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@ Defects and screening
© Linear response

© Convergence of the SCF cycle



Screening

Place a free charge Q in an environment, and observe its electric field V
far away.
In a material, the electrons reorganize around the charge:




Screening

System Potential V/(x) Interpretation
Vacuum |Q‘ No screening
X
Q . .
Insulator Partial screening
erlx|
Qefkplxl
Metal (Thomas-Fermi) T Full screening
X
cos(2kr|x
Metal (Lindhard response) | o Q(3F||) Friedel oscillations
X

In insulators, electrons are bound to atoms and do not move much

(partial screening), in metals they are free to flock towards the charge
(full screening).

‘ How does this arise from QM? ‘

Screening interesting on its own, but also: SCF iterations, many-body
perturbation theory, locality, thermodynamic limits...



Isolated systems

DFT of an isolated system:

Vo= Ve o+ veFe (V) 4 VaelFAV)]
total potential ext. potential Hartree potential Exchange-correlation
[Ew= N

R3 ~—~— ~~
density number of electrons
where
1 p(y) —1 (F(p)(q)
() = 4= [ Ly =51 (T8
¢ 4m Jgs [x —y| EE

Fer(V) = for (A + V)(x, %)

1 . .
————~ (finite temperature
fr(e) = { oo (r) ( P )

1(e <ef) (gapped zero temperature)

@ Reduced Hartree-Fock, Hartree, Schrédinger-Poisson, RPA...

@ No exchange-correlation, because it's hard (non-convex)

o Fixed-point formulation rather than (free-)energetic: less powerful,
but simpler for perturbation



Periodic system

Assume Wy is 27Z3-periodic

wW = Wiua + Ve (W)
per"ep
~~ ~——
total potential ext. potential  Hartree potential
| Rm=
[0,27]3 N~ ~
density electrons per unit cell

where vperp is the unique periodic solution of

{A(Vperp) =p—- (271r)3 f[072ﬂ.13 p
f[0,2rr]3 Vperp =0

@ Derived from thermodynamic limit at zero temperature (Catto/Le
Bris/Lions '01)

e Metal or insulator, depending on whether e € o(—A + W) or not

e Existence theory at finite temperature (Nier '93)



Defect model

Fix a solution (Wyer,ef) of the periodic rHF equation, and set
Vier : R — R be a defect potential (e.g. Q/|x|)

14 = Vet + Ve G( V)
screened potential reaction potential
with
G(V) = EF(Wper + V)_ FEF(Wper)
—— —_— ——
reaction density perturbed density periodic density

= (st(fA + Woer + V) — £, (-A + Wper))(XJ)-

(grand-canonical ensemble)

o Existence theory and derivation from thermodynamic limit at zero
temperature (Cancés/Deleurence/Lewin '08)

@ Derivation from thermodynamic limit in a tight-binding model
(Chen/Lu/Ortner '17)



Linear response

Linear response, e.g. Vier(x) = Q/|x| with

“Theorem” (Cances-Lewin '10, modulo regularization/homogenization)

For a zero-temperature isotropic insulator, V(x) ~ ?QX‘ for large x, for
some e, > 1.

Theorem (Levitt '18 arxiv)

For any finite-temperature system, V' decays faster than any inverse
polynomial.




Screening in insulators and metals

V = Vger + VCG(\/)

Insulators T =0 Finite temperature

Insulators attract a charge [ G(V) < Q, V is long-range
Metals attract a charge [ G(V) = Q, V is short-range

This picture is “homogenized” (ignores lattice-scale oscillations)

Finite temperature as a proxy to study metals: zero-temperature
metals still open (Friedel oscillations)



© Linear response



The independent-particle polarizability operator g

A fundamental quantity is the independent-particle polarizability operator
Xo = G'(0)

G(V) = F(Wper + V) = F(Wper)
- (f(-A 4 Woer + V) — F(—A + Wper))(x,x).

Xo:
@ describes the density response dp = xodV of a system of
independent electrons to a perturbation 0V of the potential

o is the Hessian of the (concave) non-interacting potential-to-energy
map: self-adjoint, non-positive

@ has the symmetries of W, (commutes with lattice translations)

@ can be computed from perturbation theory (“sum over states”,
Lindhard '53, Adler-Wiser '62)

@ contains a lot of information, can be generalized to dynamical xo(w)
(another story)



Operators and their symmetries

Formally:
e If A commutes with all translations R € R3, then
A(x+ R,y + R) = A(x, y), and A sends plane-waves to plane-waves

/ A(X,y)eikydy y:X:+y eikx/ A(X,y/—i-X)eiky/dy/
R3 R3

constant

o If A commutes with all translations R € 27Z¢, then
A(x+ R,y + R) = A(x,y), and A sends Bloch waves to Bloch waves

/ Alx,y)e u(y) dy " el / Ay’ +x)e% uly’ + x)dy’
R3 ~—~— R3

periodic

periodic in x

(for mathematicians: A is fibered by the Bloch transform).
@ Periodic operators can be decomposed as Bloch matrices

elktK )Xy ALK, KD WO KK e 73,k € [0,1)°

. Examples:
o (A)(K,K') = |k + K2k
o (Wper)k(K7 K/) = CK_K/(Wper)



Differentiating the potential-density mapping

Goal: G'(0), where
G(V) = (F(Ho+ V) = F(Ho) ) (x. ).
with Hy = —A + W,,,. Classical trick: contour integral representation
(M) = 5 Pz = H) ()
= —_— zZ — Z)az
271'/ C

o € +imkpT

A

\

e €F 7i7TkBT

6(V) = %?ﬁ (z— (/‘;lo +V) 2—1H0>f(z)dz
1 1 1

:27TI CZ_HO Z—HO

f(z)dz + O(|| V|]?).



