Conic programming : infeasibility certificates and projective geometry

Simone NALDI and Rainer SINN

Geometry of Real Polynomials, Convexity and Optimization Banff International Research Station – May 26/31, 2019

Feasible set in a conic program

$\mathbf{K} \cap L$

Intersection of a convex cone $\mathbf{K} \subset V$ such as

with an affine space $L = \{x \in V : \mathscr{A}(x) = b\}$, with

 $\mathscr{A}: V \to W$ a linear map

between (finite-dimensional) real vector spaces V, W.

Standard duality in CP

Let (V, V^{\vee}) and (W, W^{\vee}) be two dual pairs with duality pairings (non-degenerate bilinear maps)

$$\langle \cdot, \cdot \rangle_V : V^{\vee} \times V \to \mathbb{R} \text{ and } \langle \cdot, \cdot \rangle_W : W^{\vee} \times W \to \mathbb{R}.$$

Standard primal-dual pair of conic programs

Motivations for studying feasibility in a CP :

- Applications : if a program is infeasible, there is no candidate solution, hence the constraints are too strong
- Necessary/sufficient conditions for having good properties (*e.g.* strong duality) are related to feasibility

Feasibility types

Recall that $L = \{x \in V : \mathscr{A}(x) = b\}$ and suppose that $\mathbf{K} \subset V$ is a closed convex cone with $Int(\mathbf{K}) \neq \emptyset$.

We say the (primal) conic program is

feasible if $\mathbf{K} \cap L \neq \emptyset$ and in particular

strongly feasible if $Int(\mathbf{K}) \cap L \neq \emptyset$

weakly feasible if feasible but $Int(\mathbf{K}) \cap L = \emptyset$

infeasible if $\mathbf{K} \cap L = \emptyset$ and in particular

strongly infeasible if $d(\mathbf{K}, L) > 0$

weakly infeasible if infeasible but $d(\mathbf{K}, L) = 0$

General question : can we detect the feasibility type of a CP ?

From linear to non-linear CP

3 types for Linear Programming

4 types for Conic Programming

Example from semidefinite relaxations

Weak infeasibility is quite common and arises for example in the context of SD relaxations for polynomial optimization. Let

$$f^* = \inf f(x)$$
 s.t. $f_1(x) \ge 0, \dots, f_m(x) \ge 0$

be the standard polynomial optimization problem, and

$$M_r(f_1,\ldots,f_m) := \left\{ \sigma_0 + \sum_i \sigma_i f_i : \sigma_i SOS, \deg \sigma_i \le r - \left\lceil \frac{\deg f_i}{2} \right\rceil \right\}$$

Theorem (Waki, Optim Lett. 2012). There exists $\overline{r} \in \mathbb{N}$ such that for $r \geq \overline{r}$ and $2r > \deg f$ the following holds :

If $f - \lambda \notin M_r(f_1, \dots, f_m), \forall \lambda \in \mathbb{R}$, then the r-th level of the relaxation is weakly infeasible.

Homogenization of LP

Consider the feasible set in a standard (primal) LP :

(L)
$$Ax = b$$

(K) $x_i \ge 0, i = 1, ..., n$

Let x_0 be a new variable, and homogenize it to

$$\begin{array}{ll} (\widehat{L}) & Ax &= bx_0 \\ (\widehat{K}) & x_i &\geq 0, \ i = 0, 1, \dots, n \end{array}$$

This operation *lifts* the positive orthant $\mathbf{K} = \mathbb{R}^n_{\geq}$ to another positive orthant $\widehat{\mathbf{K}} = \mathbb{R}^{n+1}_{>} \subset \mathbb{R}^{n+1}$, and remark that

$$\mathbf{K} \approx \widehat{\mathbf{K}} \cap \{x_0 = 1\} \quad and \quad L \approx \widehat{L} \cap \{x_0 = 1\}$$

Can we do the same for the general CP ?

Homogenization of CP : projective viewpoint

Let U be a finite-dimensional Euclidean space, $\widehat{\mathbf{K}} \subset U$ a regular (closed, pointed, with interior) convex cone.

Let $V \subset U$ be a hyperplane with $0 \notin V$ and set $\mathbf{K} = \widehat{\mathbf{K}} \cap V$. We assume \mathbf{K} is also a cone in V (after appropriate choice of coordinates). Let $L \subset V$ be an affine subspace.

From a projective viewpoint V determines an affine chart in the projective space $\mathbb{P}(U)$ and $\mathbf{K} \subset V$ is the part of the cone $\widehat{\mathbf{K}}$ that we see on this chart. The set $\widehat{\mathbf{K}} \cap lin(V)$ is said to be *at infinity* with respect to V, where $lin(V) = V - v_0$, for some $v_0 \in V$.

Let \widehat{L} be the linear hull of L in U. The idea is to compare the feasibility types of $\mathbf{K} \cap L$ and $\widehat{\mathbf{K}} \cap \widehat{L}$.

