Non simple blow-up phenomena for the singular Liouville equation

Teresa D'Aprile

Università degli Studi di Roma "Tor Vergata"

Nonlinear Geometric PDE's
The Banff Centre in Banff, Alberta, Canada
May 5th-10th, 2019

Let us consider the following singular Liouville-type problem

$$
\left\{\begin{array}{lc}
-\Delta u=\lambda V(x) e^{u}-4 \pi N \delta_{0} & \text { in } \Omega \tag{1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

Let us consider the following singular Liouville-type problem

$$
\left\{\begin{array}{lc}
-\Delta u=\lambda V(x) e^{u}-4 \pi N \delta_{0} & \text { in } \Omega \tag{1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

- $\Omega \subset \mathbb{R}^{2}$ smooth and bounded, $0 \in \Omega$;

Let us consider the following singular Liouville-type problem

$$
\left\{\begin{array}{lc}
-\Delta u=\lambda V(x) e^{u}-4 \pi N \delta_{0} & \text { in } \Omega \tag{1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

- $\Omega \subset \mathbb{R}^{2}$ smooth and bounded, $0 \in \Omega$;
- $\lambda>0$;

Let us consider the following singular Liouville-type problem

$$
\left\{\begin{array}{lc}
-\Delta u=\lambda V(x) e^{u}-4 \pi N \delta_{0} & \text { in } \Omega \tag{1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

- $\Omega \subset \mathbb{R}^{2}$ smooth and bounded, $0 \in \Omega$;
- $\lambda>0$;
- $V \in C^{2}(\bar{\Omega})$, inf $_{\Omega} V>0$;

Let us consider the following singular Liouville-type problem

$$
\left\{\begin{array}{lc}
-\Delta u=\lambda V(x) e^{u}-4 \pi N \delta_{0} & \text { in } \Omega \tag{1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

- $\Omega \subset \mathbb{R}^{2}$ smooth and bounded, $0 \in \Omega$;
- $\lambda>0$;
- $V \in C^{2}(\bar{\Omega})$, inf $_{\Omega} V>0$;
- $N \in \mathbb{N}$.

Let us consider the following singular Liouville-type problem

$$
\left\{\begin{array}{lc}
-\Delta u=\lambda V(x) e^{u}-4 \pi N \delta_{0} & \text { in } \Omega \tag{1}\\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

- $\Omega \subset \mathbb{R}^{2}$ smooth and bounded, $0 \in \Omega$;
- $\lambda>0$;
- $V \in C^{2}(\bar{\Omega}), \mathrm{inf}_{\Omega} V>0$;
- $N \in \mathbb{N}$.

Liouville-type equations arise in several physical models: in particular, problem (1) occurs in the study of vortices in the Chern-Simons theory.

Let us consider the following singular Liouville-type problem

$$
\begin{cases}-\Delta u=\lambda V(x) e^{u}-4 \pi N \delta_{0} & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where

- $\Omega \subset \mathbb{R}^{2}$ smooth and bounded, $0 \in \Omega$;
- $\lambda>0$;
- $V \in C^{2}(\bar{\Omega})$, inf $f_{\Omega} V>0$;
- $N \in \mathbb{N}$.

Liouville-type equations arise in several physical models: in particular, problem (1) occurs in the study of vortices in the Chern-Simons theory.

Problem (1) has been widely studied: there are many papers investigating the existence of solutions with multiple concentration as $\lambda \rightarrow 0^{+}$.

Some notation

Some notation

In the following $G(x, y)$ is the Dirichlet Green's function of $-\Delta$ over Ω :

$$
\begin{cases}-\Delta_{x} G(x, y)=\delta_{y}(x) & x \in \Omega \\ G(x, y)=0 & x \in \partial \Omega\end{cases}
$$

Some notation

In the following $G(x, y)$ is the Dirichlet Green's function of $-\Delta$ over Ω :

$$
\begin{cases}-\Delta_{x} G(x, y)=\delta_{y}(x) & x \in \Omega \\ G(x, y)=0 & x \in \partial \Omega\end{cases}
$$

and $H(x, y)$ is its regular part:

$$
H(x, y)=G(x, y)-\frac{1}{2 \pi} \log \frac{1}{|x-y|} .
$$

Some notation

In the following $G(x, y)$ is the Dirichlet Green's function of $-\Delta$ over Ω :

$$
\begin{cases}-\Delta_{x} G(x, y)=\delta_{y}(x) & x \in \Omega \\ G(x, y)=0 & x \in \partial \Omega\end{cases}
$$

and $H(x, y)$ is its regular part:

$$
H(x, y)=G(x, y)-\frac{1}{2 \pi} \log \frac{1}{|x-y|} .
$$

H is a smooth function in $\Omega \times \Omega$.

