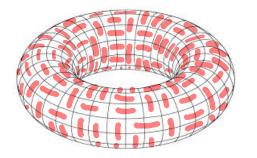
Dimers on Riemann Surfaces

Nathanaël Berestycki Universität Wien* with B. Laslier (Paris) and G. Ray (Victoria, BC)



Banff, Nov 2019

* on leave from University of Cambridge

The dimer model

Definition

G =bipartite finite graph, planar

Dimer configuration = perfect matching on G:

each vertex incident to one edge

Dimer model: uniformly chosen configuration

© Kenyon

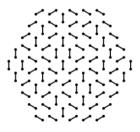
On square lattice, equivalent to domino tiling.

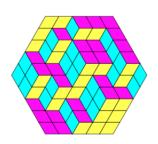
Dimer model as random surface

Example: honeycomb lattice

Dimer = lozenge tiling

Equivalently: stack of 3d cubes.





© Kenyon

Height function

Introduced by Thurston. Hence view as random surface.

Background

Classical model of statistical mechanics:

Kasteleyn, Temperley–Fisher 1960s Kenyon, Propp, Lieb, Okounkov, Sheffield, Dubédat, de Tilière, Boutillier, Borodin, Petrov, Toninelli, Ferrari, Gorin, ... 1990s+

"Exactly Solvable": determinantal structure

e.g.,
$$Z_{m,n} = \prod_{j=1}^{m} \prod_{k=1}^{n} \left| 2\cos(\frac{\pi j}{m+1}) + 2i\cos(\frac{\pi k}{n+1}) \right|^{1/2}$$

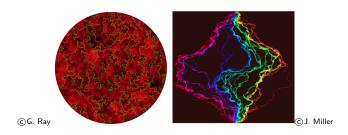
Mapping to other models:

Tilings, 6-vertex, Ising, Uniform Spanning Trees (UST)

Dimers and Imaginary Geometry

With B. Laslier and G. Ray, programme to obtain scaling limit without determinantal structure, in various geometries.

In simply connected regions, \rightarrow Imaginary Geometry (Dubédat, Miller & Sheffield).

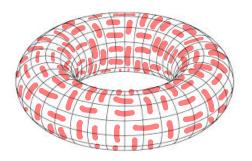


GFF identified as field h whose flow lines are a continuum UST. This is a continuum form of Temperley's bijection.

This talk:

Dimers on Riemann surfaces.

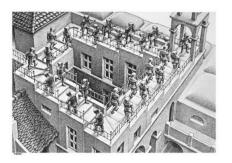
<u>Goal:</u> show existence of a universal limiting "height function" and conformal invariance.



(artistic rendering!)

Height as 1-form

In fact, "height function" is a closed 1-form (ie, ∇h well defined)



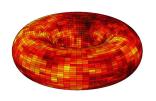
Hodge decomposition:

h consists of a function together with **instanton component** (a harmonic function on universal cover).

Some previous results:

Theorem (Boutillier and de Tilière, AoP 2009)

Convergence of instanton component for honeycomb lattice on torus + limit law: discrete Gaussian



Theorem (Dubédat, JAMS 2015)

Convergence of instanton <u>and</u> scalar component on torus for double isoradial graphs + limit law: compactified GFF

Theorem (Cimasoni, JEMS 2009)

On general surface, partition function = alternating sum of 2^{2g} determinants of Kasteleyn matrices. Coefficients given by Arf invariants.

Temperley's bijection; Kenyon-Sheffield

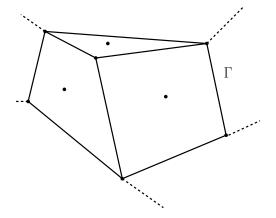
Start with a UST on graph Γ . Construct associated dimer config. on a modified graph G

Dimer configurations on $G \leftrightarrow \mathsf{UST}$ on Γ Height function \leftrightarrow Winding of branches in tree

New goal:

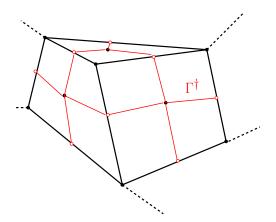
Study winding of branches in UST.

Temperley's bijection: how does it work (1)?

