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Crime Linkage
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Crime Linkage

The objective of criminal linkage analysis is to group crime
events that share a common offender (or group of offenders).

I Using the characteristics and features of the crime, crime
scene, or offender to estimate linkage probability

I Combine evidence from multiple
crime scenes

I Input to geographic profiling
systems

I Input to next-event prediction
systems

I Resource allocation (patrol
routing)

I Interrogations

I Legal evidence

●
●●

●

●

●
●

●

●

Property Type

Garage
Apt
House

Offender 1
Offender 2
Offender 3
Unsolved

3



Types of Crime Linkage

Types of Linkage:

Pairwise Case Linkage: Determine if two crimes share a
common offender
Crime Series Clustering: Discover groups of crimes that share a
common offender.
Crime Series Identification: Discover other crimes that are part
of an existing crime series.
Suspect Prioritization: Rank suspects for an existing crime
series.
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Burglary Problem

According to the FBI, in the US in 2010:

I An estimated 2,159,878 burglaries
I Victims of burglary offenses suffered an estimated $4.6 billion

in lost property
I Arrests were made in only 12.4% of burglaries

5
FBI: http://www.fbi.gov/about-us/cjis/ucr/crime-in-the-u.s/2010/crime-in-the-u.s.-2010/property-crime/burglarymain

http://www.fbi.gov/about-us/cjis/ucr/crime-in-the-u.s/2010/crime-in-the-u.s.-2010/property-crime/burglarymain


Why Crime Linkage is Difficult

1. Too many crimes
I In Seattle WA,

(7102
2
)

= 25, 215, 651 burglary crime pairs for an
analyst to compare in 2014

I Burglars may also commit other crimes
I Often crime linkage is a manual process (but see new NYPD

system Patternizr)

2. Need to consider not only the similarity between crimes, but
also the distinctiveness of the crimes
I If all burglars had same M.O., then we couldn’t distinguish their

crimes
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Why Crime Linkage is Difficult

Need to consider not only the similarity between crimes, but also
the distinctiveness of the crimes

I If all burglars had same M.O., then we couldn’t distinguish their
crimes

Are these two crimes linked (share common offender)?

Incident Reports

Event Crime
Type Date Time

Range Address Target Items
Stolen POE MOE

V1 Burglary 3/15/2010 800-1100 310 Main
St.

Apt-1st
floor Jewelry Window

Forced-
Broken
Window

V2 Burglary 3/17/2010 1100-1900 420 1st St. Apt-1st
floor Cash Window Window

Open
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Pairwise Case Linkage Hypotheses

Casting the case linkage problem in terms of a hypothesis test

HL : Oi = Oj (Common Offender)
HU : Oi 6= Oj (Different Offenders)

we can formally quantify our uncertainty about the unknown
model parameters using probability distributions.
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Likelihood Ratios

The two competing hypotheses can be compared via the
posterior odds

Pr(HL | Evidence)
Pr(HU | Evidence)︸ ︷︷ ︸

Posterior Odds

= Pr(Evidence | HL)
Pr(Evidence | HU )︸ ︷︷ ︸

Likelihood Ratio

× Pr(HL)
Pr(HU )︸ ︷︷ ︸
Prior Odds

The Likelihood Ratio* offers a formal and explicit way to measure
the similarity between events while accounting for the
background crime process.

LR = Pr(Evidence | HL)
Pr(Evidence | HU) = Similarity Measure

Distinctiveness Measure

*Under certain conditions this is equivalent to the Bayes Factor
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Crime Data Summary - Breaking & Entering

Censoring time interval (hours)

Exact ≤ 1 ≤ 6 ≤ 12 ≤ 24 ≤ 48 ≤ 120
20% 32% 48% 67% 83% 87% 94%

Property Type (34 levels)

Other Single
Home

Apt/
Condo

Yard Row/
Town

Shed/
Garage

27% 24% 13% 13% 12% 11%

Point of Entry (8 levels)

Door Window None Other Missing

45% 21% 8% 6% 19%

Method of Entry (16 levels)

No
Force

Other Forced Pried Broke
Glass

Missing

28% 20% 16% 10% 9% 17%
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Evidence Variables

Evidence variables are created that measure the similarities or
dissimilarities between the attributes of two crimes.

Convert crime pairs to evidence variables

I spatial- Euclidean distance (km)
I temporal - temporal proximity (days)
I tod - time-of-day difference (hours)
I dow - day of week difference (days)

I prop - property type match indicator
I poe - point of entry match indicator
I moe - method of entry match indicator

Training Data: Evidence Variables
IDi IDj spatial temporal tod dow prop poe moe label weight

2459 2532 3.20 34.60 8.10 0.40 0 0 0 unlinked 1.00
33 35 7.10 1.10 3.50 1.10 1 1 0 linked 0.33

1689 1845 12.90 50.80 4.30 1.80 0 1 0 unlinked 1.00
159 947 14.10 256.40 6.00 1.90 0 1 1 linked 0.00
559 997 14.60 112.30 6.30 0.30 0 1 0 linked 0.00
306 1485 15.30 360.70 6.60 3.30 0 1 0 unlinked 1.00
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11*Used expected absolute difference for interval censored times.



Pairwise Crime Linkage

Use the solved crimes as training data to construct binary
classification models.