Some notation

In the following $G(x, y)$ is the Dirichlet Green's function of $-\Delta$ over Ω :

$$
\begin{cases}-\Delta_{x} G(x, y)=\delta_{y}(x) & x \in \Omega \\ G(x, y)=0 & x \in \partial \Omega\end{cases}
$$

and $H(x, y)$ is its regular part:

$$
H(x, y)=G(x, y)-\frac{1}{2 \pi} \log \frac{1}{|x-y|} .
$$

H is a smooth function in $\Omega \times \Omega$.
$H(x, x)$ is the Robin's function and satisfies

$$
H(x, x) \rightarrow-\infty \quad \text { as } \operatorname{dist}(x, \partial \Omega) \rightarrow 0
$$

Previous work. Asymptotic analysis.

Previous work．Asymptotic analysis．

圊 Nagasaki－Suzuki（＇90）
Brezis－Merle（＇91）
䡒 Suzuki（＇92），Li－Shafrir（＇94）
Baraket－Pacard（＇98）
庫 Ma－Wei（＇01）

Previous work．Asymptotic analysis．

周 Nagasaki－Suzuki（＇90）
R Brezis－Merle（＇91）
國 Suzuki（＇92），Li－Shafrir（＇94）
國 Baraket－Pacard（＇98）
周 Ma－Wei（＇01）
Bartolucci－Tarantello（＇02），
圊 Bartolucci－Chen－Lin－Tarantello（＇04），
國 Tarantello（＇04，＇05），
國 Esposito（＇05）．．．

Previous work. Concentration away from 0.

Previous work. Concentration away from 0.

Nagasaki-Suzuki ('90), Brezis-Merle ('91), Suzuki ('92), Li-Shafrir ('94), Baraket-Pacard ('98), Ma-Wei ('01)... :

Previous work. Concentration away from 0.

Nagasaki-Suzuki ('90), Brezis-Merle ('91), Suzuki ('92), Li-Shafrir ('94), Baraket-Pacard ('98), Ma-Wei ('01)... :
If u_{λ} is an unbounded family of solutions of (1) s.t. $\lambda \int_{\Omega} V(x) e^{u_{\lambda}} \leq C$ and u_{λ} uniformly bounded in a neighborhood of 0 ,

Previous work. Concentration away from 0.

Nagasaki-Suzuki ('90), Brezis-Merle ('91), Suzuki ('92), Li-Shafrir ('94), Baraket-Pacard ('98), Ma-Wei ('01)... :
If u_{λ} is an unbounded family of solutions of (1) s.t. $\lambda \int_{\Omega} V(x) e^{u_{\lambda}} \leq C$ and u_{λ} uniformly bounded in a neighborhood of 0 , then (up to a subsequence) necessarily

$$
\lambda \int_{\Omega} V(x) e^{u_{\lambda}} d x \rightarrow 8 \pi m \text { as } \lambda \rightarrow 0
$$

for some $m \geq 1$.

Previous work. Concentration away from 0.

Nagasaki-Suzuki ('90), Brezis-Merle ('91), Suzuki ('92), Li-Shafrir ('94), Baraket-Pacard ('98), Ma-Wei ('01)... :
If u_{λ} is an unbounded family of solutions of (1) s.t. $\lambda \int_{\Omega} V(x) e^{u_{\lambda}} \leq C$ and u_{λ} uniformly bounded in a neighborhood of 0 , then (up to a subsequence) necessarily

$$
\lambda \int_{\Omega} V(x) e^{u_{\lambda}} d x \rightarrow 8 \pi m \text { as } \lambda \rightarrow 0
$$

for some $m \geq 1$. Moreover there are distinct points $\xi_{1}, \ldots, \xi_{m} \in \Omega \backslash\{0\}$ such that (up to a subsequence)

$$
\begin{equation*}
\lambda V(x) e^{u_{\lambda}} \rightarrow 8 \pi \sum_{j=1}^{m} \delta_{\xi_{j}} \tag{2}
\end{equation*}
$$

in the measure sense.

Previous work. Concentration away from 0.

