Conic programming : infeasibility certificates and projective geometry

Simone NALDI and Rainer SINN

Geometry of Real Polynomials, Convexity and Optimization
Banff International Research Station - May 26/31, 2019
£́sedf PGMO
thales

Feasible set in a conic program

$$
\mathbf{K} \cap L
$$

Intersection of a convex cone $\mathbf{K} \subset V$ such as

with an affine space $L=\{x \in V: \mathscr{A}(x)=b\}$, with

$$
\mathscr{A}: V \rightarrow W \quad \text { a linear map }
$$

between (finite-dimensional) real vector spaces V, W.

Standard duality in CP

Let (V, V^{\vee}) and (W, W^{\vee}) be two dual pairs with duality pairings (non-degenerate bilinear maps)

$$
\langle\cdot, \cdot\rangle_{V}: V^{\vee} \times V \rightarrow \mathbb{R} \quad \text { and } \quad\langle\cdot, \cdot \cdot\rangle_{W}: W^{\vee} \times W \rightarrow \mathbb{R} .
$$

Standard primal-dual pair of conic programs

$$
\begin{aligned}
p^{*}:= & \inf \\
\text { s.t. } & \langle c, x\rangle_{V} \\
& \mathscr{A}(x)=b \\
& x \in \mathbf{K}
\end{aligned}
$$

$$
\begin{aligned}
& d^{*}:=\sup \langle b, y\rangle_{W} \\
& \text { s.t. } c-\mathscr{A}^{*}(y)=s \\
& s \in \mathbf{K}^{*}
\end{aligned}
$$

Motivations for studying feasibility in a CP :

- Applications: if a program is infeasible, there is no candidate solution, hence the constraints are too strong
- Necessary/sufficient conditions for having good properties (e.g. strong duality) are related to feasibility

Feasibility types

Recall that $L=\{x \in V: \mathscr{A}(x)=b\}$ and suppose that $\mathbf{K} \subset V$ is a closed convex cone with $\operatorname{Int}(\mathbf{K}) \neq \emptyset$.

We say the (primal) conic program is
feasible if $\mathbf{K} \cap L \neq \emptyset$ and in particular
strongly feasible if $\operatorname{Int}(\mathbf{K}) \cap L \neq \emptyset$
weakly feasible if feasible but $\operatorname{Int}(\mathbf{K}) \cap L=\emptyset$
infeasible if $\mathbf{K} \cap L=\emptyset$ and in particular
strongly infeasible if $d(\mathbf{K}, L)>0$
weakly infeasible if infeasible but $d(\mathbf{K}, L)=0$
General question : can we detect the feasibility type of a CP ?

From linear to non-linear $C P$

3 types for Linear Programming

4 types for Conic Programming

Example from semidefinite relaxations

Weak infeasibility is quite common and arises for example in the context of SD relaxations for polynomial optimization. Let

$$
f^{*}=\inf f(x) \quad \text { s.t. } \quad f_{1}(x) \geq 0, \ldots, f_{m}(x) \geq 0
$$

be the standard polynomial optimization problem, and

$$
M_{r}\left(f_{1}, \ldots, f_{m}\right):=\left\{\sigma_{0}+\sum_{i} \sigma_{i} f_{i}: \sigma_{i} S O S, \operatorname{deg} \sigma_{i} \leq r-\left\lceil\frac{\operatorname{deg} f_{i}}{2}\right\rceil\right\}
$$

Theorem (Waki, Optim Lett. 2012). There exists $\bar{r} \in \mathbb{N}$ such that for $r \geq \bar{r}$ and $2 r>\operatorname{deg} f$ the following holds:

$$
\text { If } f-\lambda \notin M_{r}\left(f_{1}, \ldots, f_{m}\right), \forall \lambda \in \mathbb{R}, \text { then }
$$

the r-th level of the relaxation is weakly infeasible.

Homogenization of LP

Consider the feasible set in a standard (primal) LP :
(L) $A x=b$
(K) $\quad x_{i} \geq 0, i=1, \ldots, n$

Let x_{0} be a new variable, and homogenize it to

$$
\begin{aligned}
& (\widehat{L}) \quad A x=b x_{0} \\
& (\widehat{\mathbf{K}}) \quad x_{i} \geq 0, \quad \geq=0,1, \ldots, n
\end{aligned}
$$

This operation lifts the positive orthant $\mathbf{K}=\mathbb{R}_{\geq}^{n}$ to another positive orthant $\widehat{\mathbf{K}}=\mathbb{R}_{\geq}^{n+1} \subset \mathbb{R}^{n+1}$, and remark that

$$
\mathbf{K} \approx \widehat{\mathbf{K}} \cap\left\{x_{0}=1\right\} \quad \text { and } \quad L \approx \widehat{L} \cap\left\{x_{0}=1\right\}
$$

Can we do the same for the general CP ?

Homogenization of CP : projective viewpoint

Let U be a finite-dimensional Euclidean space, $\widehat{\mathbf{K}} \subset U$ a regular (closed, pointed, with interior) convex cone.

Let $V \subset U$ be a hyperplane with $0 \notin V$ and set $\mathbf{K}=\widehat{\mathbf{K}} \cap V$. We assume \mathbf{K} is also a cone in V (after appropriate choice of coordinates). Let $L \subset V$ be an affine subspace.

From a projective viewpoint V determines an affine chart in the projective space $\mathbb{P}(U)$ and $\mathbf{K} \subset V$ is the part of the cone $\widehat{\mathbf{K}}$ that we see on this chart. The set $\widehat{\mathbf{K}} \cap \operatorname{lin}(V)$ is said to be at infinity with respect to V, where $\operatorname{lin}(V)=V-v_{0}$, for some $v_{0} \in V$.

