiency problems

Banff, September 2019

Not every partial Latin square can be completed to a full Latin square:

Not every partial Latin square can be completed to a full Latin square:

But by adding some rows, columns sometimes they can!

1	3	2
3	2	1
2	1	3

Not every partial Latin square can be completed to a full Latin square:

But by adding some rows, columns sometimes they can!

1	3	2
3	2	1
2	1	3

Can one always complete a partial Latin square by adding rows/columns?

• Marshall, Hall (1945), Ryser(1951): If an *r* by *n* rectangle is filled up completely, it can be extended to an *n* by *n* Latin square.

- Marshall, Hall (1945), Ryser(1951): If an *r* by *n* rectangle is filled up completely, it can be extended to an *n* by *n* Latin square.
- Evans (1960), Lindner (1970), Hilton (1971), Cruse (1973): An *n* by *n* partial Latin square can be embedded in a 2*n* by 2*n* Latin square, this is sharp.

- Marshall, Hall (1945), Ryser(1951): If an *r* by *n* rectangle is filled up completely, it can be extended to an *n* by *n* Latin square.
- Evans (1960), Lindner (1970), Hilton (1971), Cruse (1973): An *n* by *n* partial Latin square can be embedded in a 2*n* by 2*n* Latin square, this is sharp.
- Colbourn (1982): Completing partial Latin squares without adding rows/columns is NP-complete

- Marshall, Hall (1945), Ryser(1951): If an *r* by *n* rectangle is filled up completely, it can be extended to an *n* by *n* Latin square.
- Evans (1960), Lindner (1970), Hilton (1971), Cruse (1973): An *n* by *n* partial Latin square can be embedded in a 2*n* by 2*n* Latin square, this is sharp.
- Colbourn (1982): Completing partial Latin squares without adding rows/columns is NP-complete

Question

Can we improve the 2n in some cases?

Daykin, Häggkvist (1983) conjecture: if each row, column, symbol is used at most n/4 times then it can be completed without adding rows/columns. Chetwynd and Häggkvist (1985), Gustavsson (1991), Bartlett (2014), Barber, Kühn, Lo, Osthus, Taylor (2017): true if n/4 replaced by n/25. Daykin, Häggkvist (1983) conjecture: if each row, column, symbol is used at most n/4 times then it can be completed without adding rows/columns. Chetwynd and Häggkvist (1985), Gustavsson (1991), Bartlett (2014), Barber, Kühn, Lo, Osthus, Taylor (2017): true if n/4 replaced by n/25.

Question

Given the number r of entries, how many rows/columns do we need to add?

Daykin, Häggkvist (1983) conjecture: if each row, column, symbol is used at most n/4 times then it can be completed without adding rows/columns. Chetwynd and Häggkvist (1985), Gustavsson (1991), Bartlett (2014), Barber, Kühn, Lo, Osthus, Taylor (2017): true if n/4 replaced by n/25.

Question

Given the number r of entries, how many rows/columns do we need to add?

Theorem (Nenadov–Sudakov–W)

If L is a partial Latin square of order $n \ge n_0$ with |L| entries, then L has an embedding of order $n + O(\sqrt{|L|})$.

This is sharp up to constant. Similar results for completion of a sequence of orthogonal Latin squares.

3

・ロト ・聞ト ・ヨト ・ヨト

If \mathcal{F} is a partial Steiner triple system of order $n \ge n_0$ with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

< /₽ > < E > <

If \mathcal{F} is a partial Steiner triple system of order $n \ge n_0$ with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

Equivalently: G is obtained from K_n by removing $|\mathcal{F}|$ triangles. Want to show that by adding $\sqrt{|\mathcal{F}|}$ full degree vertices to G, the graph G' has a K_3 -decomposition.

