Zariski density and computing with linear groups

Alla Detinko

Banff International Research Station

11 December 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1. Computing with infinite linear groups: set up

How to represent a group in computer?

Main methods:

- Permutations.
- Matrices over finite fields.
- Generators and relations.

Why linear groups?

- Commonly used representation of groups in group theory and its applications in mathematics and further afield.
- Convenient and efficient way to represent groups in computer.

(日)

Main challenges

- Fundamental algorithmic problems are undecidable.
- Complexity issues.
- Lack of methods.

Aim

- Design practical methods, algorithms, and software for computing with linear groups over an *arbitrary* infinite field.
- Solution of mathematical problems by computer experiments.

How to represent a linear group in computer?

Methods:

- Finite set of matrices: finitely generated groups.
- Finite set of polynomials: linear algebraic groups.

How to represent a finitely generated linear group in computer?

Given $G = \langle g_1, \ldots, g_r \rangle \leq \operatorname{GL}(n, \mathbb{F})$, \mathbb{F} is a (infinite) field.

<u>Aim</u>: *symbolic* representation of *G* over an arbitrary infinite field.

<u>Method</u>: G is defined over a finitely generated extension of the prime subfield of \mathbb{F} .

Examples: main fields.

- 1. \mathbb{Q} and algebraic number fields.
- 2. $\mathbb{L} = \mathbb{P}(x_1, \ldots, x_m)$, \mathbb{P} is a number field or \mathbb{F}_q .
- 3. A finite extension of \mathbb{L} .

Alla Detinko @ BIRS Zariski density and computing with linear groups

(日)

Method of finite approximation: congruence homomorphism techniques.

Given $G = \langle S \rangle$. Then $G \leq \operatorname{GL}(n, R)$ for a finitely generated integral domain $R \subseteq \mathbb{F}$ determined by the entries of matrices in $S \cup S^{-1}$.

Theorem. The group G is residually finite. Moreover, G is approximated by matrix groups of degree n over finite fields R/ρ , ρ is maximal.

Reason: R is approximated by finite fields R/ρ , i.e. for any non-zero $a \in R$ there exists a maximal ideal ρ which does not contain a.

Notation: Given an ideal $\rho \subseteq R$, define the congruence homomorphism $\varphi_{\rho} : \operatorname{GL}(n, R) \to \operatorname{GL}(n, R/\rho).$

• ker
$$\varphi_{\rho} := \mathsf{\Gamma}_{\rho}$$
 (principal congruence subgroup).

• $G \cap \Gamma_{\rho} := G_{\rho}$ (congruence subgroup).

Method for computing (computer realization of finite approximation):

Reduction to, e.g., finite fields via construction of a congruence homomorphism φ_{ρ} such that G_{ρ} satisfies some *special* properties.

Advantage: Reduction to computing with matrix groups over finite fields.

Theorem (Wehrfritz et al.). There exists a maximal ideal $\rho < R$ such that (i) All torsion elements of Γ_{ρ} are unipotent, i.e. Γ_{ρ} is torsion-free if char R = 0.

(ii) If G is solvable-by-finite then G_{ρ} is unipotent-by-abelian.

- We call φ_{ρ} as in the theorem a *W*-homomorphism.

- We can construct W-homomorphisms for all finitely generated integral domains R.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

Which algorithms do we need?

- **Q** Recognition algorithms, i.e. testing the type of an input group.
- Investigation of the structure and properties of the input group.
- 3 Library of basic functions.

- Testing finiteness: test whether the kernel G_{ρ} of reduction modulo ρ for a W-homomorphism φ_{ρ} is trivial (if char $\mathbb{F} = 0$). Full investigation of structure via an isomorphic copy over a finite field.
- Testing virtual solvability (computational realization of the Tits alternative:) for a W-homomorphism φ_{ρ} test whether $G_{\rho} = \langle N \rangle^{G}$ is unipotent-by-abelian.
- Testing solvability, (virtual) nilpotency, testing whether the group is abelian-by-finite, central-by-finite etc. Computing 'main' structural components of a (virtually) solvable group; computing Prüfer rank and torsion free rank.
- *N.B.* One maximal ideal ρ is enough for the above algorithms; *software* [1].

2. Zariski density and computation

Further challenges.