Comparing feasilibity types

These are the implications that hold for the general CP : Theorem.

- $\mathbf{K} \cap L$ infeasible $\Leftrightarrow \widehat{\mathbf{K}} \cap \widehat{L} \subset lin(V)$
- $\mathbf{K} \cap L$ strongly feasible $\Leftrightarrow \widehat{\mathbf{K}} \cap \widehat{L}$ strongly feasible
- $\widehat{\mathbf{K}} \cap \widehat{L} = \{\mathbf{0}\} \Rightarrow \mathbf{K} \cap L$ strongly infeasible

The converse does not hold for the third point, we will need to define a more refined type of strong infeasibility.

A projective facial reduction

Theorem. K regular, nice^{*} convex cone. Let $L \subset H \subset V$ with H hyperplane, $0 \notin H$. If $\mathbf{K} \cap L = \emptyset$, there exist $\ell_1, \ldots, \ell_k \in \mathbf{K}^*$ with the following properties. Set $F_i = \{x \in \mathbf{K} : \ell_i(x) = 0\}$ and $L_i = L_{i-1} \cap span(F_{i-1})$ for i > 1 with $L_1 = \hat{L}$. We have

```
k \leq 1 + \dim(L)

F_i \supset F_{i+1}

F_i \supset \mathbf{K} \cap L_i \supset \mathbf{K} \cap \widehat{L}

F_k \subset lin(V)
```

One deduces $\mathbf{K} \cap L \subset \mathbf{K} \cap \widehat{L} \subset F_k \subset lin(V)$, hence $\mathbf{K} \cap L = \emptyset$.

This yields an alternative proof[†] that the SDP feasibility problem is in $NP_{\mathbb{R}} \cap co-NP_{\mathbb{R}}$ (Blum-Shub-Smale)

Pataki : A cone K is nice if $K^ + F^{\perp}$ is closed for every face F†First proof by Ramana's 1997 paper

Infeasibility certificates

Let $\mathbf{K} \subset V$ be regular, and $L \subset V$. An affine function f on V is called an *infeasibility certificate* of $\mathbf{K} \cap L$ whenever $f(x) \ge 0$ on \mathbf{K} and f(x) < 0 on L.

Interesting questions :

1. Existence of certificates, complexity

2. Rationality

Stable infeasibility

Let $d = \dim L$. We say that $\mathbf{K} \cap L$ is *stably infeasible* if there is an open neighborhood N of L in the Grassmannian of d-dimensional spaces in \mathbb{R}^n s.t. $\mathbf{K} \cap L'$ is infeasible for all $L' \in N$.

[one can perturbe "generically" and stay infeasible].

Theorem. $\mathbf{K} \cap L$ is stably infeasible iff one of these is satisfied

1. $\widehat{\mathbf{K}} \cap \widehat{L} = \{\mathbf{0}\}$

2. There is $\ell \in Int(\mathbf{K}^*)$ such that $\ell(x) < 0$ for all $x \in L$

Rationality results

Suppose that both K and L are defined over \mathbb{Q} (*e.g.*, K is a semialgebraic set defined by inequalities with coefficients in \mathbb{Q}) and that $\mathbf{K} \cap L = \emptyset$. Is there a rational certificate ?

Theorem. A stably infeasible program $\mathbf{K} \cap L$ always admits a rational infeasibility certificate.

For LP this condition can be discarded by applying Farkas

Theorem. If $\{x \in \mathbb{R}^n : Ax = b\} \cap \mathbb{R}^n_{\geq}$ is infeasible, there exists $y \in \mathbb{Q}^n$ and $\lambda \in \mathbb{Q}$ such that $H = \{x \in \mathbb{R}^n : y^T(Ax - b) = \lambda\}$ strongly separates L and \mathbb{R}^n_{\geq} .

Irrationality example in SDP

Let $v = \{x^2, y^2, z^2, xy, xz, yz\}$ and let $L' \subset S^6$ be set of 6×6 symmetric matrices satisfying

$$v^T M v = x^4 + xy^3 + y^4 - 3x^2yz - 4xy^2z + 2x^2z^2 + xz^3 + yz^3 + z^4$$

The set $\mathcal{S}^6_+ \cap L'$ is a 2-dimensional cone with no rational^{*} points.

For $L = (L')^{\perp} - Id_6$, then $\mathcal{S}^6_+ \cap L$ is strongly infeasible but has no rational certificates, since any such certificate would be a rational point in $\mathcal{S}^6_+ \cap L'$.

*Scheiderer : there are $f \in \mathbb{Q}[x]$ such that $f \in \Sigma(\mathbb{R}[x])^2$ but $f \notin \Sigma(\mathbb{Q}[x])^2$

Preprint on arXiv

Please have a look and give feedback :

"Conic Programming: Infeasibility Certificates and Projective Geometry" S. Naldi and R. Sinn, C arxiv.org/abs/1810.11792