イロト イポト イヨト イヨト

If \mathcal{F} is a partial Steiner triple system of order $n \ge n_0$ with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

Equivalently: G is obtained from K_n by removing $|\mathcal{F}|$ triangles. Want to show that by adding $\sqrt{|\mathcal{F}|}$ full degree vertices to G, the graph G' has a K_3 -decomposition.

Goal: apply Gustavsson's theorem. If minimum degree at least $(1 - \gamma)|V(G')|$ then G' has K₃-decomposition.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

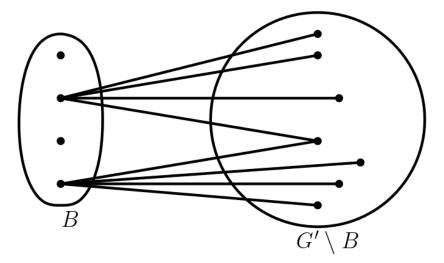
If \mathcal{F} is a partial Steiner triple system of order $n \ge n_0$ with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

Equivalently: G is obtained from K_n by removing $|\mathcal{F}|$ triangles. Want to show that by adding $\sqrt{|\mathcal{F}|}$ full degree vertices to G, the graph G' has a K_3 -decomposition.

Goal: apply Gustavsson's theorem. If minimum degree at least $(1 - \gamma)|V(G')|$ then G' has K₃-decomposition.

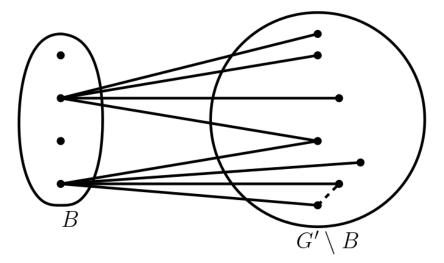
Let *B* be the set of small degree (less than $n - \sqrt{|\mathcal{F}|}$) vertices in *G*. Cover all edges incident to *B* with triangles so that rest of the graph has high minimum degree.

・ロト ・四ト ・ヨト ・ヨト ・ヨ



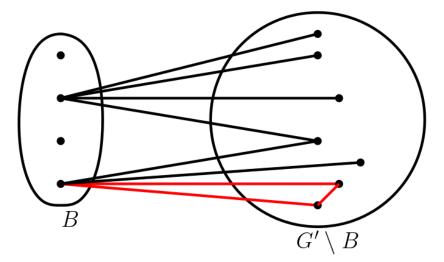
Adam Wagner (ETH Zürich)

э

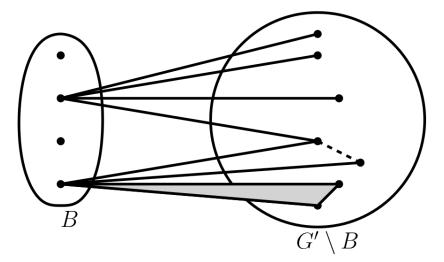


Adam Wagner (ETH Zürich)