- Ubiquity of non solvable-by-finite groups: a linear group 'most likely' is not solvable-by-finite (see e.g. D. Epstein, 1971; R. Aoun, 2011).
- Undecidable basic algorithmic problems, e.g.,
 - Membership testing is *decidable* in finitely generated solvable-by-finite subgroups of $GL(n, \mathbb{Q})$ (Kopytov, 1968);
 - Membership testing is *undecidable* in $SL(4, \mathbb{Z})$ (Michailova, 1958).
- Lack of computational methods: to proceed with non-solvable-by-finite groups *one ideal* may not be enough.

イロト イポト イヨト

Why dense subgroups?

• Approach to computing:

Step 1: Each finitely generated linear group H is a subgroup of a linear algebraic group \mathcal{G} ; without loss of generality H is (Zariski) dense in \mathcal{G} .

N.B. Algorithms computing Zariski closure exist.

Step 2: *H* is thin or arithmetic, i.e. $|\mathcal{G}(R) : H|$ is infinite or, resp. finite; here $H \leq \mathcal{G}(R) := \mathcal{G} \cap \operatorname{GL}(n, R)$.

- Algorithms for dense subgroups are in high demand, particularly due to applications of in number theory, topology, physics, etc. (cf. P. Sarnak, *Notes on thin matrix groups*, 2012).
- Fundamental algorithmic problems for arithmetic subgroups are known to be decidable (under some conditions!): Grunewald & Segal, 1980.

Dense and arithmetic subgroups: set up

Set up: $\mathcal{G} := \mathrm{SL}(n, \mathbb{C}), R = \mathbb{Z}.$

•
$$\varphi_m : \mathrm{SL}(n,\mathbb{Z}) \to \mathrm{SL}(n,\mathbb{Z}_m);$$

- Γ_m is the kernel of a homomorphism φ_m (principal congruence subgroup of level m);
- cl(H) is the 'arithmetic closure' of H (i.e. intersection of arithmetic overgroups of H);
- Level M(H) of H is the level of the (unique) maximal principal congruence subgroup of cl(H), $n \ge 3$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Scheme of computing.

(i) Test whether $H \leq SL(n, \mathbb{Z})$ is dense.

(ii) Compute *Level*(*H*).

(iii) Investigate H using Level(H) (via congruence homomorphism technique).

Density testing.

Given a finitely generated $H \leq SL(n, \mathbb{Z})$, we can test density as follows.

Fact: H ≤ SL(n, C) is dense iff H is infinite and ad(H) is absolutely irreducible.
 Output: deterministic density test elements (of limited enerticality)

Output: deterministic density test algorithm (of limited practicality).

- 2. Monte-Carlo algorithm (I. Rivin): returns true if detects non-commuting $g, h \in H$ such that h is of infinite order and the Galois group of the characteristic polynomial of g is Sym(n).
- 3. Further algorithms, i.e. for subgroups of $SL(n, \mathbb{Z})$ containing a (known) transvection.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Next step: from finite to strong approximation

Questions.

(1) To which extent do congruence images define a linear group *H*?(2) Can we compute all congruence images of *H*?*Exercise*. Given

$$H = \left\langle \left[\begin{array}{rrrr} 1 & 122 & 11 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right], \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 11 & 1 & 12 \\ 0 & 0 & 1 \end{array} \right], \left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -10 & 122 & 1 \end{array} \right] \right\rangle.$$

Show that

(i) $H \equiv SL(3,\mathbb{Z}) \mod m, \forall m \in \mathbb{N}$.

(ii) *H* is of infinite index in $SL(3, \mathbb{Z})$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem. The following are equivalent.

(i) $H \leq SL(n, \mathbb{Z})$ is dense.

- (ii) H surjects onto SL(n, p) for almost all primes p.
- (iii) *H* surjects onto SL(n, p) for some p > 2.

Notation: $\Pi(H)$ is the set of all primes for which $\varphi_p(H) \neq SL(n, p)$.

Aim: Given a dense $H \leq SL(n, \mathbb{Z})$, compute $\Pi(H)$.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

Computer realization of the strong approximation theorem.

Approach (based on B. Weisfeiler's method). Given Aschbacher classes C_1, \ldots, C_9 of maximal subgroups of SL(n, p), find all primes p such that $\varphi_p(H)$ is not contained in any group G of C_i , $1 \le i \le 9$.

Fact: Let $G \leq SL(n, p)$. There exists a function f(n), depending only on degree n, such that if ad(G) is absolutely irreducible and |G| > f(n) then G = SL(n, p).

Method: Find p_0 such that for all $p \ge p_0$, $|\varphi_p(H) > f(n)|$, and $ad(\varphi_p(H))$ is absolutely irreducible.

N.B. Explicit values of f(n) available for $n \leq 12$.