Nagasaki-Suzuki ('90), Brezis-Merle ('91), Suzuki ('92), Li-Shafrir ('94), Baraket-Pacard ('98), Ma-Wei ('01)... :
If u_{λ} is an unbounded family of solutions of (1) s.t. $\lambda \int_{\Omega} V(x) e^{u_{\lambda}} \leq C$ and u_{λ} uniformly bounded in a neighborhood of 0 , then (up to a subsequence) necessarily

$$
\lambda \int_{\Omega} V(x) e^{u_{\lambda}} d x \rightarrow 8 \pi m \text { as } \lambda \rightarrow 0
$$

for some $m \geq 1$. Moreover there are distinct points $\xi_{1}, \ldots, \xi_{m} \in \Omega \backslash\{0\}$ such that (up to a subsequence)

$$
\begin{equation*}
\lambda V(x) e^{u_{\lambda}} \rightarrow 8 \pi \sum_{j=1}^{m} \boldsymbol{\delta}_{\xi_{j}} \tag{2}
\end{equation*}
$$

in the measure sense. Besides $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{m}\right)$ corresponds to a critical point of

$$
\Psi(\boldsymbol{\xi})=\frac{1}{2} \sum_{j=1}^{m}\left(H\left(\xi_{j}, \xi_{j}\right)+\frac{\log V\left(\xi_{j}\right)}{4 \pi}\right)+\frac{1}{2} \sum_{\substack{j, k=1 \\ j \neq k}}^{m} G\left(\xi_{j}, \xi_{k}\right)-\frac{N}{2} \sum_{j=1}^{m} G\left(\xi_{j}, 0\right)
$$

Previous work. Concentration at 0.

Previous work. Concentration at 0.

Bartolucci-Tarantello ('02), Bartolucci-Chen-Lin-Tarantello ('04), Tarantello ('04, '05), Esposito ('05)... :
Previous work. Concentration at 0.

星
Bartolucci-Tarantello ('02), Bartolucci-Chen-Lin-Tarantello ('04), Tarantello ('04, '05), Esposito ('05)... :
If u_{λ} is an unbounded family of solutions of (1) for which $\lambda \int_{\Omega} V(x) e^{u_{\lambda}} \leq C$ and u_{λ} is unbounded in any neighborhood of 0 ,

Previous work. Concentration at 0.

國 Bartolucci-Tarantello ('02), Bartolucci-Chen-Lin-Tarantello ('04), Tarantello ('04, '05), Esposito ('05)... :
If u_{λ} is an unbounded family of solutions of (1) for which $\lambda \int_{\Omega} V(x) e^{u_{\lambda}} \leq C$ and u_{λ} is unbounded in any neighborhood of 0 , then (up to a subsequence) necessarily

$$
\lambda \int_{\Omega} V(x) e^{\omega_{\lambda}} d x \rightarrow 8 \pi m+8 \pi(1+N) \text { as } \lambda \rightarrow 0
$$

for some $m \geq 0$.

Previous work. Concentration at 0.

Bartolucci-Tarantello ('02), Bartolucci-Chen-Lin-Tarantello ('04), Tarantello ('04, '05), Esposito ('05)... :
If u_{λ} is an unbounded family of solutions of (1) for which $\lambda \int_{\Omega} V(x) e^{u_{\lambda}} \leq C$ and u_{λ} is unbounded in any neighborhood of 0 , then (up to a subsequence) necessarily

$$
\lambda \int_{\Omega} V(x) e^{u_{\lambda}} d x \rightarrow 8 \pi m+8 \pi(1+N) \text { as } \lambda \rightarrow 0
$$

for some $m \geq 0$. Moreover there are distinct points $\xi_{1}, \ldots, \xi_{m} \in \Omega \backslash\{0\}$ such that

$$
\begin{equation*}
\lambda V(x) e^{u_{\lambda}} \rightarrow 8 \pi \sum_{j=1}^{m} \delta_{\xi_{j}}+8 \pi(1+N) \delta_{0} \tag{3}
\end{equation*}
$$

in the measure sense.

Previous work. Construction of solutions.

Previous work. Construction of solutions.

圊
Weston ('78), Chen-Lin ('91), Baraket-Pacard ('98), Del Pino-Kowalczyk-Musso ('05), Esposito-Grossi-Pistoia ('05): solution single or multiple concentration is constructed if $N=0$;

Previous work. Construction of solutions.

圊
Weston ('78), Chen-Lin ('91), Baraket-Pacard ('98), Del Pino-Kowalczyk-Musso ('05), Esposito-Grossi-Pistoia ('05): solution single or multiple concentration is constructed if $N=0$;

Del Pino-Kowalczyk-Musso ('05): a solution blowing up at m distinct points in $\Omega \backslash\{0\}$ does exists as long as $m<1+N$;

Previous work．Construction of solutions．

冨
Weston（＇78），Chen－Lin（＇91），Baraket－Pacard（＇98），Del Pino－Kowalczyk－Musso（＇05），Esposito－Grossi－Pistoia（＇05）：solution single or multiple concentration is constructed if $N=0$ ；

目 Del Pino－Kowalczyk－Musso（＇05）：a solution blowing up at m distinct points in $\Omega \backslash\{0\}$ does exists as long as $m<1+N$ ；

目 D．（＇13）：multiplicity results in the case of several sources；

Previous work. Construction of solutions.