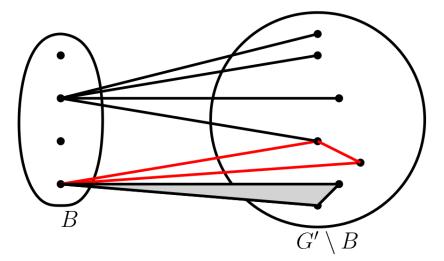
э



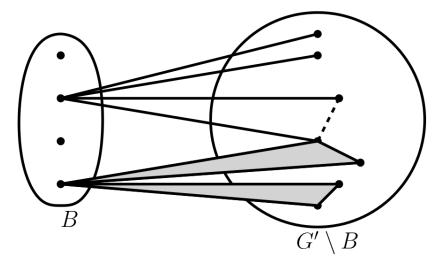
э



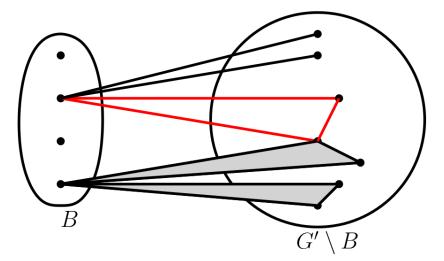
э



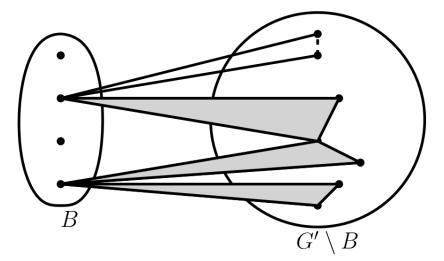
э



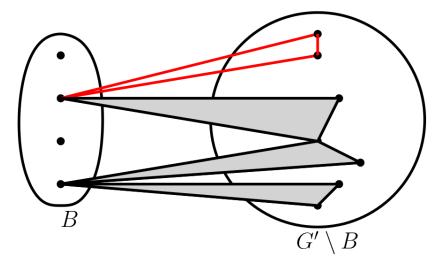
э



э



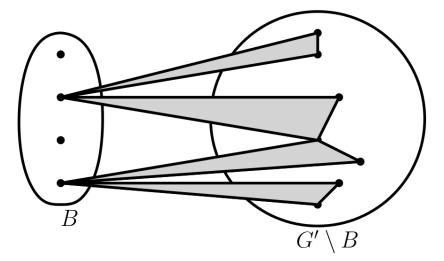
э



3

< (T) > <

-



э

let G be a graph on vertex set $S \cup T$ with $|T| \ge 50\sqrt{r}$, such that the degree of every vertex satisfies $d(v) \ge |V(G)| - \sqrt{r}$. Then no matter how one removes at most r edges from G[S], the resulting graph has a perfect matching.

3

let G be a graph on vertex set $S \cup T$ with $|T| \ge 50\sqrt{r}$, such that the degree of every vertex satisfies $d(v) \ge |V(G)| - \sqrt{r}$. Then no matter how one removes at most r edges from G[S], the resulting graph has a perfect matching.

Would like to use Dirac's theorem: if $\delta(G) \ge \frac{1}{2}|V(G)|$ then have perfect matching. But vertices in S may have small degree.

let G be a graph on vertex set $S \cup T$ with $|T| \ge 50\sqrt{r}$, such that the degree of every vertex satisfies $d(v) \ge |V(G)| - \sqrt{r}$. Then no matter how one removes at most r edges from G[S], the resulting graph has a perfect matching.

Would like to use Dirac's theorem: if $\delta(G) \ge \frac{1}{2}|V(G)|$ then have perfect matching. But vertices in S may have small degree.

Deal with low degree $(\leq |V(G)| - 2\sqrt{r})$ vertices in S one by one. There are only $2\sqrt{r}$ such vertices, for each we find a vertex in their neighbourhood in T.

3

イロト 不得下 イヨト イヨト

let G be a graph on vertex set $S \cup T$ with $|T| \ge 50\sqrt{r}$, such that the degree of every vertex satisfies $d(v) \ge |V(G)| - \sqrt{r}$. Then no matter how one removes at most r edges from G[S], the resulting graph has a perfect matching.

Would like to use Dirac's theorem: if $\delta(G) \ge \frac{1}{2}|V(G)|$ then have perfect matching. But vertices in S may have small degree.

Deal with low degree $(\leq |V(G)| - 2\sqrt{r})$ vertices in S one by one. There are only $2\sqrt{r}$ such vertices, for each we find a vertex in their neighbourhood in T.

Remaining graph has minimum degree at least $|V(G)| - 3\sqrt{r} \ge \frac{1}{2}|V(G)|$.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

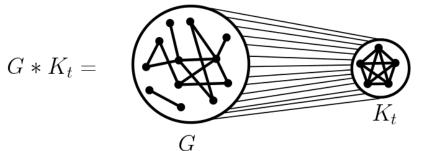
• Given a global, spanning property \mathcal{P} (e.g. Hamiltonicity)

- Given a global, spanning property \mathcal{P} (e.g. Hamiltonicity)
- Typically we can destroy \mathcal{P} by deleting very few edges from K_n , e.g. by isolating a vertex. So Turán problem not so interesting.