Improved methods: (i) Exclude one-by-one each of Aschbacher classes by special methods avoiding computing ad(H). Done for *n* prime, and some 'small' values of *n*.

(ii) Special methods for the case of H containing a (known) transvection. Alla Detinko @ BIRS Zariski density and computing with linear groups 16

Computing with dense subgroups

Aim: Given a dense $H \leq SL(n, \mathbb{Z})$, compute the arithmetic closure cl(H), i.e. Level(H) := M(H).

Proposition. Dense *H* surjects onto SL(n, p) iff *p* does not divide the level *M* of *H* (besides small exceptions for n = 3, 4, p = 2).

Thus, we have that $\Pi(H)$ is the set of all prime divisors of M(H) (besides probably p = 2). Hence to compute M(H) for a dense H, we should find $p^k || M$ for each $p \in \Pi(H)$.

Method: computing in $GL(n, \mathbb{Z}_m)$; '*trivial Fitting*' approach.

Computing with arithmetic subgroups

Knowing M we can proceed to algorithms for *arithmetic subgroups* (including algorithms for cl(H), H is dense).

Given an arithmetic subgroup $H \leq SL(n,\mathbb{Z})$, $n \geq 3$, we can

- (1) Test whether $g \in SL(n, \mathbb{Z})$ is contained in H (membership test).
- (2) Compute the *index* $|SL(n, \mathbb{Z}) : H|$ (in particular, test whether $H = SL(n, \mathbb{Z})$).
- (3) Investigate (sub)-normal structure of H.
- (4) Test whether u, v ∈ Qⁿ are in the same H-orbit, and computing generators of Stab_H(u) (orbit-stabilizer problem).

Method: Computing via reduction to $SL(n, \mathbb{Z}_M)$.

Remark. Decidability of problems (1), (2) implies that arithmetic subgroups of $SL(n, \mathbb{Z})$, $n \ge 3$, are *explicitly given* in terms of Grunewald & Segal.

Alla Detinko @ BIRS Zariski density and computing with linear groups

3. Applications and experimental results

Example.

Given

$$\mathsf{H} = \left\langle \left[\begin{array}{rrrr} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right], \left[\begin{array}{rrrr} 1 & 4 & 7 \\ 0 & -2 & -3 \\ 0 & 1 & 1 \end{array} \right] \right\rangle.$$

IsFinite(H);

'false'

N.B. Generators of H are of finite order.

```
IsSolvableByFinite(H);
```

'false'

```
IsDense(H); # density test in SL(3, \mathbb{Z}).
'true'
```

Alla Detinko @ BIRS Zariski density and computing with linear groups

PrimesForDense(H); $\Pi(H) = \{2\}$ LevelMaxPCS(H); # computing the level M of H. $M = 2^3$ N.B. Now we know cl(H). Index(H); # computing the index of cl(H) in SL(3, Z). $2^7 \cdot 7$

Question: Is H arithmetic in $SL(3,\mathbb{Z})$ (or, equivalently, H = cl(H))?

Experimental evidence: 'most likely, H is not arithmetic'

Fact (Long & Reid, 2011): $H \cong \Delta(3, 3, 4)$.

Conclusion: H is not arithmetic; e.g. has a finite quotient isomorphic to Alt(20) which does not have faithful representation in SL(3, p) for any p.

Experiments

Let $\Gamma := \langle x, y, z \mid zxz^{-1} = xy, zyz^{-1} = yxy \rangle$ (the fundamental group of the figure-eight knot complement). Put $F = \langle x, y \rangle$. Consider the representation $\rho_k : \Gamma \to SL(3, \mathbb{Z}), k \in \mathbb{Z}$,

$$\rho_k(x) = \begin{pmatrix} 1 & -2 & 3 \\ 0 & k & -1 - 2k \\ 0 & 1 & -2 \end{pmatrix}, \ \rho_k(y) = \begin{pmatrix} -2 - k & -1 & 1 \\ -2 - k & -2 & 3 \\ -1 & -1 & 2 \end{pmatrix},$$
$$\rho_k(z) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & -k \\ 0 & 1 & -1 - k \end{pmatrix}.$$

Problem ([Long & Reid, 2011]): what are properties of $\rho_k(\Gamma)$? Motivation: Does $SL(3,\mathbb{Z})$ have the Howson property? Is $SL(3,\mathbb{Z})$ coherent?

