Twisted Alexander polynomials and hyperbolic volume for three-manifolds

Joan Porti
Universitat Autònoma de Barcelona

joint work with L Bénard, J Dubois and M Heusener December 9, 2019

Discrete Subgroups of Lie Groups Birs

Main Theorem

- $K \subset S^{3}$ hyperbolic knot, $S^{3} \backslash K=\Gamma \backslash \mathbb{H}^{3}$, Γ torsion free lattice, $\rho_{N}: \pi_{1}\left(S^{3} \backslash K\right) \cong \Gamma \subset \mathrm{SL}_{2}(\mathbb{C}) \xrightarrow{\mathrm{Sym}^{N-1}} \mathrm{SL}_{N}(\mathbb{C})$
- $\Delta_{K}^{\rho_{N}}(t) \in \mathbb{C}\left[t, t^{-1}\right]$ Alexander polynomial of K twisted by ρ_{N}
- It is a Reidemeister torsion: $\Delta_{K}^{\rho_{N}}(t)=\tau\left(S^{3} \backslash K, t^{\mathrm{ab}} \otimes \rho_{N}\right)^{-1}$ (times $\frac{1}{t-1}$ for N odd), where ab: $\Gamma \rightarrow \mathbb{Z}, t^{\mathrm{ab}}: \Gamma \rightarrow \mathbb{Z}\left[t, t^{-1}\right]$
- When $S^{3} \backslash K$ is the mapping torus of a diffeo $\phi: \Sigma \rightarrow \Sigma$, i.e. when $S^{3} \backslash K \cong \Sigma \times[0,1] /(x, 1) \sim(\phi(x), 0)$, then $\Delta_{K}^{\rho_{N}}(t)=\operatorname{det}\left(\phi^{*}-t \mathrm{ld}\right)$, where $\phi^{*}: H^{1}\left(\Sigma, \rho_{N}\right) \rightarrow H^{1}\left(\Sigma, \rho_{N}\right)$

Thm: (BDHP 19) For $\xi \in \mathbb{C},|\xi|=1$,

$$
\lim _{N \rightarrow+\infty} \frac{\log \left|\Delta_{K}^{\rho_{N}}(\xi)\right|}{N^{2}}=\frac{1}{4 \pi} \operatorname{Vol}\left(S^{3} \backslash K\right)
$$

- True for cusped manifolds (with conditions on the "variables" $\operatorname{map} \pi_{1}(M) \rightarrow \mathbb{Z}^{r}$ to define $\left.\Delta\left(t_{1}, \ldots, t_{r}\right)\right)$.

Strategy:

Thm: $K \subset S^{3}$ hyperbolic knot. For $\xi \in \mathbb{C},|\xi|=1$,

$$
\lim _{N \rightarrow+\infty} \frac{\log \left|\Delta_{K}^{\rho_{N}}(\xi)\right|}{N^{2}}=\frac{1}{4 \pi} \operatorname{Vol}\left(S^{3} \backslash K\right)
$$

- It is a theorem on Reidemeister torsion, as

$$
\begin{aligned}
& \qquad\left|\Delta_{K}^{\rho_{N}}(\xi)\right|=\left|\tau\left(S^{3} \backslash K, \xi^{\mathrm{ab}} \otimes \rho_{N}\right)^{-1}\right|, \\
& \text { where } \xi^{\mathrm{ab}}: \Gamma \rightarrow \mathbb{S}^{1} \subset \mathbb{C} \text { maps } \gamma \mapsto \xi^{\mathrm{ab}(\gamma)}
\end{aligned}
$$

Thm (W. Müller 2012):
M^{3} closed hyperbolic, $\lim _{N \rightarrow \infty} \frac{\log \left|\tau\left(M^{3}, \rho_{N}\right)\right|}{N^{2}}=-\frac{\operatorname{Vol}\left(M^{3}\right)}{4 \pi}$

- Strategy:
- Prove Müller's thm for $\chi \otimes \rho_{N}$ instead of ρ_{N} (and M^{3} closed), where $\chi: \pi_{1} M^{3} \rightarrow \mathbb{S}^{1} \subset \mathbb{C}$.
- Approximate $S^{3} \backslash K$ by Dehn fillings.

