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Optimal transport

> Given probability distributions p1, p2 on X
» Cost function ¢(z,y)
» Optimal transport problem

[ ey
nell(p1.2) Jx Jx

II(p1, p2) is the set of distributions on X x X with marginals p1, pa.
» Many applications:

> Definition of the so-called Wasserstein distance,
» Operational research, ...
» Generative adversarial network (GAN) ...



Multi-marginal optimal transport

Given marginals p1,...,pny on X
Multimarginal OT problem

inf / c(xy, ..., en)dp(zy, ...
Xx-exX

HEI(p1,...;pN)

with II(p1,..., pn) the set of distributions on X X
marginals p1,...,pn
Applications

» Operational research, ...
» Density functional theory

Numerics: LP with exponential size in N

Our goal: break this complexity barrier.



Density functional theory

» Many-body Schrodinger equation: finding ground state

iﬁf/z/)(xl,...,xN)*H¢(x1,...,xN)dx1...dacN

» H: Hamiltonian operator

(< 1
Hy = (;AZHFZWJrVext)d)

1<g
> Y(z1,...,xzNn), ||¥|lc, =1, antisymmetric.
» High dimensional problem, hard to solve.

» Density functional theory: Can change to a variational problem
inf Flp] + Vex o]
p(+): 1-marginal of | (z1,...,2N)|%,
» F[p]: unknown universal functional (Hohenberg-Kohn 64).



Flpl: Strictly-correlated electron limit

» Usual approach: replace F[p] with KS functional (Kohn-Sham 65)

> Opposite regime: approximate F'[p] with strictly-correlated electron
(SCE) functional (Seidl 99)

1
VZCE = inf / ——u(zy,...,zN)dxy ... dT N
e [P] HEIL(p, - ,p) ; ‘mi _ xj‘:u‘( 1 ) 1
with p(z1,...,on) == [(z1,...,2N)]* symmetric,

Jdp=1,1>0,and p(z1,...,25) =0 if any z; = z;.
» This is a special multimarginal OT problem
> with same p for each dimension

> Cost
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SCE example

» Support of p is singular.
» Li atom in SCE regime (Seidl-Gori-Giorgi-Savin 07).
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Breaking the complexity barrier

» Numerics-related previous work
> (Mendl-Lin 12): Solve the dual problem of V5 E[p] (exponential
number of constraints)
» (Benamou-Carlier-Nenna 16): Sinkhorn scaling (exponential number

of variables)
> (Friesecke-Vogler 18): Existence of sparse solution for multimarginal
OT (optimization scheme to be worked out)

» Can we solve such a multimarginal OT with polynomial complexity?

» Approach: use convex relaxation techniques to obtain useful lower
and upper bounds for the SCE optimization problem



Outline

» A lower bound to VCE[p]
» An upper bound to V€[]



Discretization

> For SCE: c(z1,...,an) = Y o

i<j [wi—=z;]

» Hence, focus on multimarginal OT with pairwise cost:

N
inf / xk,xl dp, L1y.-.y TN
P) S X x.. xXklZ ) ( )

I(p.---
p€(p,,p k<l

» Discretize X with L grid points p1,...,pr, and redefine

1

C(i, Z/) = m
4 4

» From now on, focus on the discrete problem

min E E c(ig, )ity ., in)
Vir,

II(p,
rell(p cin=1k,l=1,k<l



Reducing dimensionality

min E E c(ig, i) p(in, ...

(p..-
REM (P kIST k<l

» Rewrite the problem in terms of 2-marginals

l l l Marginalize
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° Marginalize

ﬂ I1: 3-dimensional probability

polytope



Representing G'y; with p

» Extreme points of density: delta functions.

» Write p as convex combination of extreme points:
n= E Hiy,in€in @ - Q ey
i
» {e1,...,er} are canonical basis vectors.

> Zi17---iN Mir,..iny =1 and g1, 55 > 0.
» The 2-marginal of the (k,1) slice: an L x L matrix

.
G = E iy ... in €iy €4,
i

» Due to symmetry, all Gy for k # [ are the same and all Gy are the
same
v=Gr, €=Gr



Equivalent multimarginal OT form
» Introduce G € RNEXNL:

Gll P GlN € “e. r-)/
Ge= |t o=
GNl ... GNN ’7 DR 6

» Recall

min Z Z Zk,ll Zﬂ(ila“-’iN)

HEM(pP) p et other i
» Write the optimization problem in terms of 2-marginals:
0 c
. c 0
min  Tr(CG), with C=
G~IL(p;--5p)

C PR 0

» Discrete quadratic optimization problem. Relax the domain of G.