围
Weston ('78), Chen-Lin ('91), Baraket-Pacard ('98), Del Pino-Kowalczyk-Musso ('05), Esposito-Grossi-Pistoia ('05): solution single or multiple concentration is constructed if $N=0$;

Del Pino-Kowalczyk-Musso ('05): a solution blowing up at m distinct points in $\Omega \backslash\{0\}$ does exists as long as $m<1+N$;
婁
D. ('13): multiplicity results in the case of several sources;

Esposito ('05): a solution concentrating at 0 exists under the additional assumption $N \in(0,+\infty) \backslash \mathbb{N}$;

Previous work. Construction of solutions.

围
Weston ('78), Chen-Lin ('91), Baraket-Pacard ('98), Del Pino-Kowalczyk-Musso ('05), Esposito-Grossi-Pistoia ('05): solution single or multiple concentration is constructed if $N=0$;

Del Pino-Kowalczyk-Musso ('05): a solution blowing up at m distinct points in $\Omega \backslash\{0\}$ does exists as long as $m<1+N$;

目 D. ('13): multiplicity results in the case of several sources;
Esposito ('05): a solution concentrating at 0 exists under the additional assumption $N \in(0,+\infty) \backslash \mathbb{N}$;

- Del Pino-Esposito-Musso ('10): if $N \in \mathbb{N}$ then there exists a suitable $p \in \Omega$ (depending on λ) such that a solution blowing up at $N+1$ points at the vertices of a small polygon centered at p does exist for the problem

$$
\left\{\begin{array}{lc}
-\Delta u=\lambda e^{u}-4 \pi N \delta_{p} & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

The limiting problem

The limiting problem

For any $N \in \mathbb{N}$, we can associate to (4) a limiting problem of Liouville type:

$$
-\Delta w=|x|^{2 N} e^{w} \quad \text { in } \mathbb{R}^{2}, \quad \int_{\mathbb{R}^{2}}|x|^{2 N} e^{w(x)} d x<+\infty
$$

The limiting problem

For any $N \in \mathbb{N}$, we can associate to (4) a limiting problem of Liouville type:

$$
-\Delta w=|x|^{2 N} e^{w} \quad \text { in } \mathbb{R}^{2}, \quad \int_{\mathbb{R}^{2}}|x|^{2 N} e^{w(x)} d x<+\infty
$$

All solutions of this problem are given, in complex notation, by the three-parameter family of functions

$$
w_{\delta, b}(x):=\log \frac{8(N+1)^{2} \delta^{2(N+1)}}{\left(\delta^{2(N+1)}+\left|x^{N+1}-b\right|^{2}\right)^{2}} \quad \delta>0, b \in \mathbb{C}
$$

(Prajapat-Tarantello '01)

The limiting problem

For any $N \in \mathbb{N}$, we can associate to (4) a limiting problem of Liouville type:

$$
-\Delta w=|x|^{2 N} e^{w} \quad \text { in } \mathbb{R}^{2}, \quad \int_{\mathbb{R}^{2}}|x|^{2 N} e^{w(x)} d x<+\infty
$$

All solutions of this problem are given, in complex notation, by the three-parameter family of functions

$$
w_{\delta, b}(x):=\log \frac{8(N+1)^{2} \delta^{2(N+1)}}{\left(\delta^{2(N+1)}+\left|x^{N+1}-b\right|^{2}\right)^{2}} \quad \delta>0, b \in \mathbb{C}
$$

(Prajapat-Tarantello '01)
The following quantization property holds:

$$
\int_{\mathbb{R}^{2}}|x|^{2 N} e^{w_{\delta, b}(x)} d x=8 \pi(N+1)
$$

Our problem

Our problem

Let us consider the singular Liouville-type problem

$$
\begin{cases}-\Delta u=\lambda e^{u}-4 \pi N_{\lambda} \delta_{0} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Our problem

Let us consider the singular Liouville-type problem

$$
\begin{cases}-\Delta u=\lambda e^{u}-4 \pi N_{\lambda} \delta_{0} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $N_{\lambda} \rightarrow N \in \mathbb{N}$.