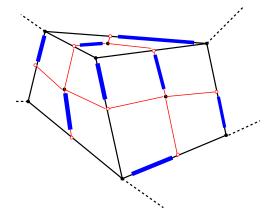


Temperley's bijection: how does it work (2)?

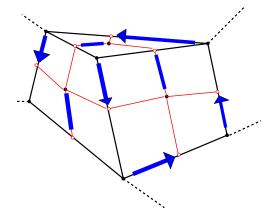
Pair of dual UST on $(\Gamma, \Gamma^{\dagger}) \leftrightarrow$ dimer on $G = \Gamma \oplus \Gamma^{\dagger}$: (primal, dual <u>and</u> medial lattice).



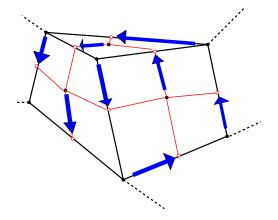
Temperley's bijection: how does it work (3)?



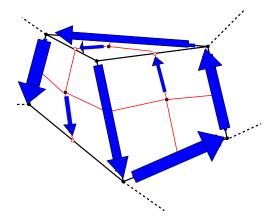
Temperley's bijection: how does it work (3.1)?



Temperley's bijection: how does it work (3.2)?

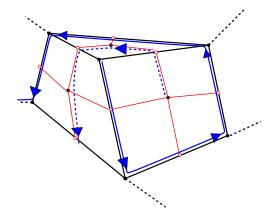


Temperley's bijection: how does it work (4)?



Temperley's bijection: how does it work (5)?

Pair of dual UST on $(\Gamma, \Gamma^{\dagger}) \leftrightarrow \text{dimer on } G = \Gamma \oplus \Gamma^{\dagger}$.



[Trees = oriented edges: each vertex has unique outgoing edge, except on boundary (wired).]

Starting point

Theorem 1 (B.-Laslier-Ray '19, in preparation)

We extend Temperley's bijection to Riemann surfaces. Instead of UST, "Temperleyan forests".

Extension of Temperley's bijection

If Γ a graph embedded on S, Γ^{\dagger} its dual, $G = \text{Superposition } \Gamma \cup \Gamma^{\dagger}$, + intermediate vertices.

Euler's formula for Γ :

$$V - E + F = \chi = 2 - 2g - b;$$

g = genus, b = boundary components.

However, for G to be dimerable, V + F = E hence need:

$$\chi = 0$$
, or $2g + b = 2$.

In simply connected case we need to remove one vertex (Kenyon–Propp–Wilson); and remove two on \mathbb{S}^2 .

Extension of Temperley's bijection

Punctures

Lemma: Removing 2g + b - 2 disjoint edges & medial vertices, G is dimerable.

Admit this for now.

Temperley's bijection is local, so can be applied here too.

Instead of UST get a new object: "Temperleyan forests".

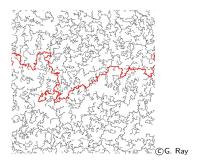
Extension of Temperley's bijection

Most natural generalisation of UST: Cycle Rooted Spanning Forest

Definition: CRSF

Oriented subgraph T of G:

- \forall *v* \notin ∂ *G*, unique outgoing edge (except boundary: wired).
- Every cycle is non-contractible.



Topological reasons: any component has at most one cycle;

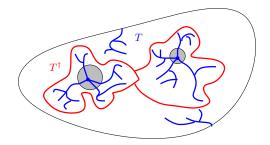
Temperleyan forest

Let T be oriented wired CRSF on Γ , $T^{\dagger} = \text{dual}$. <u>Problem:</u> Can you orient dual T^{\dagger} ? Not always possible!

Definition

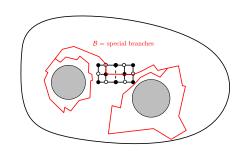
Call T **Temperleyan** if each connected component of T^{\dagger} contains at most one cycle.

Ex: non-Temperleyan:



Characterisation of Temperleyan forests

Let $\mathcal{B}=$ special branches (emanating from punctures on either side)



Proposition

T is Temperleyan iff every component in the complement of $\mathcal B$ in M has the topology of an annulus or a torus.

