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COMBO Dataset (Wu, et al., 2011 Science)

• Cross-sectional study Of diet and stool
MicroBiOme composition (COMBO)

• Data
▸ 98 healthy subjects/stool samples, not

on antibiotics
▸ 16S rRNA gene sequences
▸ 87 genera appeared in at least one

sample
▸ Nutrients (FFQ diet questionnaire) &

demographic data such as BMI

• Findings:

	

BMI	FAT	

Fig. 1.
Correlation of diet and gut microbial taxa identified in the cross-sectional COMBO analysis.
Columns correspond to bacterial taxa quantified using 16S rDNA tags; rows correspond to
nutrients measured by dietary questionnaire. Red and blue denote positive and negative
association, respectively. The intensity of the colors represents the degree of association
between the taxa abundances and nutrients as measured by the Spearman's correlations.
Bacterial phyla are summarized by the color code on the bottom; lower-level taxonomic
assignments specified are in fig. S1. The dots indicate the associations that are significant at
an FDR of 25%. The FFQ data were used for this comparison (both FFQ and Recall dietary
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Hypothesis of Pathogenesis Caused by Dysbiosis

Source: N Engl J Med 2016;375:2369-79
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COMBO: Mediation Effect

	

BMI	FAT	
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Mediation Analysis - Structural Equation Model (SEM)

Mi

Xi Ti Yi

a b

c

U1i

U2i

Ti - Treatment, Mi - Mediator, Yi - Outcome, Xi - Pretreatment Variables

Mi = a0 + aTi +h⊺Xi +U1i (1)

Yi = c0 + cTi + bMi + g⊺Xi +U2i (2)

By combining Eq. (1) and (2),

Yi = c0 + cTi + b (a0 + aTi +h⊺Xi +U1i) + g⊺Xi +U2i

= c∗0 + (c + ab)Ti + g∗⊺Xi +U∗

i
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Mediation Analysis - Potential Outcomes Framework

Let Ti represent the binary treatment variable

Causal Direct Effect: ζ(t) = E [Yi(1,Mi(t)∣Xi) − Yi(0,Mi(t)∣Xi)]

Causal Indirect Effect: δ(t) = E [Yi(t,Mi(1)∣Xi) − Yi(t,Mi(0)∣Xi)]

Necessary Assumptions:

- Stable Unit Treatment Value Assumption (SUTVA)

- Sequential Ignorability Assumption,

{Yi(t′,m),Mi(t)} ⊥⊥ Ti∣Xi = x,

Yi(t′,m) ⊥⊥Mi(t)∣Ti = t,Xi = x,
where 0 < Pr(Ti = t∣Xi = x) and 0 < Pr(Mi(t) =m∣Ti = t,Xi = x) for t = 0,1.

With the necessary assumptions,

ζ(t) = ∫ E(Yi∣Mi, Ti,Xi) [dFMi ∣Ti=1,Xi
(m) − dFMi ∣Ti=0,Xi

(m)]dFXi(x)

δ(t) = ∫ [E(Yi∣Mi, Ti = 1,Xi) − E(Yi∣Mi, Ti = 0,Xi)]dFMi ∣Ti,Xi
(m)dFXi(x)
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Compositional Data Analysis

Compositional data:

- Relative information

- Proportions or percentages of a whole

Unit-sum constraint: sum of proportions = 1

Euclidean Space

x2

x3

x1

X=(3,3,4)

Simplex Space

x1 x2

x3

X=(0.3,0.3,0.4)
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Subcompositional Coherence

Principle of subcompositional coherence: analysis concerning a subset of
components must not depend on excluded components

Example: Scientists A and B record the composition of soil samples:

A records animal, vegetable, mineral, and water.

B records animal, vegetable, and mineral after drying the sample.

Both are absolutely accurate. [adapted from Aitchison, 2005]

Sample A x1 x2 x3 x4
1 0.1 0.2 0.1 0.6
2 0.2 0.1 0.2 0.5
3 0.3 0.3 0.1 0.3

Sample B x1 x2 x3
1 0.25 0.50 0.25
2 0.40 0.20 0.40
3 0.43 0.43 0.14

Corr A x1 x2 x3 x4
x1 1.00 0.50 0.00 -0.98
x2 1.00 -0.87 -0.65
x3 1.00 0.19

Corr B x1 x2 x3
x1 1.00 -0.57 -0.05
x2 1.00 -0.79
x3 1.00
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Compositional Mediation Model (Sohn and Li, AOAS, accepted)

Mi1

Mi2

...