Our problem

Let us consider the singular Liouville-type problem

$$
\begin{cases}-\Delta u=\lambda e^{u}-4 \pi N_{\lambda} \delta_{0} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $N_{\lambda} \rightarrow N \in \mathbb{N}$. From now on we all assume that

Our problem

Let us consider the singular Liouville-type problem

$$
\begin{cases}-\Delta u=\lambda e^{u}-4 \pi N_{\lambda} \delta_{0} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $N_{\lambda} \rightarrow N \in \mathbb{N}$. From now on we all assume that (A1) Ω is $(N+1)$-symmetric;

Our problem

Let us consider the singular Liouville-type problem

$$
\begin{cases}-\Delta u=\lambda e^{u}-4 \pi N_{\lambda} \delta_{0} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $N_{\lambda} \rightarrow N \in \mathbb{N}$. From now on we all assume that
(A1) Ω is $(N+1)$-symmetric;
(A2) the function

$$
b \longmapsto \Lambda(b):=\sum_{i, j=0}^{N} H\left(\beta_{i}, \beta_{j}\right)-N \sum_{i=0}^{N} H\left(\beta_{i}, 0\right)
$$

has a nondegenerate maximum at 0 ,

Our problem

Let us consider the singular Liouville-type problem

$$
\begin{cases}-\Delta u=\lambda e^{u}-4 \pi N_{\lambda} \delta_{0} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $N_{\lambda} \rightarrow N \in \mathbb{N}$. From now on we all assume that
(A1) Ω is $(N+1)$-symmetric;
(A2) the function

$$
b \longmapsto \Lambda(b):=\sum_{i, j=0}^{N} H\left(\beta_{i}, \beta_{j}\right)-N \sum_{i=0}^{N} H\left(\beta_{i}, 0\right)
$$

has a nondegenerate maximum at 0 , where $\beta_{i}^{N+1}=b, \beta_{i} \neq \beta_{h}$ for $i \neq h$.

Theorem

Theorem

Assume that hypotheses (A1) - (A2) hold and, in addition

Theorem

Assume that hypotheses (A1) - (A2) hold and, in addition

$$
N_{\lambda}-N=O\left(\lambda^{\eta}\right)
$$

for some $\eta>0$.

Theorem

Assume that hypotheses (A1) - (A2) hold and, in addition

$$
N_{\lambda}-N=O\left(\lambda^{\eta}\right)
$$

for some $\eta>0$. Then, for λ sufficiently small the problem

$$
\begin{cases}-\Delta u=\lambda e^{u}-4 \pi N_{\lambda} \delta_{0} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a family of solutions u_{λ} blowing up at 0 as $\lambda \rightarrow 0^{+}$.

Theorem

Assume that hypotheses (A1) - (A2) hold and, in addition

$$
N_{\lambda}-N=O\left(\lambda^{\eta}\right)
$$

for some $\eta>0$. Then, for λ sufficiently small the problem

$$
\begin{cases}-\Delta u=\lambda e^{u}-4 \pi N_{\lambda} \delta_{0} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a family of solutions u_{λ} blowing up at 0 as $\lambda \rightarrow 0^{+}$. More precisely

$$
\lambda e^{U_{\lambda}} \rightarrow 8 \pi(1+N) \delta_{0} \text { in the measure sense. }
$$

Theorem (D.-Wei, 2019)

Theorem (D.-Wei, 2019)

Assume that hypotheses (A1) - (A2) hold and, in addition

Theorem (D.-Wei, 2019)

Assume that hypotheses (A1) - (A2) hold and, in addition

$$
c \lambda \log ^{2} \lambda \leq N_{\lambda}-N \leq C \lambda^{\eta}
$$

for some $\eta>0, c, C>0$.

Theorem (D.-Wei, 2019)

Assume that hypotheses (A1) - (A2) hold and, in addition

$$
c \lambda \log ^{2} \lambda \leq N_{\lambda}-N \leq C \lambda^{\eta}
$$

for some $\eta>0, c, C>0$. Then, for λ sufficiently small the problem

$$
\begin{cases}-\Delta u=\lambda e^{u}-4 \pi N_{\lambda} \delta_{0} & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

has a family of solutions u_{λ}

Theorem (D.-Wei, 2019)

Assume that hypotheses $(A 1)-(A 2)$ hold and, in addition

$$
c \lambda \log ^{2} \lambda \leq N_{\lambda}-N \leq C \lambda^{\eta}
$$

for some $\eta>0, c, C>0$. Then, for λ sufficiently small the problem

$$
\left\{\begin{array}{lc}
-\Delta u=\lambda e^{u}-4 \pi N_{\lambda} \delta_{0} & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

has a family of solutions u_{λ} satisfying

$$
\lambda e^{u_{\lambda}} \rightarrow 8 \pi(1+N) \delta_{0} \text { in the measure sense. }
$$

Theorem (D.-Wei, 2019)

