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Screening
Place a free charge Q in an environment, and observe its electric field V
far away.
In a material, the electrons reorganize around the charge:



Screening

System Potential V (x) Interpretation

Vacuum Q
|x | No screening

Insulator Q
εr |x |

Partial screening

Metal (Thomas-Fermi) Qe−kF |x |

|x | Full screening

Metal (Lindhard response) ∝ Q cos(2kF |x |)
|x |3 Friedel oscillations

In insulators, electrons are bound to atoms and do not move much
(partial screening), in metals they are free to flock towards the charge
(full screening).

How does this arise from QM?

Screening interesting on its own, but also: SCF iterations, many-body
perturbation theory, locality, thermodynamic limits...



Isolated systems
DFT of an isolated system:

V︸︷︷︸
total potential

= Vnucl︸ ︷︷ ︸
ext. potential

+ vcFεF (V )︸ ︷︷ ︸
Hartree potential

+ ((((((VXC[FεF (V )]︸ ︷︷ ︸
Exchange-correlationˆ

R3
FεF (V )︸ ︷︷ ︸

density

= Nel︸︷︷︸
number of electrons

where

(vcρ)(x) = 1
4π

ˆ
R3

ρ(y)
|x − y |dy = F−1

(
F(ρ)(q)
|q|2

)
FεF (V ) = fεF (−∆ + V )(x , x)

fεF (ε) =


1

1+exp
(

ε−εF
kB T

) (finite temperature)

1(ε ≤ εF ) (gapped zero temperature)

Reduced Hartree-Fock, Hartree, Schrödinger-Poisson, RPA...
No exchange-correlation, because it’s hard (non-convex)
Fixed-point formulation rather than (free-)energetic: less powerful,
but simpler for perturbation



Periodic system

Assume Wnucl is 2πZ3-periodic

W︸︷︷︸
total potential

= Wnucl︸ ︷︷ ︸
ext. potential

+ vperFεF (W )︸ ︷︷ ︸
Hartree potentialˆ

[0,2π]3
FεF (W )︸ ︷︷ ︸

density

= Nel︸︷︷︸
electrons per unit cell

where vperρ is the unique periodic solution of{
−∆(vperρ) = ρ− 1

(2π)3

´
[0,2π]3 ρ´

[0,2π]3 vperρ = 0

Derived from thermodynamic limit at zero temperature (Catto/Le
Bris/Lions ’01)
Metal or insulator, depending on whether εF ∈ σ(−∆ + W ) or not
Existence theory at finite temperature (Nier ’93)



Defect model

Fix a solution (Wper, εF ) of the periodic rHF equation, and set
Vdef : R3 → R be a defect potential (e.g. Q/|x |)

V︸︷︷︸
screened potential

= Vdef + vcG(V )︸ ︷︷ ︸
reaction potential

with

G(V )︸ ︷︷ ︸
reaction density

= FεF (Wper + V )︸ ︷︷ ︸
perturbed density

− FεF (Wper)︸ ︷︷ ︸
periodic density

=
(
fεF (−∆ + Wper + V )− fεF (−∆ + Wper)

)
(x , x).

(grand-canonical ensemble)
Existence theory and derivation from thermodynamic limit at zero
temperature (Cancès/Deleurence/Lewin ’08)
Derivation from thermodynamic limit in a tight-binding model
(Chen/Lu/Ortner ’17)



Linear response

Linear response, e.g. Vdef(x) = Q/|x | with Q small

“Theorem” (Cancès-Lewin ’10, modulo regularization/homogenization)

For a zero-temperature isotropic insulator, V (x) ≈ Q
εr |x | for large x, for

some εr > 1.

Theorem (Levitt ’18 arxiv)
For any finite-temperature system, V decays faster than any inverse
polynomial.