- Given a global, spanning property \mathcal{P} (e.g. Hamiltonicity)
- Typically we can destroy \mathcal{P} by deleting very few edges from K_n , e.g. by isolating a vertex. So Turán problem not so interesting.
- Usual solution: add minimum degree condition to avoid these issues.

Our results suggest the following new class of extremal problems:

- Given a global, spanning property \mathcal{P} (e.g. Hamiltonicity)
- Typically we can destroy \mathcal{P} by deleting very few edges from K_n , e.g. by isolating a vertex. So Turán problem not so interesting.
- Usual solution: add minimum degree condition to avoid these issues.
- We look at this problem differently.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?

If \mathcal{F} is a partial Steiner triple system of order n with $|\mathcal{F}|$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + O(\sqrt{|\mathcal{F}|})$.

Theorem (Rephrased)

If one removes up to r edge-disjoint copies of K_3 from K_n to obtain a graph G, then there exists some t with $t \leq C\sqrt{r}$ so that $G * K_t$ has a K_3 -decomposition.

If \mathcal{F} is a partial (n, k)-design with $|\mathcal{F}| \leq \epsilon n^2$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + 7k^2\sqrt{|\mathcal{F}|}$.

Theorem (Rephrased)

If one removes up to $r \leq \varepsilon n^2$ edge-disjoint copies of K_k from K_n to obtain a graph G, then there exists some t with $t \leq 7k^2\sqrt{r}$ so that $G * K_t$ has a K_k -decomposition. If \mathcal{F} is a partial (n, k)-design with $|\mathcal{F}| \leq \epsilon n^2$ blocks, then there exists an embedding of \mathcal{F} of order at most $n + 7k^2\sqrt{|\mathcal{F}|}$.

Theorem (Rephrased)

If one removes up to $r \leq \varepsilon n^2$ edge-disjoint copies of K_k from K_n to obtain a graph G, then there exists some t with $t \leq 7k^2\sqrt{r}$ so that $G * K_t$ has a K_k -decomposition.

Latin squares results: multipartite analogues of these.

Given a property \mathcal{P} and graph G, the **deficiency** of G with respect to \mathcal{P} is the smallest t such that $G * K_t$ has property \mathcal{P} .

Given a property \mathcal{P} and graph G, the **deficiency** of G with respect to \mathcal{P} is the smallest t such that $G * K_t$ has property \mathcal{P} .

• Previous results: \mathcal{P} is K_k -decomposition

Given a property \mathcal{P} and graph G, the **deficiency** of G with respect to \mathcal{P} is the smallest t such that $G * K_t$ has property \mathcal{P} .

- Previous results: \mathcal{P} is K_k -decomposition
- Concept of deficiency is not completely new: Tutte-Berge formula.

Given a property \mathcal{P} and graph G, the **deficiency** of G with respect to \mathcal{P} is the smallest t such that $G * K_t$ has property \mathcal{P} .

- Previous results: \mathcal{P} is K_k -decomposition
- Concept of deficiency is not completely new: Tutte-Berge formula.
- We propose a systematic study of these problems

$\mathcal{P} =$ **Hamiltonicity:** def(G, \mathcal{P}) is smallest t such that $G * K_t$ is Hamiltonian

< (T) > <

3.5

 $\mathcal{P} =$ **Hamiltonicity:** def(G, \mathcal{P}) is smallest t such that $G * K_t$ is Hamiltonian

Question

Given that $G * K_t$ does not have a Hamiltonian cycle, at most how many edges can G have?

 $\mathcal{P} =$ **Hamiltonicity:** def(G, \mathcal{P}) is smallest t such that $G * K_t$ is Hamiltonian

Question

Given that $G * K_t$ does not have a Hamiltonian cycle, at most how many edges can G have?