Let \hat{L} be the linear hull of L in U. The idea is to compare the feasibility types of $\mathbf{K} \cap L$ and $\widehat{\mathbf{K}} \cap \widehat{L}$.

Comparing feasilibity types

These are the implications that hold for the general $C P$:

Theorem.

- $\mathbf{K} \cap L$ infeasible $\Leftrightarrow \widehat{\mathbf{K}} \cap \widehat{L} \subset \operatorname{lin}(V)$
- $\mathbf{K} \cap L$ strongly feasible $\Leftrightarrow \widehat{\mathbf{K}} \cap \widehat{L}$ strongly feasible
- $\widehat{\mathbf{K}} \cap \widehat{L}=\{0\} \Rightarrow \mathbf{K} \cap L$ strongly infeasible

The converse does not hold for the third point, we will need to define a more refined type of strong infeasibility.

A projective facial reduction

Theorem. K regular, nice* convex cone. Let $L \subset H \subset V$ with H hyperplane, $0 \notin H$. If $\mathbf{K} \cap L=\emptyset$, there exist $\ell_{1}, \ldots, \ell_{k} \in \mathbf{K}^{*}$ with the following properties. Set $F_{i}=\left\{x \in \mathbf{K}: \ell_{i}(x)=0\right\}$ and $L_{i}=L_{i-1} \cap \operatorname{span}\left(F_{i-1}\right)$ for $i>1$ with $L_{1}=\widehat{L}$. We have

$$
\begin{aligned}
& k \leq 1+\operatorname{dim}(L) \\
& F_{i} \supset F_{i+1} \\
& F_{i} \supset \mathbf{K} \cap L_{i} \supset \mathbf{K} \cap \widehat{L} \\
& F_{k} \subset \operatorname{lin}(V)
\end{aligned}
$$

One deduces $\mathbf{K} \cap L \subset \mathbf{K} \cap \hat{L} \subset F_{k} \subset \operatorname{lin}(V)$, hence $\mathbf{K} \cap L=\emptyset$.
This yields an alternative proof ${ }^{\dagger}$ that the SDP feasibility problem is in $N P_{\mathbb{R}} \cap$ co- $N P_{\mathbb{R}}$ (Blum-Shub-Smale)

[^0]
Infeasibility certificates

Let $\mathbf{K} \subset V$ be regular, and $L \subset V$. An affine function f on V is called an infeasibility certificate of $\mathbf{K} \cap L$ whenever $f(x) \geq 0$ on K and $f(x)<0$ on L.

Interesting questions:

1. Existence of certificates, complexity
2. Rationality

Stable infeasibility

Let $d=\operatorname{dim} L$. We say that $\mathbf{K} \cap L$ is stably infeasible if there is an open neighborhood N of L in the Grassmannian of d-dimensional spaces in \mathbb{R}^{n} s.t. $\mathbf{K} \cap L^{\prime}$ is infeasible for all $L^{\prime} \in N$. [one can perturbe "generically" and stay infeasible].

Theorem. $\mathbf{K} \cap L$ is stably infeasible iff one of these is satisfied

1. $\widehat{\mathbf{K}} \cap \widehat{L}=\{0\}$
2. There is $\ell \in \operatorname{Int}\left(\mathbf{K}^{*}\right)$ such that $\ell(x)<0$ for all $x \in L$

Rationality results

Suppose that both \mathbf{K} and L are defined over \mathbb{Q} (e.g., \mathbf{K} is a semialgebraic set defined by inequalities with coefficients in \mathbb{Q}) and that $\mathbf{K} \cap L=\emptyset$. Is there a rational certificate ?

Theorem. A stably infeasible program $\mathbf{K} \cap L$ always admits a rational infeasibility certificate.

For LP this condition can be discarded by applying Farkas

Theorem. If $\left\{x \in \mathbb{R}^{n}: A x=b\right\} \cap \mathbb{R}_{\geq}^{n}$ is infeasible, there exists $y \in \mathbb{Q}^{n}$ and $\lambda \in \mathbb{Q}$ such that $H=\left\{x \in \mathbb{R}^{n}: y^{T}(A x-b)=\lambda\right\}$ strongly separates L and \mathbb{R}_{\geq}^{n}.

Irrationality example in SDP

Let $v=\left\{x^{2}, y^{2}, z^{2}, x y, x z, y z\right\}$ and let $L^{\prime} \subset \mathcal{S}^{6}$ be set of 6×6 symmetric matrices satisfying

$$
v^{T} M v=x^{4}+x y^{3}+y^{4}-3 x^{2} y z-4 x y^{2} z+2 x^{2} z^{2}+x z^{3}+y z^{3}+z^{4}
$$

The set $\mathcal{S}_{+}^{6} \cap L^{\prime}$ is a 2-dimensional cone with no rational* points.
For $L=\left(L^{\prime}\right)^{\perp}-I d_{6}$, then $\mathcal{S}_{+}^{6} \cap L$ is strongly infeasible but has no rational certificates, since any such certificate would be a rational point in $\mathcal{S}_{+}^{6} \cap L^{\prime}$.
*Scheiderer : there are $f \in \mathbb{Q}[x]$ such that $f \in \Sigma(\mathbb{R}[x])^{2}$ but $f \notin \Sigma(\mathbb{Q}[x])^{2}$

Preprint on arXiv

Please have a look and give feedback:
"Conic Programming: Infeasibility Certificates and Projective Geometry" S. Naldi and R. Sinn, ¿Tarxiv.org/abs/1810.11792

[^0]: *Pataki : A cone \mathbf{K} is nice if $\mathbf{K}^{*}+F^{\perp}$ is closed for every face F
 ${ }^{\dagger}$ 'First proof by Ramana's 1997 paper