Analytic torsion

- M closed \& smooth, $\rho: \pi_{1} M \rightarrow \operatorname{SL}_{n}(\mathbb{R}), H^{*}(M, \rho)=0$. $\Delta^{p}: \Omega^{p}(M ; \rho) \rightarrow \Omega^{p}(M ; \rho)$ Laplacian on E_{ρ}-valued p-forms. $\operatorname{Spec}\left(\Delta^{p}\right)$ is discrete and >0.

$$
\zeta_{p}(s)=\sum_{\lambda \in \operatorname{Spec}\left(\Delta^{p}\right)} \lambda^{-s} \quad \text { for } s \in \mathbb{C}, \operatorname{Re}(s) \gg 0
$$

$\zeta_{p}(s)$ extends holomorphically at $s=0$.

$$
\tau^{\text {anal }}(M, \rho):=\exp \left(\frac{1}{2} \sum_{p}(-1)^{p+1} p \zeta_{p}^{\prime}(0)\right)
$$

Thm: (Cheeger-Müller) Analytic torsion $=\mid$ Combinatorial torsion \mid

$$
\tau^{\text {anal }}(M, \rho)=\left|\tau^{c o m b}(M, \rho)\right|
$$

- Proved by J.Cheeger \& W.Müller for $\rho: \pi_{1} M \rightarrow \mathrm{SO}(n)$ (1978)
- Proved by W. Müller for $\mathrm{SL}_{n}(\mathbb{R})$ and $\mathrm{SL}_{n}(\mathbb{C})(1993)$.
- Müller: M^{3} closed hyp, $\lim _{N \rightarrow \infty} \frac{\log \tau^{\text {anal }}\left(M^{3}, \rho_{N}\right)}{N^{2}}=-\frac{\operatorname{Vol}\left(M^{3}\right)}{4 \pi}$

Ruelle zeta function

- M^{3} closed hyperbolic, $\rho: \pi_{1}\left(M^{3}\right) \rightarrow \mathrm{SL}_{n}(\mathbb{C})$ acyclic.
- Ruelle zeta function:

$$
\mathcal{R}_{\rho}(s)=\prod_{\gamma \in \operatorname{PCG}\left(M^{3}\right)} \operatorname{det}\left(\operatorname{ld}-\rho(\gamma) e^{-s /(\gamma)}\right), \quad s \in \mathbb{C}, \operatorname{Re}(s)>2
$$

$\operatorname{PCG}\left(M^{3}\right)=\left\{\right.$ oriented primitive closed geodesics $\left.\gamma \subset M^{3}\right\}$.
$=\left\{[\gamma]\right.$ conjugacy class $\mid 1 \neq \gamma \in \pi_{1}\left(M^{3}\right)$ primitive $\}$ $I(\gamma)=$ length (γ)
Thm: $\mathcal{R}_{\rho}(s)$ extends meromorphically to \mathbb{C} and

$$
\left|\mathcal{R}_{\rho}(0)\right|=\tau^{\text {anal }}\left(M^{3}, \rho\right)^{2}
$$

- Proved by D. Fried 1986 for $\rho: \pi_{1} M^{2 k+1} \rightarrow \mathrm{SO}(n)$
- By A. Wotzke in 2008 for $\rho: \pi_{1} M^{3} \rightarrow \mathrm{SL}_{n}(\mathbb{R})$ and $\mathrm{SL}_{n}(\mathbb{C})$

Müller's Thm and its proof

- Müller's Thm: M^{3} closed, $\lim _{N \rightarrow \infty} \frac{\log \left|\tau\left(M^{3}, \rho_{N}\right)\right|}{N^{2}}=-\frac{\operatorname{Vol}\left(M^{3}\right)}{4 \pi}$
- Tools: Ruelle functions for $s \in \mathbb{C}, \operatorname{Re}(s) \gg 0$.

$$
\begin{aligned}
& -\mathcal{R}_{\rho_{N}}(s)=\prod_{\gamma \in P C G\left(M^{3}\right)} \operatorname{det}\left(\operatorname{ld}-\rho_{N}(\gamma) e^{-s l(\gamma)}\right), \\
& -R_{k}(s)=\prod_{\gamma \in P C G\left(M^{3}\right)}\left(1-e^{\frac{k}{2} i \theta(\gamma)-s l(\gamma)}\right) \\
& \quad \text { where } l(\gamma)+i \theta(\gamma)=\text { complex length of } \gamma
\end{aligned}
$$

$$
\mathcal{R}_{\rho_{N}}(s)=\prod_{k=0}^{N-1} R_{N-1-2 k}\left(s-\left(\frac{N-1}{2}-k\right)\right)
$$

- $\mathcal{R}_{\rho_{N}}(0)=\left|\tau\left(M^{3}, \rho_{N}\right)\right|^{2}$ and $R_{k}(s)=e^{\frac{4 \operatorname{vol}(M) s}{\pi}} R_{-k}(-s)$
\Rightarrow Müller's formula for $N=2 m$:

$$
\log \frac{\left|\tau\left(M^{3}, \rho_{2 m}\right)\right|}{\left|\tau\left(M^{3}, \rho_{4}\right)\right|}=-\frac{1}{\pi} \operatorname{Vol}\left(M^{3}\right)\left(m^{2}-4\right)+\sum_{k=2}^{m-1} \log \left|R_{-2 k-1}\left(k+\frac{1}{2}\right)\right|
$$

- and $\sum_{k=2}^{m-1} \log \left|R_{-2 k-1}\left(k+\frac{1}{2}\right)\right|<C$ uniformly on $m=N / 2$.