Proof: "Pair of pants" decomposition.

Dimerability

Corollary

On torus/annulus, CRSF always Temperleyan (note $\chi=0$).

(In fact, this is how the proposition is proved...)

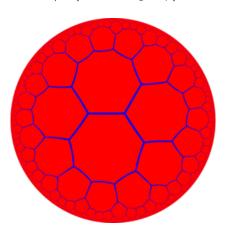
Corollary

Removing the $|\chi|$ punctures, the superposition graph is indeed dimerable.

<u>Proof:</u> apply pair of pants decomposition and Temperley's generalised bijection.

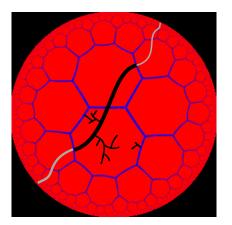
Height function and winding

Relation should persist if embed in flat surface: \rightarrow universal cover. But what to do if Temperleyan forest not connected? Fuchsian theory: $S = \mathbb{D}/\Gamma$ (Fuchsian group).



Height function and winding

Relation should persist if embed in flat surface: \rightarrow universal cover. But what to do if Temperleyan forest not connected? Fuchsian theory: $S = \mathbb{D}/\Gamma$ (Fuchsian group).



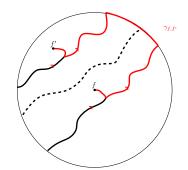
Height function and winding

With appropriate choice of reference flow we prove:

Theorem 2

$$h(f) - h(f') = W_{\text{int}}(\gamma_{f,f'}) + \pi \sum_{\sigma} (\varepsilon_{\sigma} + \delta_{\sigma})$$

 $\varepsilon_{\sigma}, \delta_{\sigma} \in \{-1, +1\}$ global topological terms (=algebraic count of primal and dual spines separating f and f').



_∧Note:

 $\gamma_{f,f'}$ goes "through ∞ "

Condition for convergence of height function

From [B.-Laslier-Ray, 2016], intrinsic winding is well-behaved. Consequence:

Theorem 3

Let $\chi \leq 0$ be arbitrary. Suppose Temperleyan forest has a scaling limit (in Schramm topology).

Then both components of dimer height function converge.

Low Euler characteristic

When Euler's $\chi=0$ (i.e., annulus or torus), by Proposition: Temperleyan forest reduces to **Cycle Rooted Spanning Forest**:

$$\frac{d\mathbb{P}_{\mathsf{Temp}}}{d\mathbb{P}_{\mathsf{CRSF}}} = \frac{2^{\# \; \mathsf{dual} \; \mathsf{cycles}}}{\mathbb{E}_{\mathsf{CRSF}} \big(2^{\# \; \mathsf{dual} \; \mathsf{cycles}} \big)} = \frac{2^{\# \; \mathsf{cycles}}}{\mathbb{E}_{\mathsf{CRSF}} \big(2^{\# \; \mathsf{cycles}} \big)}.$$

because 2 choices for orientation of each cycle.

Moreover, Wilson's algorithm for CRSF: perform LERW but stop if make nontrivial loop.

Scaling limit of CRSF

Theorem 3 (B.-Laslier-Ray)

Let $\chi \leq 0$ arbitrary. Assume (*).

Then CRSF converges in Schramm space to universal, conformally invariant scaling limit.

Moreover, $\mathbb{E}_{CRSF}(q^{\# \text{ cycles}})$ uniformly bounded for any q > 0.

Solves some conjectures by Kassel-Kenyon.

(*) generic assumptions on graph:

 $SRW \rightarrow BM$ on surface,

"rectangles" are crossed with positive probability (\approx RSW).

Main conclusion (for now!)

Corollary

Dimer height function converges when $\chi=0$. Both components are **universal**, **conformally invariant**.

In torus case, proves conjecture by Dubédat, completing partial results by Dubédat-Ghessari.

In progress

Can handle Riemann surfaces of low complexity (Euler's $\chi = 0$)

Work on case $\chi < 0$ in progress ...

 \rightarrow existence of a conformally invariant scaling limit.

Conjecture: the limiting "height function" converges to the compactified GFF in the punctured surface

THANK YOU!