Path cover number $\mu(G)$ is smallest number of vertex-disjoint paths that cover V(G). Note: $\mu(G) = t \iff G * K_t$ is Hamiltonian but $G * K_{t-1}$ is not.

 $\mathcal{P} =$ **Hamiltonicity:** def(G, \mathcal{P}) is smallest t such that $G * K_t$ is Hamiltonian

Question

Given that $G * K_t$ does not have a Hamiltonian cycle, at most how many edges can G have?

Path cover number $\mu(G)$ is smallest number of vertex-disjoint paths that cover V(G). Note: $\mu(G) = t \iff G * K_t$ is Hamiltonian but $G * K_{t-1}$ is not.

Question (Rephrased)

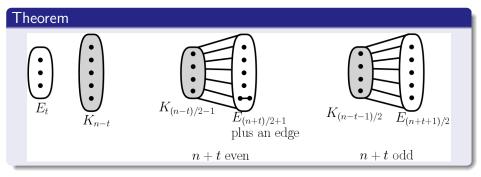
Given $\mu(G)$, how large can e(G) be?

3

ヘロト 人間 とくほ とくほ とう

Question

Given that $G * K_t$ does not have a Hamiltonian cycle, at most how many edges can G have?



Prior work by Skupień (1974), we expanded on it.

(日) (同) (三) (三)

Examples: K_3 -factor

$\mathcal{P} =$ existence of a K_3 -factor: def (G, \mathcal{P}) is smallest t such that $G * K_t$ has K_3 -factor

< 4 ∰ > <

Examples: K_3 -factor

$\mathcal{P} =$ existence of a K_3 -factor: def (G, \mathcal{P}) is smallest t such that $G * K_t$ has K_3 -factor

Question

Given that $G * K_t$ does not have a K_3 -factor (and 3|n + t), at most how many edges can G have?

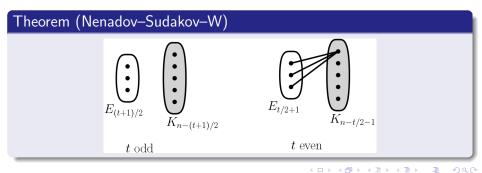
Examples: K_3 -factor

 $\mathcal{P} =$ existence of a K_3 -factor: def (G, \mathcal{P}) is smallest t such that $G * K_t$ has K_3 -factor

Question

Given that $G * K_t$ does not have a K_3 -factor (and 3|n + t), at most how many edges can G have?

We solve this problem for $t \leq n/1000$.



 $\mathcal{P} =$ existence of a perfect matching: let \mathcal{H} be a *k*-uniform hypergraph, then def(\mathcal{H}, \mathcal{P}) is smallest *t* such that $\mathcal{H} * K_t$ has perfect matching

 $\mathcal{P} =$ existence of a perfect matching: let \mathcal{H} be a *k*-uniform hypergraph, then def(\mathcal{H}, \mathcal{P}) is smallest *t* such that $\mathcal{H} * K_t$ has perfect matching

Question

Given that $\mathcal{H} * K_t$ does not have a perfect matching, at most how many edges can \mathcal{H} have?

 $\mathcal{P} =$ existence of a perfect matching: let \mathcal{H} be a *k*-uniform hypergraph, then def(\mathcal{H}, \mathcal{P}) is smallest *t* such that $\mathcal{H} * K_t$ has perfect matching

Question

Given that $\mathcal{H} * K_t$ does not have a perfect matching, at most how many edges can \mathcal{H} have?

This is equivalent to Erdős matching problem!

Pick a global property \mathcal{P} .

Question

Given that $G * K_t$ does not have \mathcal{P} , how many edges can G have?

E.g.

- *K_k*-decomposition,
- containing Hamilton cycle,
- containing power of Hamilton cycle,
- *K_k*-factor, etc.