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

k	М	Index _F	$Index_{\Gamma,F}$
1	2 ² 3 ⁴	2 ¹⁰ 3 ¹⁵ 13	2 ²
6	2 ² 31.43	$2^{10}3^{3}7 \cdot 43^{2}331 \cdot 631$	2.3.5
7	3 ⁴ 5·19	$2^{6}3^{17}5 \cdot 13 \cdot 19^{2}31 \cdot 127$	$2^2 3^2$
10	$2^{2}3^{4}11.37$	$2^{14}3^{16}7^213 \cdot 19 \cdot 37^267$	$2^2 3^2 5$
15	229.241	$2^{6}3^{3}5 \cdot 97 \cdot 181 \cdot 241^{2}19441$	2.3.19
20	409.421	$2^4 3^3 5 \cdot 7 \cdot 421^2 55897 \cdot 59221$	2 ² 3·17

Comments: (i) $M = \text{Level}(\rho_k(\Gamma)) = \text{Level}(\rho_k(F))$ for all k in the table. (ii) The congruence images of $\rho_k(F)$ modulo M available.

(iii) For $k = 1, 6, 10, \rho_k(\Gamma)$ surjects onto SL(3, 2), and does not surjects onto SL(3, 4).

(iv) Runtime is less than 15 minutes.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

Further experiments.

New experimental results for symplectic monodromy groups of hypergeometric differential equations available. These are 2-generator dense subgroups of $\text{Sp}(n, \mathbb{Q})$ containing a transvection.

Motivation: applications in theoretical physics.

- Experimentation is based on our algorithms for subgroups of $Sp(n, \mathbb{Z})$.
- Experimental tables provides results (including Level(H) and indices in Sp(n, Z)) for

(i) n = 4, 151 groups; (ii) n = 6, 916 groups.

Justification of arithmeticity in a number of cases obtained.

https://arxiv.org/abs/1905.02190

Alla Detinko @ BIRS Zariski density and computing with linear groups

Example. Let

$$U := \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ d & d & 1 & 0 \\ 0 & -k & -1 & 1 \end{bmatrix}, \quad T := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

with $d, k \in \mathbb{Z}$. Then $G(d, k) = \langle U, T \rangle \leq Sp(4, \mathbb{Z})$ is the monodromy group of a generalized hypergeometric ordinary differential equation.

For 14 pairs (d, k) the group G(d, k) is a monodromy group associated to Calabi-Yau threefolds.

Problem (D. van Straten et al.). Find an arithmetic subgroup $\hat{G}(d, k)$ of $Sp(4, \mathbb{Z})$ which contains G(d, k), and compute the index $|Sp(4, \mathbb{Z}) : \hat{G}(d, k)|$.

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3. Applications and experimental results

(d, k)	M	index	t(sec)
(1,3)	2	6	3.910
(1,2)	2	10	3.306
(2,3)	8	$2^6 \cdot 3 \cdot 5$	4.797
(3,4)	$2^2 \cdot 3^2$	$2^9 \cdot 3^5 \cdot 5^2$	7.155
(4, 4)	2 ⁶	$2^{20} \cdot 3^2 \cdot 5$	8.064
(6,5)	$2^{3} \cdot 3^{2}$	$2^{10}\cdot 3^6\cdot 5^2$	9.988
(9,6)	$2 \cdot 3^{5}$	$2^8\cdot 3^{14}\cdot 5^2$	10.671
(5,5)	$2 \cdot 5^3$	$2^8\cdot 3^3\cdot 5^8\cdot 13$	10.312
(2,4)	2 ⁴	$2^{11} \cdot 3^2 \cdot 5$	5.106
(1,4)	2 ²	2 ⁵ · 5	3.515
(16,8)	2 ¹⁰	$2^{40} \cdot 3^2 \cdot 5$	16.841
(12,7)	$2^{5} \cdot 3^{2}$	$2^{17}\cdot 3^6\cdot 5^2$	21.446
(8,6)	2 ⁷	$2^{24} \cdot 3^2 \cdot 5$	10.771
(4,5)	2 ⁵	$2^{13} \cdot 3 \cdot 5$	7.605

◆□→ ◆□→ ◆三→ ◆三→ 三三

Appendix

- Magma functions for computing with infinite linear groups: http://magma.maths.usyd.edu.au/magma/handbook/matrix_ groups_over_infinite_fields.
- 2. GAP functionality for Zariski dense subgroups: http://www.math.colostate.edu/~hulpke/arithmetic.g; Documentation: https://publications.mfo.de/handle/mfo/1321.

Acknowledgment: Dane Flannery, and Willem de Graaf, Alexander Hulpke, Eamonn O'Brien.