Screening in insulators and metals

V = Vdef + vcG(V )

Vdef

V

vcG(V )

G(V )

Vdef

V

vcG(V )

G(V )

Insulators T = 0 Finite temperature

Insulators attract a charge
´
G(V ) < Q, V is long-range

Metals attract a charge
´
G(V ) = Q, V is short-range

This picture is “homogenized” (ignores lattice-scale oscillations)
Finite temperature as a proxy to study metals: zero-temperature
metals still open (Friedel oscillations)



Summary

1 Defects and screening

2 Linear response

3 Convergence of the SCF cycle



The independent-particle polarizability operator χ0

A fundamental quantity is the independent-particle polarizability operator
χ0 = G ′(0)

G(V ) = F (Wper + V )− F (Wper)

=
(
f (−∆ + Wper + V )− f (−∆ + Wper)

)
(x , x).

χ0:
describes the density response δρ = χ0δV of a system of
independent electrons to a perturbation δV of the potential
is the Hessian of the (concave) non-interacting potential-to-energy
map: self-adjoint, non-positive
has the symmetries of Wper (commutes with lattice translations)
can be computed from perturbation theory (“sum over states”,
Lindhard ’53, Adler-Wiser ’62)
contains a lot of information, can be generalized to dynamical χ0(ω)
(another story)



Operators and their symmetries
Formally:

If A commutes with all translations R ∈ R3, then
A(x + R, y + R) = A(x , y), and A sends plane-waves to plane-wavesˆ

R3
A(x , y)e ikydy y=x+y ′= e ikx

ˆ
R3

A(x , y ′ + x)e iky ′dy ′︸ ︷︷ ︸
constant

If A commutes with all translations R ∈ 2πZd , then
A(x +R, y +R) = A(x , y), and A sends Bloch waves to Bloch wavesˆ
R3

A(x , y)e iky uk(y)︸ ︷︷ ︸
periodic

dy y=x+y ′= e ikx
ˆ
R3

A(x , y ′ + x)e iky ′uk(y ′ + x)dy ′︸ ︷︷ ︸
periodic in x

(for mathematicians: A is fibered by the Bloch transform).
Periodic operators can be decomposed as Bloch matrices

e i(k+K ′)x 7→ Ak(K ,K ′)e i(k+K)x , K ,K ′ ∈ Z3, k ∈ [0, 1]3

. Examples:
(−∆)k (K ,K ′) = |k + K |2δKK ′

(Wper)k (K ,K ′) = cK−K ′(Wper)



Differentiating the potential-density mapping
Goal: G ′(0), where

G(V ) =
(
f (H0 + V )− f (H0)

)
(x , x).

with H0 = −∆ + Wper. Classical trick: contour integral representation

f (H) = 1
2πi

˛
C

(z − H)−1f (z)dz

C σ(H)

εF + iπkBT

εF − iπkBT

G(V ) = 1
2πi

˛
C

( 1
z − (H0 + V ) −

1
z − H0

)
f (z)dz

= 1
2πi

˛
C

1
z − H0

V 1
z − H0

f (z)dz + O(‖V ‖2).



Computing χ0

χ0V = 1
2πi

˛
C

1
z − H0

V 1
z − H0

f (z)dz

commutes with translations, and, using
ˆ
C

f (z)
(z − λ1)(z − λ2)dz = f (λ1)− f (λ2)

λ1 − λ2

with (f (x)− f (x))/(x − x) := f ′(x) (double pole), we can write its
Bloch matrix as

χ0,q(K ,K ′) =
ˆ
B

∑
n,m≥0

f (εn,k+q)− f (εm,k)
εn,k+q − εm,k

〈e iKxum,k , unk+q〉〈unk+q, e iK ′xum,k〉dk

where

(−∆ + Wper)(e ikxunk(x)) = εnke ikxunk(x)

For insulators at T = 0, f (εn,k+q)− f (εm,k) = 0 unless n is occupied and
m virtual (or vice-versa)