Claim: This formula holds also for $\chi \otimes \rho_{N}$, where $\chi: \pi_{1} M^{3} \rightarrow \mathbb{S}^{1} \subset \mathbb{C}$ Next: approximate $S^{3} \backslash K$ by closed manifolds (Dehn fillings).

Approximate by Dehn fillings $K_{p / q}$

- $K_{p / q}=S^{3} \backslash \mathcal{N}(K) \cup_{\varphi} D^{2} \times S^{1}$, with $\varphi\left(\partial D^{2} \times *\right)=p$ meridian $+q$ longitude

Thm (Thurston) $K_{p / q}$ is hyperbolic for almost every $p / q \in \mathbb{Q} \cup\{\infty\}$ and $\lim _{p^{2}+q^{2} \rightarrow \infty} K_{p / q}=S^{3} \backslash K$ for the geometric topology.

In particular $\operatorname{Vol}\left(K_{p / q}\right) \rightarrow \operatorname{Vol}\left(S^{3} \backslash K\right)$

- The thick part of $K_{p / q}$ converges to the thick part of $S^{3} \backslash K$
- The soul of $D^{2} \times S^{1}$ is a geodesic with length $\rightarrow 0$ and the Margulis tube around this short geodesic converges to a cusp

Lemma For any $C \geq 1$

$$
\begin{aligned}
& \left\{\gamma \in P C G\left(K_{p / q}\right) \left\lvert\, \frac{1}{C} \leq I(\gamma) \leq C\right.\right\} \rightarrow\left\{\gamma \in P C G\left(S^{3} \backslash K\right) \mid I(\gamma) \leq C\right\} \\
& \quad \text { as } p^{2}+q^{2} \rightarrow \infty, \text { and the complex lengths converge. }
\end{aligned}
$$

Limit of Müller's formula as $p^{2}+q^{2} \rightarrow \infty$

- When $\xi=e^{2 \pi i r / s}$, chose sequences of Dehn fillings $K_{p / q}$ with $p \in s \mathbb{Z}$ so that $\xi^{\mathrm{ab}}: \pi_{1}\left(S^{3} \backslash K\right) \rightarrow \mathbb{S}^{1}$ factors through $\pi_{1} K_{p / q}$.
- Using geometric convergence $K_{p / q} \rightarrow S^{3} \backslash K$ and dealing with short geodesics, the limit of Müller's formula on $K_{p / q}$ yields

$$
\log \left|\frac{\Delta_{K}^{\rho_{2 m}}(\xi)}{\Delta_{K}^{\rho_{4}}(\xi)}\right|=\frac{1}{\pi} \operatorname{Vol}\left(S^{3} \backslash K\right)\left(m^{2}-4\right)-\sum_{k=2}^{m-1} \log \left|R_{\xi,-2 k-1}\left(k+\frac{1}{2}\right)\right|
$$

for $\xi \in e^{2 \pi i \mathbb{Q}}$,
where $R_{\xi,-2 k-1}\left(k+\frac{1}{2}\right)=\prod_{\gamma}\left(1-\xi^{\mathrm{ab}(\gamma)} e^{-(2 k+1)(/(\gamma)+i \theta(\gamma)) / 2}\right)$

- To prove the theorem for any $\xi \in \mathbb{S}^{1} \subset \mathbb{C}$, prove:
- $\sum_{k=2}^{m-1} \log \left|R_{\xi,-2 k-1}\left(k+\frac{1}{2}\right)\right|$ is unif. bounded $\&$ cont. on $\xi \in \mathbb{S}^{1}$
- $\Delta_{K}^{\rho_{2 m}}(\xi) \neq 0$ for any $\xi \in \mathbb{S}^{1} \subset \mathbb{C}\left(H^{*}\left(S^{3} \backslash K, \xi^{\mathrm{ab}} \otimes \rho_{N}\right)=0\right)$.

Then the formula holds for any $\xi \in \mathbb{S}^{1}$ by continuity.