I Logistic Regression:

logit
{

Pr(i, j are linked | Evidence)
}

=
β0 + β1X1(i, j) + . . .+ βpXp(i, j)

I Naive Bayes

logit
{

Pr(i, j are linked | Evidence)
}

=
α+ log(LR1) + log(LR2) + · · ·+ log(LRp)
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Naive Bayes Component Plots
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Pairwise Case Linkage Results

Precision vs. workload
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Near-Repeat Crime Patterns
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Near-Repeat Crime Patterns

The literature on near-repeats suggests two primary hypotheses
for why so many crime pairs are close in space and time

I Flag Account Some locations are attractive (flagged) to a
wide range of opportunistic offenders. So repeats and
near-repeats are due to multiple offenders choosing their
locations and times independently.

I Boost Account The risk of locations near recent crimes is
boosted because the same offender (or associates) is likely to
strike again in a nearby region (due to experience gained,
foraging, etc.).

In reality, both of these concepts can help us model and predict future
crime risk.
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Modeling Near-Repeat Behavior

I The boost account suggests that after a crime, the risk of future
crime in nearby regions will be elevated (boosted) for a short
time.

I In other words, the occurrence of crime promotes more crime;
the process excites itself
I Self-exciting point process modeling of crime

I These models are developed to combine the Flag and Boost
explanations into a single model
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Self-Exciting Point Process

The self-exciting point process (sepp), or Hawkes process, is a
two-component model for the conditional intensity of a Poisson
process:

λ(s, t,m) = Flag(s, t,m) + Boost(s, t,m)

I The intensity λ(s, t,m) of a marked space-time point process
represents the event rate of event with characteristics m, at a
specific time t and location s.

I This requires estimating two components (intensities), Flag and
Boost, from historical crime data
I The Flag process models the Flag component and is based on

exogenous variables (characteristics of the location, seasonal
effects, persistent hotspots, etc.) but it shouldn’t be influenced
by recent crimes

I The Boost process produces near-repeat (or aftershock) events
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Branching Process Perspective

λ(s, t,m) = Flag(s, t,m) + Boost(s, t,m)

The branching process perspective uses the superposition
property to consider the Boost term as the sum of individual
processes.

Boost(s, t,m) =
∑
i:ti<t

gi(t− ti, ‖s− si‖, γ(m,mi))

I Every event can create a child event
I The intensity of the ith parent process is
gi(t− ti, ||s− si||, γ(m,mi))

I The probability that event i caused event j is

pij = gi(tj − ti, ‖sj − si‖, γ(m,mi))
λ(tj , sj ,mj)

19



Linkage informed Hawkes / Hawkes
informed Linkage
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Self-Excited Branching for Pairwise Crime Linkage

I Hawkes: The probability that event i caused event j

pij = gi(tj − ti, ‖sj − si‖, γ(m,mi))
λ(tj , sj ,mj)

I Linkage: The probability that event i is linked to event j (logistic
regression)

Pr(i, j are linked) = 1
1 + e−(β0+β1X1(i,j)+...+βpXp(i,j))
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Two new questions

I Hawkes: The probability that event i caused event j

pij = gi(tj − ti, ‖sj − si‖, γ(m,mi))
λ(tj , sj ,mj)

I Linkage: The probability that event i is linked to event j (logistic
regression)

Pr(i, j are linked) = 1
1 + e−(β0+β1X1(i,j)+...+βpXp(i,j))

1. Can the self-exciting models help estimate linkage probability?
2. Can we use linkage to help inform the self-exciting models?

22
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Spatial Event Hotspot Prediction

I Methods developed for 2017 NIJ Crime Forecasting Challenge
I G. Mohler & M. Porter (2018) “Rotational Grid, PAI-Maximizing

Crime Forecasts”, Statistical Analysis and Data Mining.
I Goal of contest was to forecast (grid-based) hotspots for

several crime types and forecasting windows (1 week to 3
months)
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Threshold Modeling

I Instead of modeling the event rate (or counts) in each cell, we
model the probability that the event rate (or equivalently the
number of events) exceeds a threshold.

I The threshold is set so that if the event count in the cell
reaches the threshold then the cell would be part of the optimal
hotspot region.

I Using the historical event data, we found the threshold, φ(τ,m),
that a grid cell would need to be part of the optimal hotspot
region (subject to the minimum size constraints) for a forecast
period of length τ and crime type m.

I This creates a binary classification problem: grid cell {member,
not member} of hotspot.
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Mutually Exciting Hawkes Features

Let pjm be the probability that grid cell j is part of the hotspot for
crime type m.

logit(pjm) = βm +
∑
i:ci=j

hm,mi(t− ti; ~α, ~ω)

= βm +
∑
i:ci=j

K∑
k=1

αk(mi,m)g(t− ti;ωk)

where:

I mi is the crime type for event i
I hm,mi(u) is the contagion from event of type mi to type m

(mutual excitation).
I hm,mi(u) =

∑
k hm,mi(u;αk, ωk) is a sum of K different decay

rates.
I αk(mi,m) is the kth branching ratio for a crime of type mi

producing a crime of type m.
I g(u;ωk) is the kth decay function 26



Estimated Contagion Functions

m = Street m = ACFS

m = Burg m = MVT
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The contagion functions hm,l(·) for predicting crime type m using the
past events of type l. 27
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