Assume that hypotheses $(A 1)-(A 2)$ hold and, in addition

$$
c \lambda \log ^{2} \lambda \leq N_{\lambda}-N \leq C \lambda^{\eta}
$$

for some $\eta>0, c, C>0$. Then, for λ sufficiently small the problem

$$
\left\{\begin{array}{lc}
-\Delta u=\lambda e^{u}-4 \pi N_{\lambda} \delta_{0} & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

has a family of solutions u_{λ} satisfying

$$
\lambda e^{u_{\lambda}} \rightarrow 8 \pi(1+N) \delta_{0} \text { in the measure sense. }
$$

More precisely

$$
\lambda e^{u_{\lambda}}-\sum_{i=0}^{N} \frac{8 \mu^{2}}{\left(\mu^{2}+\left|x-\beta_{i}\right|^{2}\right)^{2}} \rightarrow 0 \text { in } L^{1}(\Omega)
$$

Theorem (D.-Wei, 2019)

Assume that hypotheses $(A 1)-(A 2)$ hold and, in addition

$$
c \lambda \log ^{2} \lambda \leq N_{\lambda}-N \leq C \lambda^{\eta}
$$

for some $\eta>0, c, C>0$. Then, for λ sufficiently small the problem

$$
\left\{\begin{array}{lc}
-\Delta u=\lambda e^{u}-4 \pi N_{\lambda} \delta_{0} & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

has a family of solutions u_{λ} satisfying

$$
\lambda e^{u_{\lambda}} \rightarrow 8 \pi(1+N) \delta_{0} \text { in the measure sense. }
$$

More precisely

$$
\lambda e^{u_{\lambda}}-\sum_{i=0}^{N} \frac{8 \mu^{2}}{\left(\mu^{2}+\left|x-\beta_{i}\right|^{2}\right)^{2}} \rightarrow 0 \text { in } L^{1}(\Omega)
$$

where $\mu \sim \frac{\sqrt{\lambda}}{|b|^{N+1}}, \quad \sqrt{\lambda|\log \lambda|} \leq|b| \leq \lambda^{\frac{\eta}{4(N+1)}} \sqrt{|\log \lambda|}$.

Remark

Remark

If Ω is $(N+1)$-symmetric:

$$
x \in \Omega \Longleftrightarrow x e^{i \frac{2 \pi}{N+1}} \in \Omega,
$$

Remark

If Ω is $(N+1)$-symmetric:

$$
x \in \Omega \Longleftrightarrow x e^{\frac{i}{N+1}} \in \Omega
$$

then the new domain

$$
\Omega_{N+1}:=\left\{x^{N+1} \mid x \in \Omega\right\}
$$

is smooth

Remark

If Ω is $(N+1)$-symmetric:

$$
x \in \Omega \Longleftrightarrow x e^{\frac{i}{N+1}} \in \Omega
$$

then the new domain

$$
\Omega_{N+1}:=\left\{x^{N+1} \mid x \in \Omega\right\}
$$

is smooth and

$$
\Lambda(b)=(N+1) \mathcal{H}_{N+1}(b, b)-N \mathcal{H}_{N+1}(b, 0) \quad \forall b \in \Omega_{N+1}
$$

where \mathcal{H}_{N+1} is the regular part of the Green's function of $-\Delta$ in Ω_{N+1}.

Remark

If Ω is $(N+1)$-symmetric:

$$
x \in \Omega \Longleftrightarrow x e^{\frac{i}{N+1}} \in \Omega
$$

then the new domain

$$
\Omega_{N+1}:=\left\{x^{N+1} \mid x \in \Omega\right\}
$$

is smooth and

$$
\Lambda(b)=(N+1) \mathcal{H}_{N+1}(b, b)-N \mathcal{H}_{N+1}(b, 0) \quad \forall b \in \Omega_{N+1}
$$

where \mathcal{H}_{N+1} is the regular part of the Green's function of $-\Delta$ in Ω_{N+1}. In particular, if $\Omega=B(0,1)$, then

$$
\Omega_{N+1}=\Omega, \quad \mathcal{H}_{N+1}=H
$$

Remark

If Ω is $(N+1)$-symmetric:

$$
x \in \Omega \Longleftrightarrow x e^{\frac{i}{N+1}} \in \Omega
$$

then the new domain

$$
\Omega_{N+1}:=\left\{x^{N+1} \mid x \in \Omega\right\}
$$

is smooth and

$$
\Lambda(b)=(N+1) \mathcal{H}_{N+1}(b, b)-N \mathcal{H}_{N+1}(b, 0) \quad \forall b \in \Omega_{N+1}
$$

where \mathcal{H}_{N+1} is the regular part of the Green's function of $-\Delta$ in Ω_{N+1}. In particular, if $\Omega=B(0,1)$, then

$$
\Omega_{N+1}=\Omega, \quad \mathcal{H}_{N+1}=H
$$

and

$$
\Lambda(b)=(N+1) H(b, b)=\frac{N+1}{2 \pi} \log \left(1-|b|^{2}\right)
$$

which has a nondegenerate maximum at 0 .