Computing Yo

1 1 1
= vV
2mi Joz—Hy z— Hp

XoV = f(z)dz

commutes with translations, and, using

/ f(z) dr — f(M) — f(A)
c(z=M)(z—-X\) AL —

with (f(x) — f(x))/(x — x) := f'(x) (double pole), we can write its
Bloch matrix as

f(en k+q - f(ﬁm k) iK: iK'
You(K, K') / 3 (€™ U ke, k) (tnk s> €7 * i )
om0 Enk+q — Emk

where

(—A+ Wper)( “Unk(x)) = 5nkeikxunk(x)

For insulators at T =0, f(en kt+q) — f(€m,k) = 0 unless n is occupied and
m virtual (or vice-versa)



Properties of xq

f En.k —f En.k ; !
XO,q(Ka Kl) — Z ( ;, +q) — 6( n, )<e’KXUm’k, Unk+q><unk+qa eIK Xum’k>dk
B nm>0 n,k+q m, k

@ Yo is bounded, self-adjoint, non-positive on L?(IR®), and

XoaolK =0.K'=0) = [ 3" (e
B

n>0

At zero temperature, this is minus the density of states at the Fermi
level: finite for a metal and zero for an insulator. In fact:

a0 [—C (T #0)
0,0) =~
x0.4(0.0) {—C2|q2 (insulator T = 0)

@ In a metal, increasing the potential increases the density; in an
insulator, it does not.

@ Small-g limit of metals consistent with Thomas-Fermi theory



The algebra of linear response

Recall that
V = Vier + VCG(V)
Linearize for Vg and V small:

V & Vet + vexoV (Dyson equation)

V ~ e Vet

with ‘e_l =(1—vexo)t ‘ the dielectric operator (mimics ?QX‘)

Assuming (£71)4(0,0) = (£4(0,0)) ! (“neglect of local field effects”):
v

1 - T:x0.4(0,0)

720 {aw (T #0)

~ 1+1C2 (insulator T = 0)

£,'(0,0) =




The dielectric operator and screening

V ~ e M Wer

- a=0 [ &gl (T #0)
5q1(070) ~ {Cl

g (insulator T =0)

At finite temperature, the singularity # of Vet is compensated by e 1

(full screening). For insulators at T = 0 it is not (partial screening).

Technical problems and solutions:
o Local field effects (A 1) (K, K') # (Ax(K, K))~': Schur complement
@ V.o hot self-adjoint: vexo = \/VC(\/VCXO\/VT;)\/VJI

@ Asymptotic decay at finite temperature: smoothness of g — 5;1
(not true at T = 0: Friedel oscillations)

@ Nonlinear terms: implicit function theorem on weighted Sobolev
spaces



© Convergence of the SCF cycle



Convergence of the SCF cycle

Vv . = Vet + Ve G( V)
screened potential reaction potential

How to compute this numerically? Truncation to a finite supercell,
discretization, then self-consistent algorithms

Vn+1 = Vet + Ve G( Vn)

does not always work, so use damped iteration

‘ Vn+1 - Vn + a( Vdcf + Ve G( Vn) - Vn)

with a > 0.
Linearize for small V,,, Vier:

Vn+1 = (]- —a+ aVCXO)Vn + avdef



Charge sloshing

Vn+1 = Vn + a( Vdef + VCG( Vn) - Vn)
Linearize for small V,,, Vier:

Vn+1 = (1 —a+ aVCXO) Vi, 4+ o Vier

@ v, definite positive, xo definite negative: v.xo has negative
eigenvalues, and damping works

e For insulators at T =0, xo ~ |q|?, and v.xo is bounded: when
discretized in a L x L x L supercell, convergence rate independent of

L
@ At T#0, xo=~ C, and v.xo = # diverges: charge sloshing

o Number of iterations oc L2 in a L x L x L supercell (o L with
Anderson).



Kerker preconditioning

Slow convergence for metals with large unit cells (charge sloshing).
Kerker preconditioning ('81):

Vn+1 =V, + OZIC( Ve + VCG(VI'I) - Vn) (1)

with the operator K = Cfl‘;Q (high-pass filter)

Theorem (Levitt '18)

At finite temperature, the iteration (1) with Vo = 0 converges for Vet
and o small enough.

Theorem in R3: in practice, convergence rate L—independent.



Extensions

Zero temperature metals: Friedel oscillations

. dV- . o
Exchange-correlation (v, + 4 not necessarily positive)

Non-perturbative regime
Coupling to nuclei

Dynamical properties ¢ ~1(q,w)

Good preconditionners for the SCF cycle
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