Mik

Xi Ti Yi

a1

a2

ak

b1

b2

bk

c

U1i

U2i

Compositional operators (Aitchison, 1986; Billheimer, et al. 2001):

m⊕ a = ( m1a1

∑kj=1mkak
, ⋯ ,

mkak

∑kj=1mkak
)
⊺

; mz = ( mz
1

∑kj=1mz
k

, ⋯ ,
mz
k

∑kj=1mz
k

)
⊺

Compositional mediation model:

M i = (m0 ⊕ aTi
nx⊕
r=1
hXri
r )⊕U1i

Yi = c0 + cTi + b⊺(logM i) + g⊺Xi +U2i, subject to 1⊺kb = 0
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Identification for Compositional Mediation Model

Necessary assumptions:

- SUTVA

- Sequential Ignorability Assumption

Under the potential outcomes framework

• Expected Causal Direct Effect

ζ(t) = E[Yi(1, logM i(t)∣Xi(t)) − Yi(0, logM i(t)∣Xi(t))]

= c

• Expected Causal Indirect Effect

δ(t) = E[Yi(t, logM i(1)∣Xi(t)) − Yi(t, logM i(0)∣Xi(t))]

= (loga)⊺b
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Binary Outcome Under SEM

Mi

Xi Ti Yi

a b

c

U1i

U2i

Ti - Treatment, Mi - Mediator, Yi - Binary outcome, Xi - Pretreatment Variables

Mi = a0 + aTi +h⊺Xi +U1i (3)

Yi = 1{Y ∗

i > 0}, where Y ∗

i = c0 + cTi + bMi + g⊺Xi +U2i (4)

By combining Eq. (3) and (4),

Y ∗

i = c0 + cTi + b (a0 + aTi +h⊺Xi +U1i) + g⊺Xi +U2i

= c∗0 + (c + ab)Ti + g∗⊺Xi +U∗

i
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Binary Outcome Under Potential Outcomes Framework

Assumptions: SUTVA, Sequential ignorability

Estimation of Causal Direct ζ and Indirect Effects δ:

• Logit Model

▸ Complex numerical integration required

▸ Odds ratios with rare outcomes: logORζ ≈ c; logORδ ≈ ab

• Probit Model

ζ = E{Φ( c + f1√
σ2b2 + 1

) −Φ( f1√
σ2b2 + 1

)}

δ = E{Φ( ab + f2√
σ2b2 + 1

) −Φ( f2√
σ2b2 + 1

)}

where f1 = c0 + a0b + b(h + g)⊺Xi and f2 = c0 + c + a0b + b(h + g)⊺Xi
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CMM for Binary Outcome (Probit Model)

Compositional mediation model for the binary outcome:

M i = (m0 ⊕ aTi
nx⊕
r=1
hXri
r )⊕U1i

Yi = 1{c0 + cTi + b⊺(logM i) + g⊺Xi +U2i > 0}, subject to 1⊺kb = 0

where U1i ∼ LN(0,Σ) and U2i ∼ N(0,1).

Expected Causal Direct and Indirect Effects:

ζ(τ) = E
⎧⎪⎪⎨⎪⎪⎩

Φ
⎛
⎝
ct + fζ(τ,Xi)√
b⊺
−kΣb−k + 1

⎞
⎠
−Φ

⎛
⎝
ct′ + fζ(τ,Xi)√
b⊺
−kΣb−k + 1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

δ(τ) = E
⎧⎪⎪⎨⎪⎪⎩

Φ
⎛
⎝
(loga)⊺b t + fδ(τ,Xi)√

b⊺
−kΣb−k + 1

⎞
⎠
−Φ

⎛
⎝
(loga)⊺b t′ + fδ(τ,Xi)√

b⊺
−kΣb−k + 1

⎞
⎠

⎫⎪⎪⎬⎪⎪⎭

where fζ(τ,x) = c0 + b⊺(logm0 + τ loga +∑nx
r=1 xr loghr) + g⊺x;

fδ(τ,x) = c0 + cτ + b⊺(logm0 +∑nx
r=1 xr loghr) + g⊺x.
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Estimators for Compositional Parameters

Optimization problem in a simplex space:

(m̂0, â, ĥ1, . . . , ĥnx) = argmin
m0,a,hr∈Sk−1

n

∑
i=1

∥M i ⊖ (m0 ⊕ aTi
nx⊕
r=1
hXri
r )∥

2

where

m⊖ a = ( m1a
−1
1

∑kj=1mka−1k
,

m2a
−1
2

∑kj=1mka−1k
,⋯, mka

−1
k

∑kj=1mka−1k
)

∥m∥ = ⟨m,m⟩1/2 = alr(m)⊺N −1alr(m)

alr(m) = (log
m1

mk
, log

m2

mk
, . . . , log

mk−1

mk
)
⊺

N −1 = Ik−1 −
1

k
1k−11

⊺

k−1
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Estimator for Parameters in Probit Regression

Let ηi = 2yi − 1, zi = (1, ti, log(mi)⊺,x⊺i )⊺, and β = (c0, c,b⊺,g⊺)⊺

β̂ = argmin
β

{− 1

n

n

∑
i=1

log Φ(ηiz⊺iβ) + λ ∥β∥1} , s.t. 1⊺kb = 0 (5)

Alternative optimization problem:

β̂ = argmin
β

{ 1

2n
∣∣Ξ1/2(u −Zβ)∣∣22 + λ ∥β∥1} , s.t. 1⊺kb = 0, (6)

where Ξ is the n × n diagonal matrix with Ξii = ξi(ηiz⊺iβ∗)[z⊺iβ∗ + ξi(ηiz⊺iβ∗)],
ξi(ηiz⊺iβ) = ηiφ(ηiz⊺iβ)/Φ(ηiz⊺iβ), u = Zβ0 + (Ξ)−1 ξ, Z = (z1, . . . ,zn)⊺, and