SKETCH OF THE PROOF

STEP 1. The variational structure

SKETCH OF THE PROOF

STEP 1. The variational structure

Let us set:

$$
v=u+4 \pi N G(x, 0)
$$

SKETCH OF THE PROOF

STEP 1. The variational structure

Let us set:

$$
v=u+4 \pi N G(x, 0)
$$

problem (1) is then equivalent to

$$
\left\{\begin{array}{lc}
-\Delta v=\lambda|x|^{2 N} \widetilde{V}(x) e^{v} & \text { in } \Omega \tag{4}\\
v=0 & \text { on } \partial \Omega
\end{array}\right.
$$

SKETCH OF THE PROOF

STEP 1. The variational structure

Let us set:

$$
v=u+4 \pi N G(x, 0)
$$

problem (1) is then equivalent to

$$
\left\{\begin{array}{lc}
-\Delta v=\lambda|x|^{2 N} \widetilde{V}(x) e^{v} & \text { in } \Omega \tag{4}\\
v=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

$$
\widetilde{V}(x)=e^{-4 \pi N H(x, 0)}
$$

SKETCH OF THE PROOF

STEP 1. The variational structure

Let us set:

$$
v=u+4 \pi N G(x, 0)
$$

problem (1) is then equivalent to

$$
\left\{\begin{array}{lc}
-\Delta v=\lambda|x|^{2 N} \widetilde{V}(x) e^{v} & \text { in } \Omega \tag{4}\\
v=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

$$
\widetilde{V}(x)=e^{-4 \pi N H(x, 0)} .
$$

Problem (4) is the Euler Lagrange equation of the following functional

$$
I(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\lambda \int_{\Omega}|x|^{2 N} \widetilde{V}(x) e^{v} d x
$$

SKETCH OF THE PROOF

STEP 1. The variational structure

Let us set:

$$
v=u+4 \pi N G(x, 0)
$$

problem (1) is then equivalent to

$$
\left\{\begin{array}{lc}
-\Delta v=\lambda|x|^{2 N} \widetilde{V}(x) e^{v} & \text { in } \Omega \tag{4}\\
v=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where

$$
\widetilde{V}(x)=e^{-4 \pi N H(x, 0)}
$$

Problem (4) is the Euler Lagrange equation of the following functional

$$
I(v)=\frac{1}{2} \int_{\Omega}|\nabla v|^{2} d x-\lambda \int_{\Omega}|x|^{2 N} \widetilde{V}(x) e^{v} d x
$$

By the classical Moser-Trudinger inequality we get $I \in C^{1}\left(H_{0}^{1}(\Omega)\right)$.

STEP 2. Construction of approximate solutions.

STEP 2. Construction of approximate solutions.

We set

$$
W_{\lambda}=w_{\delta, b}(x):=\log \frac{8(N+1)^{2} \delta^{2(N+1)}}{\left(\delta^{2(N+1)}+\left|x^{N+1}-b\right|^{2}\right)^{2}}
$$

STEP 2. Construction of approximate solutions.

We set

$$
W_{\lambda}=w_{\delta, b}(x):=\log \frac{8(N+1)^{2} \delta^{2(N+1)}}{\left(\delta^{2(N+1)}+\left|x^{N+1}-b\right|^{2}\right)^{2}}
$$

where

$$
\delta^{2(N+1)}=\delta(\lambda, b)^{2(N+1)}:=\frac{\lambda}{8(N+1)^{2}} V(0) e^{8 \pi \mathcal{H}_{N+1}(b, b)-4 \pi \frac{N_{\lambda}}{N+1} \mathcal{H}_{N+1}(b, 0)}
$$

STEP 2. Construction of approximate solutions.

We set

$$
W_{\lambda}=w_{\delta, b}(x):=\log \frac{8(N+1)^{2} \delta^{2(N+1)}}{\left(\delta^{2(N+1)}+\left|x^{N+1}-b\right|^{2}\right)^{2}}
$$

where

$$
\delta^{2(N+1)}=\delta(\lambda, b)^{2(N+1)}:=\frac{\lambda}{8(N+1)^{2}} V(0) e^{8 \pi \mathcal{H}_{N+1}(b, b)-4 \pi \frac{N_{\lambda}}{N+1} \mathcal{H}_{N+1}(b, 0)}
$$

Consider the projections $P W_{\lambda}$ onto the space $H_{0}^{1}(\Omega)$ of W_{λ}, where $P: H^{1}\left(\mathbb{R}^{2}\right) \rightarrow H_{0}^{1}(\Omega)$ is defined as

$$
\Delta P v=\Delta v \quad \text { in } \Omega, \quad P v=0 \quad \text { on } \partial \Omega
$$

STEP 2. Construction of approximate solutions.