Properties of χ0

χ0,q(K ,K ′) =
ˆ
B

∑
n,m≥0

f (εn,k+q)− f (εn,k)
εn,k+q − εm,k

〈e iKxum,k , unk+q〉〈unk+q, e iK ′xum,k〉dk

χ0 is bounded, self-adjoint, non-positive on L2(R3), and

χ0,q=0(K = 0,K ′ = 0) =
ˆ
B

∑
n≥0

f ′(εnk)dk

At zero temperature, this is minus the density of states at the Fermi
level: finite for a metal and zero for an insulator. In fact:

χ0,q(0, 0)
q→0
≈

{
−C1 (T 6= 0)
−C2|q|2 (insulator T = 0)

In a metal, increasing the potential increases the density; in an
insulator, it does not.
Small-q limit of metals consistent with Thomas-Fermi theory



The algebra of linear response

Recall that

V = Vdef + vcG(V )

Linearize for Vdef and V small:

V ≈ Vdef + vcχ0V (Dyson equation)
V ≈ ε−1Vdef

with ε−1 = (1− vcχ0)−1 the dielectric operator (mimics Q
εr |x | ).

Assuming (ε−1)q(0, 0) ≈ (εq(0, 0))−1 (“neglect of local field effects”):

ε−1
q (0, 0) ≈ 1

1− 1
|q|2χ0,q(0, 0)

q→0
≈

{
1

C1
|q|2 (T 6= 0)

1
1+C2

(insulator T = 0)



The dielectric operator and screening

V ≈ ε−1Vdef

ε−1
q (0, 0)

q→0
≈

{
1

C1
|q|2 (T 6= 0)

1
1+C2

(insulator T = 0)

At finite temperature, the singularity 1
|q|2 of Vdef is compensated by ε−1

(full screening). For insulators at T = 0 it is not (partial screening).

Technical problems and solutions:
Local field effects (A−1

k )(K ,K ′) 6= (Ak(K ,K ))−1: Schur complement
vcχ0 not self-adjoint: vcχ0 = √vc(√vcχ0

√vc)√vc
−1

Asymptotic decay at finite temperature: smoothness of q 7→ ε−1
q

(not true at T = 0: Friedel oscillations)
Nonlinear terms: implicit function theorem on weighted Sobolev
spaces
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Convergence of the SCF cycle

V︸︷︷︸
screened potential

= Vdef + vcG(V )︸ ︷︷ ︸
reaction potential

How to compute this numerically? Truncation to a finite supercell,
discretization, then self-consistent algorithms

Vn+1 = Vdef + vcG(Vn)

does not always work, so use damped iteration

Vn+1 = Vn + α(Vdef + vcG(Vn)− Vn)

with α > 0.
Linearize for small Vn,Vdef :

Vn+1 = (1− α + αvcχ0)Vn + αVdef



Charge sloshing

Vn+1 = Vn + α(Vdef + vcG(Vn)− Vn)

Linearize for small Vn,Vdef :

Vn+1 = (1− α + αvcχ0)Vn + αVdef

vc definite positive, χ0 definite negative: vcχ0 has negative
eigenvalues, and damping works
For insulators at T = 0, χ0 ≈ |q|2, and vcχ0 is bounded: when
discretized in a L× L× L supercell, convergence rate independent of
L
At T 6= 0, χ0 ≈ C , and vcχ0 ≈ C

|q|2 diverges: charge sloshing

Number of iterations ∝ L2 in a L× L× L supercell (∝ L with
Anderson).



Kerker preconditioning

Slow convergence for metals with large unit cells (charge sloshing).
Kerker preconditioning (’81):

Vn+1 = Vn + αK(Vdef + vcG(Vn)− Vn) (1)

with the operator K = |q|2
C+|q|2 (high-pass filter)

Theorem (Levitt ’18)
At finite temperature, the iteration (1) with V0 = 0 converges for Vdef
and α small enough.

Theorem in R3: in practice, convergence rate L−independent.



Extensions

Zero temperature metals: Friedel oscillations
Exchange-correlation (vc + dVXC

dρ not necessarily positive)
Non-perturbative regime
Coupling to nuclei
Dynamical properties ε−1(q, ω)
Good preconditionners for the SCF cycle
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