ξ = (ξ1(η1z⊺1β0), . . . , ξ1(ηnz⊺nβ0))⊺
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Numerical Algorithm

Proposed method: IRLS-CDMM

β̂
(`) = argmin

β
{ 1

2n
∥Ξ(`−1)1/2(u(`−1) −Zβ)∥

2

2
+ λ ∥β∥1} , s.t. 1⊺kb

(`) = 0,

= argmin
β

{ 1

2n
∥Ξ(`−1)1/2(u(`−1) − Z̃β)∥

2

2
+ λ ∥β∥1} , s.t. ι⊺β(`) = 0,

where Z̃ = Z(Ip − ιι⊺/k) and ι = (0,0,1, . . . ,1,0, . . . ,0)⊺.

Algorithm: IRLS-CDMM with Augmented Lagrangian Method

Step 1. Initialize β(0), α(0)

Step 2. Update β(`+1)j until convergence

Step 3. Update Ξ(`+1) and u(`+1) by minimizing ∑ni=1 q(ηiz⊺iβ)

Step 4. Update α(k+1)
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Debiased Estimator & Its Asymptotic Convergence

Debiased Estimator of (6):

β̂db = β̂ +
1

n
M̃Z̃⊺Ξ(u − Z̃β̂),

where M̃ = (Ip − ιι
⊺/k)M and M = (m1, . . . ,mp)

⊺ is a solution of the
convex problem (Javanmard and Montanari, 2014; Shi, et. al., 2016):

minm⊺j Σ̂mj s.t. ∣∣Σ̂mj − (Ip − ιι
⊺
/k)ej ∣∣∞ ≤ γ, j = 1, . . . , p,

where ej is the jth natural basis and γ is some constant.

Theorem: For an s-sparse β, under some regularity conditions,

√
n(β̂db −β) = R +∆, E(R∣Z) = 0, ∥∆∥∞ → 0
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Inference

Null Hypothesis for the expected causal direct and indirect effects:

H0 ∶ ζ(τ) = 0 vs. H1 ∶ ζ(τ) ≠ 0.

H0 ∶ δ(τ) = 0 vs. H1 ∶ δ(τ) ≠ 0.

Testing Procedure (Non-parametric Bootstrap):

1. Randomly select n samples from the original n samples with replacement

2. Estimate ζb(τ) and δb(τ)

3. Repeat Steps 1 and 2 to construct sampling distributions of ζb(τ) and
δb(τ)

4. Construct percentile bootstrap confidence intervals for ζb(τ) and δb(τ)
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Sensitivity Analysis for Binary Outcome

Mi1

Mi2

...

Mik

Xi Ti Yi

a1

a2

ak

b1

b2

bk

c

U1i

U2i

Probit regression: Yi = 1{c̃0 + c̃ Ti + g̃⊺Xi +U0i > 0}, where U0i ∼ N(0,1)

Expected causal indirect effect given ρ = corr(alt(U1i), U2i):

δρ(τ) = E{Φ(f̃δ(τ) +
(loga)⊺bρ(t − τ)

Ψ(ρ,bρ,Σ) ) −Φ(f̃δ(τ) +
(loga)⊺bρ(t′ − τ)

Ψ(ρ,bρ,Σ) )} ,

where f̃δ(τ) = c̃0 + c̃τ + g̃
⊺xi, Ψ(ρ,bρ,Σ) = [(bρ)

⊺

−k
Σ (bρ)−k + 2ρ⊺D (bρ)−k + 1]

1/2
, and

D is a diagonal matrix with diag(Σ1/2).
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Performance Evaluation I (α = 0.05)

Binary treatment (t = 1, t′ = 0); a = (20,10,5,2,1⊺k−4)⊺/(20,10,5,2,1⊺k−4)⊺1k;

b = (0.5,−0.5,0.5,−0.5,0⊺k−4)⊺; (loga)⊺b × Effect Size
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Performance Evaluation II (α = 0.05)
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Performance Evaluation III (α = 0.05)
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COMBO Dataset

• Data
▸ 98 healthy subjects
▸ Fat intake as treatment
▸ 45 genera as compositional mediators
▸ Dichotomized BMI at 25

• Interest:

	

BMI	FAT	

Fig. 1.
Correlation of diet and gut microbial taxa identified in the cross-sectional COMBO analysis.
Columns correspond to bacterial taxa quantified using 16S rDNA tags; rows correspond to
nutrients measured by dietary questionnaire. Red and blue denote positive and negative
association, respectively. The intensity of the colors represents the degree of association
between the taxa abundances and nutrients as measured by the Spearman's correlations.
Bacterial phyla are summarized by the color code on the bottom; lower-level taxonomic
assignments specified are in fig. S1. The dots indicate the associations that are significant at
an FDR of 25%. The FFQ data were used for this comparison (both FFQ and Recall dietary
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Fat intake, Microbiome, and Obesity (COMBO)
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