We set

$$
W_{\lambda}=w_{\delta, b}(x):=\log \frac{8(N+1)^{2} \delta^{2(N+1)}}{\left(\delta^{2(N+1)}+\left|x^{N+1}-b\right|^{2}\right)^{2}}
$$

where

$$
\delta^{2(N+1)}=\delta(\lambda, b)^{2(N+1)}:=\frac{\lambda}{8(N+1)^{2}} V(0) e^{8 \pi \mathcal{H}_{N+1}(b, b)-4 \pi \frac{N_{\lambda}}{N+1} \mathcal{H}_{N+1}(b, 0)}
$$

Consider the projections $P W_{\lambda}$ onto the space $H_{0}^{1}(\Omega)$ of W_{λ}, where $P: H^{1}\left(\mathbb{R}^{2}\right) \rightarrow H_{0}^{1}(\Omega)$ is defined as

$$
\Delta P v=\Delta v \quad \text { in } \Omega, \quad P v=0 \quad \text { on } \partial \Omega
$$

The following asymptotic expansion holds:

$$
P W_{\lambda}=W_{\lambda}-\log \left(8(N+1)^{2} \delta^{2(N+1)}\right)+8 \pi \sum_{i=0}^{N} H\left(x, \beta_{i}\right)+O\left(\delta^{2(N+1)}\right)
$$

STEP 2. Construction of approximate solutions.

We set

$$
W_{\lambda}=w_{\delta, b}(x):=\log \frac{8(N+1)^{2} \delta^{2(N+1)}}{\left(\delta^{2(N+1)}+\left|x^{N+1}-b\right|^{2}\right)^{2}}
$$

where

$$
\delta^{2(N+1)}=\delta(\lambda, b)^{2(N+1)}:=\frac{\lambda}{8(N+1)^{2}} V(0) e^{8 \pi \mathcal{H}_{N+1}(b, b)-4 \pi \frac{N_{\lambda}}{N+1} \mathcal{H}_{N+1}(b, 0)}
$$

Consider the projections $P W_{\lambda}$ onto the space $H_{0}^{1}(\Omega)$ of W_{λ}, where $P: H^{1}\left(\mathbb{R}^{2}\right) \rightarrow H_{0}^{1}(\Omega)$ is defined as

$$
\Delta P v=\Delta v \quad \text { in } \Omega, \quad P v=0 \quad \text { on } \partial \Omega
$$

The following asymptotic expansion holds:

$$
P W_{\lambda}=W_{\lambda}-\log \left(8(N+1)^{2} \delta^{2(N+1)}\right)+8 \pi \sum_{i=0}^{N} H\left(x, \beta_{i}\right)+O\left(\delta^{2(N+1)}\right)
$$

We shall look for a solution of the form

$$
v_{\lambda}=P W_{\lambda}+\phi_{\lambda}, \quad \phi_{\lambda} \text { small. }
$$

STEP 3. The reduced problem.

STEP 3. The reduced problem.

Find a critical point b in a neighborhood of 0 for the reduced functional

STEP 3. The reduced problem.

Find a critical point b in a neighborhood of 0 for the reduced functional

$$
\begin{aligned}
J_{\lambda}(b)= & 8 \pi(N+1)\left(1+\log \lambda-\log \left(8(N+1)^{2}\right)\right)+32 \pi^{2} \Lambda(b) \\
& +8 \pi(N+1)|b|^{\frac{N_{\lambda}-N}{N+1}}+\text { h.o.t. }
\end{aligned}
$$

STEP 3. The reduced problem.

Find a critical point b in a neighborhood of 0 for the reduced functional

$$
\begin{aligned}
J_{\lambda}(b)= & 8 \pi(N+1)\left(1+\log \lambda-\log \left(8(N+1)^{2}\right)\right)+32 \pi^{2} \Lambda(b) \\
& +8 \pi(N+1)|b|^{\frac{N_{\lambda}-N}{N+1}}+\text { h.o.t. }
\end{aligned}
$$

If $N_{\lambda}>N, J_{\lambda}$ verifies

$$
J_{\lambda}\left(\sqrt{N_{\lambda}-N}\right)>\sup \left\{\left.J_{\lambda}(b)\left|\frac{\sqrt{N_{\lambda}-N}}{\left|\log \left(N_{\lambda}-N\right)\right|}<|b|<\sqrt{N_{\lambda}-N}\right| \log \left(N_{\lambda}-N\right) \right\rvert\,\right\} .
$$

Thank you for your attention!