Convex relaxation

» Problem: ming.rp,... ) Tr(CG)
G11 DY GIN e ... ’Y
» Convexly relax G := : : =|: oo
GN]_ DR GNN ’y PR 6
» Some necessary conditions
> Gijl=~v1=p
> G“ =€ = dlag(p),
> G>0,G*=0,
» Drop all other constraints and obtain the convex problem

0 ¢ c
c 0

min Tr(CG), C=
G=[Gj] : SR
C ... O

st. Gijl=v1=p, Gy =e=diag(p), G>0, G >=0.



Final SDP form

» Rewrite the cost

N(N - 1)

Tr(CG) = 5

Tr(ey)

» Finally, introduce a mix of 2 marginals and 1 marginal

) I ) € vyl (1
0=+ [I---1]G|:| = D [I---1] |: :
I ¥ el |1
» Then
1 N -1 1 .
0= NE + N 1=p, =190 = m(N& — diag(d1))

» A convex-relaxed SDP lower bound:
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with 0 =0, 6 >0, diag(d)= % = £.



Example

» 1D electron: N =8, L = 1600
p o exp(—z°/\/T).
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» 102° entries if LP was used.



Why this relaxation is reasonable

» Theorem (Friesecke-Vogler 18): The set of extreme points of
N-representable symmetric 2-marginals (with Coulombic cost) is

L
F—{N)\)\T 1 diag(A)‘Ae{O,;f} ,ATl—l}

N-1 N -1

» Theorem (Khoo-Y. 18): T is a subset of the extreme points of

N 1 01
= — i > > i = —
D {N—15 N_ldlag(él) ’ =0, § >0, diag(d) N}

(Note that D is the set of feasible 2-marginals -y for the SDP).
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Why this relaxation is reasonable

\

» Thus v € conv(I') C D

> If the relaxation is sufficiently tight, we expect for 6* (the minimizer
of the relaxed problem) to satisfy:

m L

N 1

5 R Y aghgA], A € {O,N} , Al=1.
g=1



Outline

> A lower bound to V3CE[p]
» An upper bound to V3>€[p]



Upper bound

> With constraint §1 = p, solution v* = v(§*) usually out of conv(T).

with Ay € {0, +}F for g =1,...,m, (here m = L).
» How to perform the projection?

» One possibility: use eigendecomposition plus thresholding
» Fails because {\4} are non-orthogonal
» Idea: use 3-marginals



Tensor decomposition with 3-marginals

» Recall that one needs to retrieve each \;.
» Solution: use 3-marginals (why?) and apply similar derivation

» Marginalize to 3-marginals
» Symmetrize the 3-marginals by averaging

» Use the N-representable 3-marginal 0 (instead of 2-marginals ¢) as
optimization variable

» Apply a similar convex relaxation to # € REXLXL a5 before

» Solve the multimarginal OT in terms of 3-marginals

» More expensive, but still independent of N and no exponential
blowup



Why 3-marginal?

» CP-decomposition for 6* (the minimizer of the relaxed problem)

0" =D aghg @A @ A

g=1

and the RHS serves as the upper bound.

» For 3-tensor, one has unique decomposition results for
Ag,g =1,...,m up to scaling under very mild condition.
» m = L in our case.
» Reason: there are L — 1 effective constraints §1 = p.

» Each extra constraint increases the support by one.
> So needs a convex combination of 1+ (L — 1) = L extreme points.



Projection of 3-marginals

> Apply Jenrich’s algorithm (weighted sum in third dim). Choose
random vectors wy and ws

Wlfza*(v 7g)w1(g)7 WQ*ZO (a ag)w2(g)
g=1 g=1
Plugin 6% = 371" | aghy @ \g @ A
Wi = (agwiAg)AgA], Wa = (agwjAg)AgA;.
g=1

> {)\g}yL; are linearly independent. By using U = [A1 -+ A,

Wy =US U, Wy=USU".

T)\ m T)\m
Wawyt =UsU, zzdiag([alw;;,...,“ w#A D
a1Wy A1 A Wo Am,

> Eigendecomposition of W, W, ' gives U and {\,}7,



Numerical examples

» Lower bound: obtained from 2-marginal §* or 3-marginal 6*.

» Upper bound: always obtained from 3-marginal 6*.



Numerical examples

» 1D electrons, N = 8.

p(x) o< sin(4x) + 1.5.

2 2

» Left: 2-marginal §* — . Relative gap = 4.2e-02
» Right: 3-marginal 0* — ~. Relative gap = 3.9e-02



Numerical examples

» 1D electrons, N = 8.

2 = ", ", E ",
2 2 2 2

» Left: 2-marginal 6* — . Relative gap = 4.9e-04
» Right: 3-marginal 0* — ~. Relative gap = 1.0e-06



Numerical examples
» 2D electrons, N = 5.

plx,y) x 1.

» Plots are slice of 2-marginal with one component fixed.
» 2-marginal 6* — . Relative gap = 3.8e-02
» 3-marginal 8 — ~. Relative gap = 3.5e-02
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